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Abstract

When confounder data is missing-not-at-random in observational data, standard as-
sumptions are no longer sufficient for identifying the average treatment effect. In
practice, researchers often rely on either a complete case estimator, or imputation to
estimate the average treatment effect. In the following paper, we demonstrate that
despite their popularity, neither approach provides unbiased estimation of the ATE,
without additional assumptions that are untenable in practice. We show that the im-
putation estimators will only be unbiased in settings when we are able to perfectly
impute the missing confounder values. Paradoxically, this is only feasible in settings
when the missing values can be perfectly explained by the observed data, making it
redundant to impute at all. We propose an alternative identification strategy, which
allows researchers to leverage a two-stage estimator to consistently estimate the ATE
under arguably weaker assumptions. We introduce a suite of validation approaches to
evaluate the credibility of the proposed assumptions. We illustrate our framework on
a recent study evaluating the impact of government transparency on state legislature
and show that results from the proposed two-stage estimator differ significantly from
existing missing data estimators.
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1 Introduction

Missing data is prevalent in empirical research in social sciences. Issues at the data collection stage,

such as data entry mistakes, selective non-response, and record linkage problems, result in datasets

with missing values. Political science studies often rely on these incomplete datasets. For example,

Lall (2016) found that almost every study in the field of comparative and international political

economy published during a five-year period in International Organization and World Politics

suffered from missing values. In this paper, we replicate the study by Harden and Kirkland (2021),

which investigates the effect of transparency rules on state legislative outcomes. Unfortunately,

the dataset contains substantial missingness among the confounding variables. In the presence of

missing covariate data, researchers must decide whether to conduct the study using only complete

cases or to impute the missing data. Both choices rely on different underlying assumptions that

can have different substantive implications for the results (Lall, 2016; King et al., 1998).

The problem of missing data is exacerbated in settings when researchers rely on covariate

information to account for potential confounding. Recent methodological advances have allowed

for better ways to recover missing covariate data (e.g., Honaker et al., 1999, 2011; Van Buuren

and Groothuis-Oudshoorn, 2011). However, despite the significant interest in observational causal

inference methods in political science, little work has been done to understand the impact of missing

data in pre-treatment confounders. We will show that, problematically, missing data in confounders,

and how researchers choose to account for the missingness, can substantially change the research

conclusions from an empirical analysis.

To gain an understanding of the magnitude of the problem of missing data in political

science, we review the past 5 years of publications in the American Journal of Political Science

(AJPS) and American Political Science Review (APSR).1 From a keyword search, we found 130

articles in the APSR and 90 articles in the AJPS conducting observational studies with a causal

story. Among these, 70 out of 130 articles in APSR and 41 out of 90 articles in AJPS mentioned

some form of missing values in their main texts. The remainder of the articles do not offer discussion

on missing data, even if their datasets contain missing values. Finally, fewer than 5 articles in AJPS

and fewer than 7 articles in APSR disclosed incorporating some form of imputation models into
1The five year period is 2019 - 2024. We excluded methodology papers from the count.
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their analysis, such as mean imputation and multiple imputation.

In the following paper, we formalize the implications of missing data in confounders in the

context of observational studies. We provide three primary contributions. First, we derive the nec-

essary identifying assumptions for existing missing data approaches and find that the two commonly

used estimators–complete case and imputation estimators–require untenably strong assumptions

that can be difficult to justify in practice. We show that paradoxically, imputation estimators are

only unbiased in settings when the missing confounders do not have confounding power, thereby

making imputation unnecessary. As such, even under standard imputation assumptions, such as

missing-at-random, the imputation estimator will fail to be unbiased.

Second, we propose a novel method for researchers to unbiasedly estimate causal effects in

the presence of missing data in confounders. Specifically, we leverage recent work in the statistics

literature to propose a new identifying assumption referred to as outcome-response ignorability (e.g.,

Yang et al., 2019). While outcome-response ignorability nonparametrically identifies the average

treatment effect (ATE) in the presence of missing confounder data, implementing it in practice

is often computationally infeasible, especially when continuous variables are involved. Instead,

we propose an alternative estimation approach in the form of a two-stage projection estimator.

The estimation procedure involves two stages: (i) obtaining a complete case estimator, and (ii)

projecting the result onto imputed data. Informally, the projection estimator will augment the

first stage complete case estimator to target potential confounding in the missingness pattern.

The two-stage projection estimator relies on an additional estimation assumption, which is that

the imputation model correctly recovers the distribution of the missing covariates–an assumption

satisfied by missing-at-random. We show that under outcome-response ignorability and missing-

at-random, the two-stage projection estimator will consistently recover the ATE. In contrast to

the existing complete case and imputation estimators, the projection estimator is able to leverage

an informative imputation model to recover the ATE. This is especially advantageous in settings

when researchers have taken time to collect covariates that are prognostic of the missingness in

their underlying data. Our proposed identification strategy also allows researchers to identify the

conditional average treatment effect, thereby enabling researchers to consider subgroup treatment

effects within their studies, even in the presence of missing covariate data.

Our third contribution is a suite of diagnostic tools for researchers to evaluate the robustness
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of the projection estimator. These tools include (1) validation procedures for researchers to evaluate

the performance of the underlying imputation model under different missingness mechanisms; (2)

diagnostics to evaluate whether the observable implications of the outcome-response ignorability

assumption hold; and (3) a sensitivity analysis that allows researchers to consider the robustness

of the projection estimator under violations of both outcome-response ignorability and missing-at-

random.

The paper is structured as follows. Section 2 provides the notation and assumptions. In

Section 3, we formalize the corresponding identifying assumptions needed for the complete case

and imputation estimators to be unbiased. In Section 4, we introduce our proposed estimator and

discuss the theoretical properties associated with it. Section 5 considers the robustness checks for

the proposed estimation approach. In Section 6, we provide different simulated numerical examples

of the performance of our approach in comparison to standard methods. In Section 7, We perform a

re-analysis of a recent study evaluating the impact of government transparency on state legislature

(Harden and Kirkland, 2021). We show that depending on how researchers choose to account for

the missingness in the underlying covariates, the substantive takeaway changes from government

transparency having no impact to a positive impact on reducing policy making.

2 Notation and Assumptions

Define Yi(1) and Yi(0) as the potential outcomes under treatment and control, respectively. Define

Zi ∈ {0, 1} as a treatment assignment indicator, such that if Zi = 1, a unit receives treatment,

and 0 otherwise. We focus on the setting in which researchers are considering a binary treatment

variable. We will invoke the standard assumptions of no interference and consistency (i.e., SUTVA).

Furthermore, we assume full compliance, such that units assigned to treatment receive treatment.

Define the observed outcomes as Y := Yi(1)Zi + Yi(0)(1 − Zi). Finally, we define a set of pre-

treatment covariates Xi. We will assume that {Yi(1), Yi(0), Zi, Xi} is sampled i.i.d. Our estimand

of interest throughout the paper is the average treatment effect:

τ := E [Yi(1)− Yi(0)] .
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In a randomized control trial, researchers have the power to randomly assign treatment (i.e.,

Zi is randomized). However, in observational studies, treatment assignment is no longer random.

A common approach to estimating the treatment effect in this setting is to leverage a conditional

ignorability assumption (Rubin, 1976).

Assumption 1 (Conditional Ignorability of Treatment Assignment)

Yi(1), Yi(0) |= Zi | Xi

Assumption 1 states that given a set of pre-treatment covariates, the confounding effects from

selection into treatment will be ignorable.

Researchers also must invoke a positivity, or overlap, assumption.

Assumption 2 (Positivity of Treatment Assignment)

0 < Pr(Zi = 1 | Xi) ≤ 1

In other words, each unit must have a non-zero probability of receiving treatment.

Leveraging both identifying assumptions, the ATE is identified, and can be estimated using

different approaches, such as propensity score weighting, outcome modeling, or doubly robust

estimation (e.g., Lunceford and Davidian, 2004; Bang and Robins, 2005; Rosenbaum and Rubin,

1983b). However, in order for Assumption 1 and 2 to be sufficient for unbiased estimation, the

set of pre-treatment covariates necessary for Assumption 1 must be fully measured. While existing

literature has introduced different approaches to consider omitted variable bias (e.g., Cornfield

et al., 1959; Rosenbaum and Rubin, 1983a; Zhao et al., 2019; Cinelli and Hazlett, 2020; Huang

and Pimentel, 2022; Dorn and Guo, 2023; Huang and McCartan, 2025, to name a few), a common

problem that arises in practice is the presence of missing data in the observed covariates Xi.

Recent papers have considered the implications of missing pre-treatment covariate data in

the context of randomized control trials (e.g., Zhao and Ding, 2022; Chang et al., 2023). However,

within an experimental setting, adjusting for pre-treatment covariates is an efficiency problem,

and not necessary for identification (e.g., Zhao et al., 2024). We focus specifically on the more

challenging setting of missing data in the pre-treatment covariates Xi in an observational study, in
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which it is necessary to adjust for the full set of Xi to identify the ATE.

When missingness in the covariates is not completely random, the ATE can no longer be

identified without further assumptions. Throughout the paper, we will assume that there is missing

data in Xi, but that Yi and Zi are fully observed. In other words, we do not consider settings with

missing outcome or treatment observations. We refer readers to Zhao et al. (2023) and Huang

(2024) for more discussion about these settings. Furthermore, we assume that while there are

missing observations in Xi, the set of covariates Xi is otherwise fully measured (i.e., no omitted

variable bias). In settings when researchers are also concerned about unobserved confounders,

recently introduced sensitivity analyses can be applied in conjunction with the proposed estimation

approach to consider sensitivity to omitted variables.

3 Identification Assumptions for Existing Missing Data Methods

For each observation i, define Ri =
(
R

(1)
i . . . R

(p)
i

)
as a matrix, where each column corresponds to a

missingness indicator for a covariate. Let Ri = 1p denote the complete cases. Define the covariate

matrix Xobs
i := Xi ·Ri as a masked version of the covariate matrix Xi that is observed. Similarly,

define Xmis
i := Xi · (1− Ri) is the masked covariate matrix, containing only the missing values of

Xi. Finally, define X̃i := Xobs
i · Ri + X̂i · (1 − Ri), where X̂i represents the imputed Xmis

i values.

Figure 1 provides a visualization of the set-up.

Xobs
i Xmis

i Ri

✓ ✓ (1, 1)⊤

✓ ✓ (1, 1)⊤

✓ ✓ (1, 1)⊤

✓ NA (1, 0)⊤

✓ NA (1, 0)⊤

✓ NA (1, 0)⊤

Figure 1

For the remainder of the manuscript, we assume positivity in missingness. 2

2The different estimators considered in this paper do not contend with potential violations of positivity in missingness.
We discuss potential extensions and approaches to deal with positivity violations in Section 8.
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Assumption 3 (Positivity in R) For j ∈ {1, ..., p},

0 < Pr(R
(j)
i = 1 | Xi) ≤ 1.

Positivity in missingness (Assumption 3) assumes that certain values of a covariate cannot be

systematically missing. For example, consider a study in which researchers are controlling for

geographic fixed effects by including an indicator for what neighborhood an individual lives in.

Assumption 3 rules out settings in which covariates are entirely missing for a given neighborhood.

In the study by Harden and Kirkland (2021), which we replicate later, this assumption excludes

cases where confounder data from an entire state are missing—for example, when Pr(R
(j)
i = 1 |

certain state) = 0. In practice, we advise researchers check the observable implications of this

assumption by evaluating whether any covariate or combination of covariates can perfectly predict

missingness. This is especially important in panel data settings, when there could be units or time

periods with systematically missing values. When there are violations of positivity in missingness,

researchers must subset their data to the set of observations for which there is positivity in R, or

leverage stronger assumptions to account for positivity violations.

In the following section, we will discuss two common estimators—complete case estimator

and imputation estimators—often used when there is missing data, and formalize the assumptions

needed for the estimators to be unbiased.

3.1 Complete Case Estimators

A common approach used in practice when there are missing values in the underlying confounders

is to omit all missing observations, and estimate the ATE across the complete cases. This is

also known as complete case estimators, or list-wise deletion. In settings when the missingness is

completely at random, then the complete case estimator will be an unbiased estimator for the ATE.

More concretely, the following assumption must hold.

Assumption 4 (Missing Completely at Random (MCAR))

Ri |= {Zi, Xi, Yi(1), Yi(0)}
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More specifically, MCAR states that missingness cannot impact the treatment assignment process

or the outcomes.

In practice, missingness is often confounded with the treatment assignment or the out-

comes. For example, consider a study examining the effect of new exposure to polarizing news

articles on presidential vote choice (e.g., see Prior, 2013 for a systematic review of common studies

related to polarizing media on voter preferences). Since exposure to polarizing news articles is

often confounded with existing political ideology (e.g., Tyler et al., 2022), researchers control for

individuals’ demographic data as well as previous policy preferences, collected from historical large-

scale surveys. A well-known challenge in survey data is non-response to more politically charged

or sensitive questions—e.g., questions about abortion, the death penalty, or gun control (e.g., Yan,

2021). Missing completely at random would state that whether or not individuals respond to cer-

tain policy questions is unrelated to (1) vote choice, (2) whether or not they select into reading

polarizing news articles, and (3) how sensitive the underlying policy questions are. Problematically,

if individuals who are more likely to read polarizing news articles are also more likely to respond

to sensitive questions, then by naively omitting all units with missing observations, we will system-

atically only include the subset of individuals more likely to read polarizing news articles into the

analysis, resulting in a biased estimate.

The bias of a complete case estimator that arises will depend on how strong missingness

is related to treatment assignment Zi, and how strong missingness is related to the underlying

treatment effect (i.e., Yi(1) − Yi(0)). In addition to potential bias, complete case estimators have

also been criticized for discarding data, resulting in potentially large amounts of efficiency loss (King

et al., 1998). As such, given the restrictiveness of the underlying missing completely at random

assumption and potential efficiency loss, the applicability of a complete case estimator is relatively

limited.

3.2 Imputation Estimators

Imputation estimators are an alternative to complete case estimators. Researchers first impute

the missing data using a chosen imputation model (e.g., Honaker et al., 1999, 2011; Van Buuren

and Groothuis-Oudshoorn, 2011; Hollenbach et al., 2014), and then perform estimation across the

imputed data X̃i, often adding in the missingness indicator Ri. Because complete case estimators
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are only unbiased in settings when missingness is completely at random, imputation estimators are

often expected to provide less biased estimates than complete case estimators (e.g., King et al.,

2001; Lall, 2016).

A selection on observables assumption, also referred to as missing-at-random, is often used

to justify imputation estimators.

Assumption 5 (Missing-at-Random)

Xmis
i |= Ri | Xobs

i

While Assumption 5 is often invoked to justify imputation estimators, it is insufficient to

correctly identify the ATE. Consider the following toy example.

Example 3.1 (Bivariate OLS) Consider a bivariate covariate setting, where X := {X1, X2}.

Assume X1 is fully observed. Assume X2 consists of some missing values. In an oracle setting, in

which researchers could observe all of X, they would estimate the following regression:

Y = τ̂oracleZi + β̂1X1i + β̂2X2i + ε̂oraclei

Instead, because X2 has missing values, researchers first impute X2 using the observed covariate

X1. Define X̃2 := X2Ri + ĝ(X1)(1−Ri), where ĝ(X1) represents an imputation model using X1 to

predict missing values of X2. The following regression is then estimated:

Yi = τ̂imputeZi + β̂impute
1 X1i + β̂impute

2 X̃2i + β̂RRi + ε̂impute
i .

Then, without further assumptions,

τ̂impute = τ̂oracle + β̂2 · δ̂2, (1)

where δ̂2 := cov(Z⊥{X1i,X̃2i,Ri}
i , X

⊥{X1i,X̃2i,Ri}
2i )/var(Z⊥{X1i,X̃2i,Ri}

i ). As such, τ̂impute ̸= τ̂oracle.

Example 3.1 decomposes the bias in a regression estimator from imputing covariates into (1)

the residual imbalance across X2 (represented by δ̂2), and (2) how much variation X2 can explain
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in the outcome Y (i.e., β̂2). Importantly, we see from Example 3.1 that in order for the bias of

an imputation estimator to be zero, one of the following conditions must hold: (1) β̂2 = 0, or (2)

δ̂2 = 0. In order for either of these conditions to hold (i.e., β̂2 = 0 or δ̂2 = 0), the covariate with

missing values (i.e., X2) would have to not be a confounder.

To provide intuition for why, consider both scenarios. If β̂2 = 0, then the covariate X2 is

completely unrelated to the outcome. This would imply that X2 is in fact not a confounder, and

did not need to be included in the estimation to begin with. Similarly, if δ̂2 = 0, the imputed

values in X2 would have to be sufficient to account for the confounding in treatment. Because the

imputed values of X2 are a function of the observed covariate X1, this implies that X1 would have

been sufficient to account for confounding in treatment assignment.

Thus, Example 3.1 highlights that for the imputed estimator to be unbiased, the covariate

with missing values would have to not be a confounder. This is true, regardless of if missing-

at-random holds. While Example 3.1 focuses on the bias in a regression estimator when using

imputation, this intuition is true, regardless of estimation approach.3 This parallels the findings

from the measurement error literature (e.g., Bound et al., 2001), in which we can view the imputed

observations as corrupted, or mis-measured, observations.

To formalize, in order for an imputation estimator to be an unbiased estimator for the ATE,

the following identifying assumption must hold.

Assumption 6 (Modified Selection on Observables (Rosenbaum and Rubin, 1984))

Yi(1), Yi(0) |= Zi | {Xobs
i , X̂mis

i },

where X̂mis
i := g(Xobs

i ),4 and represents the imputation model used to predict the missing values of

Xmis
i . This is equivalent to assuming the following:

Yi(1), Yi(0) |= Zi | {Xobs
i , Ri}.

3We show in Appendix A that the error in an imputed weighted estimator will equivalently depend on whether the
imputed values X̂2 (which are a function of X1) are sufficient for explaining the confounding across the missing
observations.

4In many traditional imputation approaches, the imputation function for missing covariates will also take in outcomes
Y as an input (i.e., g(Xobs

i , Y ). In the context of observational causal inference, imputing the covariates with outcome
information will result in conditioning on post-treatment information.
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Assumption 6 is akin to the modified selection on observables assumption introduced in Rosenbaum

and Rubin (1984) and Mayer et al. (2023), and implies that across the fully observed units (Ri =

1p), the full set of covariates are necessary for the selection on observables. However, across the

partially observed units Ri = 0, only the observed covariates Xobs
i is necessary for the selection on

observables assumption to hold. This is equivalent to assuming that the observed covariates Xobs
i

and missingness pattern Ri are sufficient for explaining the confounding effects of selection into

treatment.

Consider the earlier example in examining the impact of exposure to polarizing news arti-

cles on vote choice, where researchers are concerned about non-response in more sensitive survey

questions on policy preferences. Assumption 6 would imply that in settings where individuals have

fully responded to all questions, their full set of policy preferences would impact both exposure to

news articles and vote choice. However, in settings where individuals have chosen to not respond

to the survey questions, their missing policy preferences would no longer impact exposure to news

articles and/or vote choice.

The plausibility of Assumption 6 is similarly limited outside of survey settings with sensitive

questions. Consider an alternative setting in which researchers are studying the impact of exposure

to violence on support for a peace deal (e.g., as studied in Hazlett and Parente, 2023). In these

settings, an important pre-treatment variable to control for is historical violent incidents, which can

impact both the exposure to violence and support for the peace deal. However, regions exposed to

more conflict historically may also have larger amounts of missing covariate data, as high-quality

data collection can be challenging. Assumption 6 would suggest that for regions with fully observed

covariate data, historical violent incidents would impact exposure to violence; however, when the

data is missing, then historical violent incidents will no longer impact present-day exposure to

violence.

Problematically, from Assumption 6, we see that the unbiasedness and consistency of an im-

putation estimator does not depend on the imputation model, or whether missing-at-random holds.

Assumption 6 implies that we could estimate the ATE using the observed covariates Xobs, effec-

tively ignoring the missingness.5 In other words, whether or not we impute provides no additional
5More concretely, consider a setting with only two covariates X1 and X2, where X1 is fully observed, but X2 has
missing values. Then Assumption 6 implies that a valid estimation strategy would be to first estimate the ATE across
the subset of units that are complete cases (where both X1 and X2 are observed). Then, estimate the ATE across
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benefit to identifying the ATE when using imputation.

Relationship with Alternative Imputation Approaches. We will consider two alternative

approaches to the imputation approach described above. First, researchers often use multiple

imputation directly to recover the missing outcome values (Westreich et al., 2015). While certain

multiple imputation approaches allow researchers to relax underlying parametric assumptions about

the relationship between the outcomes and the covariates, the same underlying assumption as

Assumption 6 must hold in order to unbiasedly recover the distribution of Yi(1) and Yi(0). In other

words, the observed covariates must be sufficient to fully recover the missing outcome distributions.

Multiple imputation is a powerful tool for recovering missing values in datasets in many settings.

However, when applied to observational causal inference—where the goal is to identify causal

estimands (such as the ATE) without bias—naively deploying a multiple imputation estimator is

insufficient. Second, an alternative approach is the missing indicator approach. In this setting,

instead of imputing the missing covariates with a particular model, a constant value is used to fill

in the missing covariate values. The missing indicator approach can thus be thought of as a special

case of the imputation estimator we discuss in the paper.

4 Proposed Method: Two-stage Projection Estimator

In the following section, we propose an alternative approach to estimating the ATE when there is

missing data in the underlying confounders. We leverage an alternative identification assumption,

outcome-response ignorability. While this identification approach has been introduced in recent

statistics literature (e.g., Miao and Tchetgen Tchetgen, 2016; Yang et al., 2019; Sun and Liu, 2021),

the existing estimation approaches are computationally intensive and often infeasible to leverage in

practice. Instead, we propose a two-stage projection estimator, which allows researchers to leverage

the benefits of a well-estimated imputation model.

units that have missing X2 values using only X1, and combine the estimates together. This effectively bypasses the
need to impute the missing values of X2. This is distinct from using a complete case estimator, which would only
estimate the ATE across the complete cases.
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4.1 Outcome-Response Ignorability

To begin, we introduce an alternative assumption for identification. The alternative identifying

assumption relies on assuming ignorability between the observed outcomes and the missingness

indicator Ri, given the treatment assignment indicator Zi and a set of pre-treatment covariates Xi.

Assumption 7 (Outcome-Response Ignorability)

Ri |= Yi | {Zi, Xi}

Assumption 7 was initially introduced in Yang et al. (2019),6 and implies that given Xi and Zi,

the mean value of the outcome will be equal, across the fully observed cases and cases with missing

values (i.e., E(Yi | Zi = z,Xi = x,Ri = 1p) = E(Yi | Zi = z,Xi = x,Ri ̸= 1p) ≡ E(Yi | Zi =

z,Xi = x)). Assumption 7 is different from missing completely at random, which assumes that Ri

is independent of the outcomes Yi, unconditionally. Instead, Assumption 7 allows for differential

response across the pre-treatment covariates Xi, as well as treatment Zi.

Consider again the earlier example of the researcher studying the impact of exposure to

polarizing news articles on vote choice. Outcome-response ignorability assumes that conditioning

on an individual’s underlying policy preference–even if unobserved, whether or not an individual

responds to the survey policy question will not impact the vote choice. Similarly, in the setting

of the researcher studying conflict and the impact of violence on support for peace, Assumption 7

states that conditioning on a region having the same historical violence incidents, whether or not

historical violent incidents is missing will not impact the outcome–i.e., support for peace.

To our knowledge, Assumption 7 has not been leveraged in the political science literature

for missing data.7 Assumption 7 allows us to directly identify the conditional average treatment

effect, given Xi = x, using the complete case data.

Lemma 4.1 (Identification of the CATE under Outcome-Response Ignorability) Under
6A different strand of literature in statistics introduces a similar assumption, known as a shadow variables assumption
to recover the mean of an outcome variable missing not at random (e.g., Miao and Tchetgen Tchetgen, 2016; Miao
et al., 2024). This work relies on leveraging an auxiliary variable that can serve as a proxy variable that will affect
the missingness in the outcome variable through its association with the outcome. We can view outcome-response
ignorability as leveraging the missingness patterns in the covariates (i.e., Ri) as a shadow variable.

7We searched for this assumption across the top political science journals, and also checked all papers that cited the
original Yang et al. (2019) paper.
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Missing Completely at Random Modified Conditional Ignorability

X

R Z Y

X Xobs R

Z Y

Outcome-Response Ignorability

X

R Z Y

X

Z R Y×

Figure 2: Illustration of different identifying assumptions: The upper left panel depicts MCAR, where the
missingness R is independent of all other components in the graph. The upper right panel presents modified
conditional ignorability, indicating that X influences the process solely through Xobs (see the main text for
further discussion on the paradox). The lower panels illustrate that outcome response ignorability permits
missingness to occur either before or after treatment.

outcome-response ignorability,

τ(Xi) := E(Yi(1)− Yi(0) | Xi) = E(Yi | Xi, Zi = 1, Ri = 1p)− E(Yi | Xi, Zi = 0, Ri = 1p).

While the CATE is identified under outcome-response ignorability, to identify the ATE,

researchers have to marginalize over the distribution of the covariatesXi, which is not fully observed

as a result of the missingness. More concretely, the average treatment effect τ can be written as:

τ : =

∫
τ(Xi)f(Xi)dν,

where f(Xi) represents the full distribution of Xi. While τ(Xi) (i.e., the CATE) is identified

directly from outcome-response ignorability, f(Xi) is not observable, as there are missing values of

Xi.

Yang et al. (2019) show that f(Xi) can be non-parametrically identified, which then allows

researchers to re-weight the complete case observations using a density ratio. However, estimating

the density in practice is a challenge and requires solving a computationally infeasible set of esti-
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mating equations, outside of the setting when the outcomes Yi and covariates Xi are all discrete

(e.g., Kuroki and Pearl, 2014; McCartan et al., 2024). Yang et al. (2019) leverage different basis

expansions of the observed covariates Xi to approximate a solution. However, this is computa-

tionally challenging, especially in higher dimensional settings; furthermore, it can be difficult to

justify if the density approximation is sufficiently valid. We provide more discussion about the

relationship between our proposed approach and the non-parametric approach from Yang et al.

(2019) in Appendix A.3.

We propose a two-stage projection estimator, which relies on modeling the outcomes across

the complete cases, and then uses an imputation model to approximate the density of f(Xi). If

the outcome models are correctly specified and the imputation model consistently recovers density

of the missing covariate values, the two-stage projection estimator will be a consistent estimator

under Assumption 7. Unlike alternative estimation approaches, the two-stage projection estimator

can leverage the power of a well-estimated imputation model.

4.2 Two-stage Projection Estimator

In the following subsection, we propose a two-stage projection estimator that allows researchers

to recover the ATE under outcome-response ignorability. As an overview, we start by estimating

outcome models for both the treatment and control outcomes across the fully observed data to

model the relationship between the outcomes and the covariates. This is effectively equivalent

to a standard complete case estimator. We then impute the missing covariate data across the

subset of units with missing data. In the second stage of the projection estimator, we use the

estimated model from the first stage to predict the outcomes across the incomplete cases, using

the imputed covariates. We informally refer to this second stage as a ‘projection’ step. In the case

of a linear regression, this corresponds to multiplying the estimated coefficients by the imputed

covariate values to obtain predicted outcomes. The same idea extends naturally to more complex

machine learning models, where fitted parameters are applied to the imputed covariates to generate

predictions.

The projection step target the missingness in the covariates by projecting the estimated

model from the first step into the data with missing values. Intuitively, under outcome-response

ignorability, the relationship between the outcome and the covariates will be stable across the
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Step 1. Split the data into two subsets: (1) the complete cases (i.e., Ri = 1p) and (2) cases with missing
Xi observations. Denote these as S1 and S0, respectively.

Step 2. Across S1, estimate outcome models across both the treatment and control units: m̂1(Xi;S1),
m̂0(Xi;S1). For simplicity, we will denote τ̂(Xi;S1) := m̂1(Xi;S1)− m̂0(Xi;S1).

Step 3. Estimate an imputation model ĝ across S1 to generate the imputed covariates X̃i in S0.

Step 4. Using the imputed covariates X̃i and the estimated outcome models, generate predictions of the
conditional average treatment effect across S0 (i.e., τ̂(X̃i;S1)).

Step 5. Combine together to compute the projection estimator:

τ̂proj =
1

n

n∑
i=1

¶
m̂1(X̃i;S1)− m̂0(X̃i;S1)

©
Table 1: Steps for estimating the proposed two-stage projection estimator.

observed and the missing data. The second step thus leverages an imputation model to re-construct

the missing data in the pre-treatment covariates. Table 1 summarizes the procedure for estimating

the two-stage projection estimator.

The two-stage projection estimator can be written as the sum of the complete case estimator

and a projected component:

τ̂proj =
1

n

n∑
i=1

¶
m̂1(X̃i;S1)− m̂0(X̃i;S1)

©
= pR ·

n∑
i=1

{m̂1(Xi;S1)− m̂0(Xi;S1)}Ri︸ ︷︷ ︸
∝ Complete Case Estimator

+(1− pR) ·
n∑

i=1

¶
m̂1(X̃i;S1)− m̂0(X̃i;S1)

©
(1−Ri)︸ ︷︷ ︸

Projected Component

,

(2)

where pR is the proportion of complete cases (i.e., pR = E(1{Ri = 1p})), S1 denotes the subset

of observations that are completely observed (i.e., Ri = 1p), and τ̂(Xi; ·) represents the estimated

treatment effect.

When the outcome models {m̂1(Xi;S1), m̂0(Xi;S1)} and the imputation model is consis-

tently estimated, then the projection estimator will be a consistent estimator for the ATE.

Theorem 4.1 (Consistency of the Projection Estimator) Assume Assumptions 1-3, and 7

(outcome-response ignorability) hold. Then, assume the following estimation assumptions:
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• Consistent outcome models: E {m̂z(Xi;S1)−mz(Xi;S1)} = op(1) for z ∈ {0, 1}, where

mz(Xi;S1) := E [Yi | Xi, Zi = z,Ri = 1p].

• Valid imputation model: f({Xobs
i , X̂mis

i } | Ri ̸= 1p) = f({Xobs
i , Xmis

i } | Ri ̸= 1p)

Then, the projection estimator will be a consistent estimator for the average treatment effect:

τ̂proj
p→ τ.

The projection estimator requires two additional estimation assumptions for consistency.

The first estimation assumption is that the outcome model is correctly spceified across the complete

cases. Notably, alternative approaches (i.e., complete case estimators or the imputation estimator)

require additional estimation assumptions about the consistency of either the propensity score

model and outcome model across all units–even those with missing confounder data. In contrast, the

outcome-response ignorability estimators require consistency of the outcome model only across the

complete cases. The second estimation assumption needed is that the imputation model sufficiently

approximates the density of the underlying missing covariates. Imputation models like Amelia

or MICE will satisfy this condition in settings when missing-at-random holds (Blackwell et al.,

2012). In other words, unlike the previously discussed estimators (i.e., complete case estimator,

the imputation estimator, and the weighted estimator), the projection estimator is able to benefit

from a well-estimated imputation model. Table 2 summarizes the different estimators, and their

corresponding identification and estimation assumptions.

To compute the variance of τ̂proj , we must account for both the variation in the outcome

model estimation, as well as the uncertainty in the imputation model. If researchers are using

a parametric approach to both imputation and outcome modeling, then we can apply standard

M -estimation approaches to compute a closed form representation of the variance (Lunceford and

Davidian, 2004). However, because many imputation models rely on black-box approaches, for

which the closed-form standard errors are not readily available, we recommend researchers use a

bootstrap approach to account for uncertainty, which would flexibly capture the variability from

imputation, even when the underlying imputation model is complex or nonparametric.
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Estimator Identification Assumption Estimation Assumptions
Complete Case Missing Completely at Random Consistent propensity score model (across all units)

(i.e., ê(Xi;Ri = 1p)
p→ Pr(Zi = 1 | Xi))

and/or consistent outcome model (across all units)
(i.e., m̂z(Xi;Ri = 1p)

p→ E(Yi | Xi, Zi = z))
Imputation Estimator Modified Selection-on-Observables Consistent propensity score model (across all units)

(i.e., ê(Xi ·Ri + X̃i · (1−Ri))
p→ Pr(Zi = 1 | Xi))

and/or consistent outcome model (across all units)
(i.e., m̂z(Xi ·Ri + X̃i · (1−Ri))

p→ E(Yi | Xi, Zi = z))
Two-Stage Projection Outcome-Response Ignorability 1. Consistent outcome models (across complete cases)

(i.e., m̂1(Xi;S1)
p→ E(Yi | Xi, Zi = 1, Ri = 1p)

and m̂0(Xi;S1)
p→ E(Yi | Xi, Zi = 0, Ri = 1p))

2. Valid imputation model
(i.e., f(X̃i | Ri ̸= 1p) = f(Xi | Ri ̸= 1p))

Table 2: We assume across all estimators, conditional ignorability and positivity holds.

Extensions for other estimation approaches. The two-stage projection estimator relies on

outcome modeling and an imputation model to recover the ATE. There are alternative estimation

approaches that leverage outcome-response ignorability. For example, instead of relying on an

imputation model to approximate the density f(Xi) or a non-parametric approach like in Yang

et al. (2019), Sun and Liu (2021) propose using different parametric models that target the joint

density of treatment assignment and being a complete case. However, this requires being able

to consistently model both the propensity of receiving treatment, as well as the probability of

being a complete case (i.e., Pr(Ri = 1p | Xi, Zi = z)), which can be challenging in practice.

Furthermore, researchers can combine the weighting approach from Sun and Liu (2021) with the

two-stage projection estimator to construct a doubly robust augmented weighted estimator. We

provide more discussion in Appendix A.4. We compare the performance of the two-stage projection

estimator to these alternative approaches in simulations and find that the weighting estimator can

be unstable, resulting in highly variable estimates.

5 Robustness Checks for the Projection Estimator

While we argue that the projection estimator relies on weaker underlying assumptions than the

complete case or imputation estimators, the validity of the projection estimator does rely on both

outcome-ignorability and missing-at-random assumptions. In the following section, we provide a

suite of diagnostic tools for researchers to use to evaluate the plausibility of these assumptions in
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practice.

5.1 Validating the Imputation Model

Unlike the alternative estimation approaches, the two-stage projection estimator allows researchers

to leverage a well-estimated imputation model. However, this is a double-edged sword. In settings

when the imputation model does a poor job recovering the missing covariates, this can mean that

the projection estimator will be susceptible to potential bias. To help address this concern, we

propose a validation procedure for researchers to evaluate the stability and performance of the

underlying imputation model. In particular, we leverage the complete case observations, and con-

struct different common missingness mechanisms. Using the constructed missingness processes, we

can then (1) mask the covariate observations across the complete cases, (2) estimate an imputation

model, and (3) compare the imputed covariate values with the true covariate values. Different

imputation models have different underlying assumptions. The proposed validation procedure is

helpful in considering how sensitive the underlying performance of the imputation model is to

potential perturbations from the assumed data generating process.

Our proposed procedure is similar to the idea of overimputation (e.g., Blackwell et al., 2012).

However, instead of performing a leave-one-out evaluation by sequentially omitting each individual

covariate observation, we proposed generating different missingness mechanisms. We recommend

researchers, at a minimum, evaluate several common missingness mechanisms, summarized below.

Missing-at-random. The first missingness mechanism researchers should evaluate is missingness

at random. If an imputation model is unable to perform well under MAR, then this likely means

that the imputation results should be considered with great caution, as even when the underlying

MAR assumption holds, the model is unable to correctly recover the missing covariates well. This

could occur if the signal to noise ratio is too low.

For each covariate X
(j)
i for j ∈ {1, ..., p}, construct a generalized linear model for the

missingness indicator R̃(j), using that is a function of the other covariates (i.e., X−(j)
i ):

Pr(R̃MAR
(j) | X−(j)

i ;α(j)) = h−1

Ñ∑
k ̸=j

βkX
(k)
i + α(j)

é
, (3)
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where α(j) represents the scale parameter and h is a link function. Researchers should calibrate

α(j) such that the proportion of simulated missing values matches the true proportion of missing

values. A useful approach is to modify the link function to evaluate the impact of distributional

assumptions in the underlying imputation model.

Missing-Not-at-Random. While model specification choices can result in biased result, a larger

driver of bias in imputation models is violations of the underlying missing-at-random assumption.

As such, we recommend researchers generate missingness mechanisms that explicitly violate the

missing-at-random assumption to evaluate the performance of the imputation model under different,

adversarial missing-not-at-random data generating processes. To generate a missing-not-at-random

process, researchers can directly add in the covariate X(j) into the generalized linear model:

Pr(R̃MNAR
(j) | X−(j)

i ;α(j)) = h−1

Ñ∑
k ̸=j

βkX
(k)
i + γ ·X(j)

i + α(j)

é
, (4)

where |γ| controls how strong the violation in missing-at-random is. We recommend researchers

evaluate different values of γ to see the impact of missing-not-at-random on the imputation model’s

performance. If, for very small values of γ, the imputation model incurs large amounts of error,

this implies that there is a large sensitivity in the imputation results.

Near violations of positivity in missingness. For large γ values in Equation (4), researchers

can also simulate a missingness mechanism that results in near violations of positivity in missing-

ness. As |γ| increases, this implies that for large (or small) values of covariate X(j), the probability

of missingness will be larger. For the imputation model to recover missing covariate values in the

presence of near violations of positivity in missingness, the imputation model must correctly ex-

trapolate beyond the convex hull of the observed covariates. Simulating near violations of positivity

in missingness can be helpful to evaluate the imputation model’s ability to extrapolate.

For different missingness mechanisms, researchers can repeatedly mask the observed co-

variates, and perform imputation. They can then compare the imputed values with the observed

covariate values to evaluate the imputation error. Table 3 summarizes. We recommend researchers
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normalize the estimated error to interpret the relative error from imputation. For example, if con-

sidering the mean absolute error, researchers could normalize by the mean covariate value. The

normalized mean absolute error would correspond to a percentage error in recovering the covari-

ate values. A normalized mean absolute error of 0.1 would imply that on average, the imputed

covariate values are off by about 10% of the average value.8

A low estimated imputation error does not necessarily imply that researchers have success-

fully recovered the missing covariate data. However, it helps provide researchers with a sense of the

performance of the imputation model. For example, if researchers find that even under missing-at-

random, there is a relatively large amount of error in recovering the missing covariate values with

the imputation model, this implies that the other covariates are likely not sufficiently explanatory

of the missing covariate.

Table 3: Proposed validation procedure for an imputation model

For a chosen missingness process:

Step 1. Subset the dataset to the complete cases (i.e., Ri = 1p), where consistent with Section
4.2, we denote this as S1.

Step 2. Across S1, generate missing values for the covariates (i.e., R̃i).

Step 3. Estimate an imputation model.

Step 4. Compare the imputed covariate values with the true covariate values:

Error(X̂i, Xi | R̃i)

5.2 Observable implications of Outcome-Response Ignorability

While researchers can never check if outcome response ignorability holds, there are observable

implications of the assumption that can be evaluated. In particular, under outcome-repsonse ig-

norability, the average value of Yi, given Xi and Zi will be equal across the fully observed cases
8Researchers can alternatively normalize by other measures. For example, if they wish to interpret the imputation
error with respect to the scale of the original data, they should normalize by the standard deviation of the covariate.
In such a setting, a normalized mean absolute error of 1 would imply that the imputation model is likely not
capturing much of variability in the covariate values, and is performing similarly to a mean imputation.

21



and cases with missing values:

E(Yi | Zi = z,Xi = x,Ri = 1p) = E(Yi | Zi = z,Xi = x,Ri ̸= 1p)

Within the treatment and control groups, researchers can compare the projected outcomes with

the observed outcomes. If the projected outcomes are centered at the observed outcomes, then this

provides credibility in the plausibility of outcome-response ignorability.

If the projected outcomes are not similar to the observed outcomes, then this implies several

issues could be present. First, outcome-response ignorability could be violated. As such, there are

shifts in the underlying distribution of the outcomes across the missing and fully observed cases.

Second, the error in the imputed covariates X̃i is resulting in an incorrect projection of the outcomes.

As a result, even if outcome-response ignorability holds, since the input of covariates is wrong, and

the resulting projected outcome value is incorrect. Finally, the underlying outcome model could be

misspecified to begin with, resulting in poor performance.

While we cannot precisely diagnose which scenario is occurring in practice, a helpful check

is to compare the goodness-of-fit of the outcome model across the complete cases (i.e., Ri = 1p)

and the goodness-of-fit of the outcome model across the projected, incomplete cases (i.e., Ri ̸= 1p).

If researchers see that within the complete cases, there is a relatively high goodness-of-fit, but the

goodness-of-fit deteriorates across the projected, incomplete cases, this indicates that there is likely

a shift in the underlying distribution of the outcomes across the missing and fully observed cases,

or the imputed covariates are resulting in an incorrect projection. In contrast, if researchers see

that the goodness-of-fit is poor in both the complete cases and the incomplete cases, then this is a

sign that the underlying outcome model is not sufficiently accounting for enough variation in the

outcome process.

In a special setting when the outcome and covariates are all categorical, researchers can

directly test for observable implications of violations in outcome-response ignorability (Sjölander

and Hägg, 2025). This is done by first computing a set of constraints that are implied by outcome-

response ignorability and seeing if the observed data violate the given constraints. If the observed

data violate the constraints, this implies that outcome-response ignorability has been violated. We

refer readers to Sjölander and Hägg (2025) for more details.
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5.3 Sensitivity Analysis

Finally, we propose a sensitivity analysis for the projection estimator that allows researchers to

bound the range of possible estimates under violations of outcome-response ignorability and missing-

at-random. Sensitivity analyses allow researchers to consider how robust their results are to po-

tential violations in the underlying analysis. If small assumption violations cause large changes in

the estimated treatment effect, the result is sensitive; if only large violations matter, the estimate

is relatively robust. In the following subsection, we provide an overview of the proposed sensitivity

analysis, with technical details in Appendix A.5.

We introduce two parameters that control the following: (1) the amount of imputation error

for a given covariate; and (2) how different the relationship is between the outcomes and covariates

across the missing subset Ri ̸= 1p, in comparison to the complete case subset Ri = 1p. We provide

more details below.

Varying the imputation error. As the amount of imputation error increases, this implies a

greater deviation from missing-at-random, which will result in a larger amount of error in the

projection step of the estimator. One way researchers can calibrate how much imputation error

to consider within the sensitivity analysis is to leverage the results from the validation exercise

proposed in Section 5.1. In particular, researchers can use the estimated error incurred from a

specified missingness mechanism (i.e., small amounts of MNAR) to reason about what is a plausible

imputation error for each covariate. They can vary how many times larger the imputation error is,

relative to the calibrated imputation error.

Varying the relationship between the outcomes and covariates. To quantify the dif-

ferences in the relationship between the outcomes and covariates across the complete and in-

complete subsets, we consider the deviation between E[Yi(1) − Yi(0) | Xi = x,Ri = 1p] and

E[Yi(1)− Yi(0) | Xi = x,Ri ̸= 1p]:

Γ(x) :=
E[Yi(1)− Yi(0) | Xi = x,Ri ̸= 1p]

E[Yi(1)− Yi(0) | Xi = x,Ri = 1p]
≤ Γ. (5)
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When outcome-response ignorability holds, then Γ = 1. As Γ deviates further from 1, then this

implies there is a greater difference in the relationship between the outcomes and covariates across

the two subsets of data, and there is a larger violation in the underlying outcome-response ignor-

ability assumption. In other words, we are unable to learn much about the missing subset of data

from the complete cases.

6 Simulations

Across all simulations, we find that under MAR missingness, the projection estimator unbiasedly

recovers the ATE and is far more efficient than weighting methods using outcome–response ignor-

ability. Under MNAR, the two-stage estimator shows some bias due to imperfect imputation, but

its bias remains far smaller than that of complete-case or standard imputation estimators.

6.1 Set-Up

We provide a summary of the simulation set-up, with additional details in Appendix C. For sim-

plicity, we consider a bivariate setting, with {X(1)
i , X

(2)
i }. We let X(1)

i and X
(2)
i both be standard

normal random variables, with a set correlation cor(X(1)
i , X

(2)
i ) = ρ. Define the outcome as

Yi = τ · Zi +

2∑
j=1

¶
βjX

(j)
i + φj

(
X

(j)
i · Zi

)©
+ ui, where ui ∼ N(0, 1),

and the treatment assignment process as

Pr(Zi = 1 | Xi) =
1

1 + exp
¶
−
Ä∑2

j=1 γjX
(j)
i

ä© .
We assume that X(1)

i is fully observed for all units, while X(2)
i has missing values. The missingness

probability is defined as

Pr(Ri = 1p | Xi) =
1

1 + exp
¶
−
Ä
X

(1)
i + αX

(2)
i

ä© .
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We consider two scenarios: (1) α = 0, such that missingness in X
(2)
i can be fully explained by

variation in X
(1)
i (i.e., missing-at-random holds), and (2) α = 1, where missingness in X

(2)
i depends

on the values of X(2)
i (i.e., missing-not-at-random). Within each scenario, we vary the correlation

between X
(1)
i and X

(2)
i , which proxies how well we are able to recover the missing values in X

(2)
i

with an imputation model. In general, Pr(Ri = 1) = 0.5 across the simulations, indicating that

above half of the observations in X
(2)
i are missing.

For each simulation iteration, we estimate seven different estimators: (1) the complete

case estimator, (2) the imputation estimator, (3) the missing indicator estimator, (4) a multiple

imputation estimator, (5) a parametric, weighted estimator following Yang et al. (2019) and Sun

and Liu (2021), (6) the proposed, two-stage projection estimator, and finally (7) an augmented

weighted estimator.

For the outcome models used in the complete case, imputation, and two-stage projection

estimators, we model the outcomes using an interacted linear regression. For the imputation

estimator, we first impute the missing values in X(2), and then estimate the outcome model by

including X(1), the imputed X̂(2), and a missingness indicator for whether or not X(2) was observed

or not. To impute the missing covariate values, we use a linear regression between X(2) and X(1).

The missing indicator estimator uses the same procedure, but mean imputes the missing values in

X(2) instead of relying on an imputation model. For the multiple imputation estimator, we separate

the data into the treatment and control subsets, and then impute both the missing covariate values,

as well as the missing counterfactual outcomes simultaneously, using Amelia (Honaker et al., 2011).

This effectively uses a black-box modeling approach without relying on a model specification.

The parametric weighted estimator relies on a logistic regression specification, and then utilizes a

generalized method of moments framework to solve for the joint probability between missingness

and treatment. We provide more details on all of the different estimation approaches used in the

simulations in Appendix C.

6.2 Simulation results

There are several key takeaways to highlight from the simulations. First, under missing-at-random,

the proposed two-stage projection estimator is unbiased, even for low values of ρ. When the covari-

ate values are missing-not-at-random, the two-stage projection estimator will be biased; however,
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notably, the bias incurred by the two-stage projection estimator will be lower than the bias in the

complete case and imputation estimators. Furthermore, we see that in settings with sufficiently

high correlation between X(1) and X(2), even under MNAR, the bias from the two-stage projection

estimator is relatively small (i.e., ranging from 0.08− 0.14, in settings where ρ ≥ 0.5).

Second, consistent with the theoretical results in Section 3, we find that irrespective of

how high ρ is and whether or not X
(2)
i is missing-at-random or not, the imputation estimators

(i.e., both the standard imputation estimator, as well as the multiple imputation estimator) are

all substantially biased. Interestingly, we see that in settings when the missingness mechanism is

missing-at-random, the multiple imputation estimator provides slightly less biased estimates than

the imputation estimator. However, in settings when the missingness mechanism is missing-not-

at-random, then using the multiple imputation estimator results in larger amounts of bias than a

standard imputation estimator. This re-iterates the fact that missing-at-random is not a sufficient

assumption to identify the ATE, and that using imputation estimators in practice warrants careful

consideration.

Third, we compare the projection estimator to a parametric weighted estimator that also

leverages outcome-response ignorability. Unlike the projection estimator, which relies on outcome

modeling and an imputation model, the weighted estimator accounts for the distribution shift from

missingness. In theory, the weighted estimator should still be consistent in settings when there is

missing-not-at-random, but requires researchers consistently estimate the probability of missing-

ness. We find in the simulations that while the weighted estimator is unbiased even in settings

when covariate values are missing-not-at-random, there is a large degree of variance inflation from

the re-weighting. The instability of the estimator is also amplified in settings when the covariates

are correlated to one another. We find that the resulting mean squared error of the weighted

estimator is substantially higher than the projection estimator across the different simulation set-

tings. Augmenting the weighted estimator (i.e., the augmented weighted estimator) helps stabilize

the resulting estimates substantially, as it leverages information from the outcome model. We find

that the augmented weighted estimator performs similarly to the projection estimator, though with

slightly more variance, as a result of the weighting.9

9The similarity in performance between the augmented weighted estimator and the projection estimator arise from
the fact that in the two settings considered here, the outcome model is correctly specified. In Appendix C, we
consider settings with model misspecification. In those settings, we find that the augmented weighted estimator can

26



MAR MNAR

0 0.4 0.8 0 0.4 0.8

0.0

0.1

0.2

0.3

0.4

0.5

Correlation between X1 and X2

M
ea

n 
S

qu
ar

ed
 E

rr
or

CC
Imputation
Indicator
MI
Weighted
Proj.
Aug.

Error

Bias^2
Variance

Figure 3: We plot the mean squared error of the different estimators in the simulation study. We decompose
the mean squared error into the squared bias and variance associated with each estimator.

In Appendix C, we consider more complex simulation settings, such as settings with model

misspecification and alternative data generating processes, and find that the general patterns hold

across these different settings. We also evaluate the validity of the bootstrapped standard errors,

and find that the proposed two-stage projection estimator is able to obtain nominal coverage.

7 Application: Evaluating Transparency and Political

Compromise in State Legislatures

7.1 Background

In a recent study, Harden and Kirkland (2021) studies the influence of transparency laws on parti-

sanship and budgetary changes within state legislatures. The authors are interested in understand-

ing the impact of “sunshine laws”, which require government agency meetings to be open to the

public. Certain states exempt (partially or fully) legislatures from the sunshine law citing efficiency

reasons, while others have these laws in place. The treatment in the study is defined as the presence

of an open meeting requirement for state legislatures in a given year. To consider partisanship and

the level of budgetary changes, the authors consider a variety of outcomes, such as proportion of

bills enacted, budget kurtosis , and polarization. To control for potential confounding, the authors

incorporate a set of pre-treatment covariates, which includes the number of bills voted on, level

of professionalism, state ideology, governmental ideology, Ranney index, presence of term limits,

provide some protection against outcome model misspecification, if the estimated weights are correctly specified.
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state population, the Gross State Product (GSP), and the legislative expenditures.

Many of the pre-treatment covariates exhibit missing values. The authors employ multiple

imputation techniques on the data (Honaker et al., 2011), and subsequently present the results

using imputed datasets. In the original study, the authors find little to no impact of the presence

of transparency laws on the outcomes of interest. In other words, transparency laws do not appear

to impact government productivity, or result in higher rates of partisanship. A natural question

thus is whether the authors would have arrived at different conclusions, had they employed an

alternative missing data estimator. We compare five total estimators: (1) an imputation estimator,

following the authors’ original specification; (2) a complete case estimator; (3) a multiple imputation

estimator; (4) a weighting estimator; (5) our proposed, two-stage projection estimator; and (6) an

augmented weighted estimator. For each estimator, we add in the same pre-treatment covariates,

as well as time and state-level fixed effects, and estimate standard errors using a non-parametric

block bootstrap procedure to account for time and state-level fixed effects. See Appendix D for

details on the estimation.

We check for missingness patterns in the covariates across the time and state fixed effects.

We find that the state of Nebraska is missing all observations for some of the pre-treatment co-

variates, indicating a violation in positivity of missingness (see Appendix D for more discussion).

As a result, we restrict our study population to exclude the state of Nebraska. As a result, we do

not expect the findings to exactly replicate the estimates from the original Harden and Kirkland

(2021) paper. However, we note that the substantive conclusions from the imputation estimator in

our re-analysis matches the substantive conclusion from the Harden and Kirkland (2021) paper.

7.2 Results

From our analysis, we see that the choice of estimator results in different substantive takeaways. For

example, using the same model specification as the original authors (i.e., an imputation estimator

with ordinary least squares), we find that there is little to no impact of government transparency

in government productivity (as proxied by the proportion of bills enacted by the state legislature)

and polarization. In particular, both imputation and the complete case estimators result in a

null estimate. In contrast, the projection estimator results in a positive estimate of the impact of

government transparency on bill enactment. Similarly, for the outcome of polarization, while the
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imputation estimator resulted in a null estimate, the complete case estimator and the projection

estimator estimate a statistically significantly negative impact, implying that government trans-

parency could result in a decrease in polarization in state legislatures. When looking at kurtosis,

the original study found an increase in the budget kurtosis from government transparency. The

projection estimator similarly estimates a positive impact, though the estimated effect is attenu-

ated towards zero. Interestingly, the results from using the projection estimator imply a stronger

result than the original paper: there is actually an improvement in government productivity and a

decrease in polarization from enacting government transparency laws.

Because each estimator relies on different assumptions about missing pre-treatment covari-

ates, the substantive conclusions can vary widely. The complete-case estimator requires MCAR,

which is unlikely given clear time-patterned missingness (Figures 8 and 9 in appendix). The impu-

tation estimator assumes that complete cases contain all confounders of transparency laws, while

incomplete cases require only observed covariates to be confounded. In contrast, the projection,

weighted, and augmented weighted estimators rely on outcome–response ignorability, which in this

setting means the outcome is independent of missingness conditional on transparency status and

full covariates.

The credibility of each estimator thus depends on the plausibility of the underlying as-

sumptions for each estimator. In the following subsection, we walk through the proposed robust-

ness checks for the projection estimator and find that the results are relatively robust to potential

violations in the underlying assumptions.

7.3 Robustness checks

To evaluate the sensitivity of the projection estimator to potential violations of the underlying

assumptions, we illustrate the proposed robustness checks. See Appendix D for details.

Validating the imputation model. We begin by evaluating the performance of the imputation

model. We simulate three different missingness mechanisms for each covariate: (1) missing-at-

random; (2) missing-not-at-random (with a slight dependency on the missing covariate values);

(3) missing-not-at-random (with a larger dependency on the missing covariate values). For each

missingness mechanism, we calibrate the proportion of total missing values to match the true
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Figure 4: Estimated impact of transparency laws on (1) proportion of bills enacted, (2) budget kurtosis,
and (3) polarization. We see that the estimated impact changes depending on the estimator used to account
for the missing data in the observed confounders.

proportion of missing values. See Table 8 for the full validation results. As expected, when the

missingness mechanism is missing-at-random, the overall error in recovering the covariate values

is relatively small, around 0.1 to 0.5 normalized mean absolute error. As we allow for greater

violations of missing-at-random by inducing a dependency with the underlying covariate value, the

error increases. Interestingly, certain covariates, such as the multidimensional measure of legislature

professionalism (Bowen and Greene, 2014), suffer from high rates of error, even when the missingness

mechanism is missing-at-random. This is likely because the other covariates included in the model

are unable to sufficiently explain the variation in the multidimensional measure, resulting in a

large amount of imputation error even under the missingness mechanism is missing-at-random.

From examining variable importance measures, we notice that the outcome kurtosis has greater

dependence on legislature professionalism, which may indicate some degree of sensitivity in the

estimated result to potential imputation error.

Observable implications of Outcome-Response Ignorability. We compare the projected

values from the underlying outcome model to the observed outcomes in the incomplete cases Ri ̸=

1p. The R2 value for the projected subset is not substantially different from the complete cases. For

the outcomes of proportion of bills enacted and polarization, the R2 values are substantially higher,

ranging around 0.3-0.45. When examining kurtosis as an outcome, we see that the R2 values across

both the complete cases and projected subset are relatively low (i.e., around 0.02). This likely
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implies that the underlying outcome model may not be sufficiently accounting for enough variation

in the outcome process.

Sensitivity analysis. We now formally evaluate the sensitivity of the projection estimator to

violations in outcome-response ignorability and potential imputation error. We start by setting

a constraint on the amount of imputation error present. To do so, we leverage the estimated

imputation errors from the validation exercise above to calibrate what a reasonable amount of

imputation error there could be for the different covariates. We then vary the parameter Γ, which

controls how different the relationship between the outcome and the covariates are between the

fully observed complete cases (Ri = 1p) and the missing cases (Ri ̸= 1p), and solve for the range of

possible values that could exist, given a fixed amount of imputation error and Γ. In general, for the

outcomes of proportion of bills enacted and polarization, the relationship between the covariates and

the outcomes would have to change signs for the results to lose statistical significance (represented

by Γ < 0 values).

We also compare the partial identification bounds with the estimates from the imputation

estimator. Recall, the projection estimator estimated a positive impact on proportion of bills en-

acted from enacting transparency laws. In contrast, the imputation estimator estimated a negative

impact, albeit not statistically significant. We can examine the Γ value for which the partial identifi-

cation bounds contains the estimate from the imputation estimator. We see that for a fixed amount

of imputation error, the relationship between the covariates and outcomes across the R ̸= 1p cases

would have to be about twice as large, in the opposite direction, than the estimated relationship

across the fully observed cases to recover the same substantive result as the imputation estimator.

We observe similar findings for the outcome of polarization.

In contrast, for the outcome of kurtosis, there is a greater sensitivity to both potential

imputation error and violations in outcome-response ignorability. This is in line with our findings

from the imputation validation exercise and examining the observable implications of outcome-

response ignorability, in which we see a greater dependence on the outcome model for kurtosis

on covariates that have a greater degree of imputation error. A Γ value less than -0.5 or greater

than 1 would result in a statistically insignificant result. We can compare the bounds with the

results from the imputation estimator. In order for the partial identification bounds to contain the
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Figure 5: At Γ = 1, this implies that there is the same relationship between the outcome and covariates
across the incomplete cases as the complete cases (i.e., outcome-response ignorability holds). As a result,
the bounds represent the range of possible ATE estimates, assuming a fixed amount of imputation error, but
no violation in outcome-response ignorability. At Γ = 0, this implies that there is no relationship between
the outcomes and the covariates across the incomplete cases. As a result, there is no dependency on the
imputation error in the missing covariates.

estimate from the imputation estimator, Γ would have to be greater than 2—i.e., the relationship

between the covariates and the outcomes across the incomplete subset would have to be over two

times as strong as the estimated relationship across the complete subset. We conclude that while

the estimated effect from the projection estimator is relatively sensitive to potential violations in

the underlying assumptions, there is a relatively large degree of robustness to underestimating the

impact of transparency laws on kurtosis.

8 Conclusion

We conclude with a few directions for future work. First, throughout this paper, we have assumed

that researchers only have missing confounder values. In other words, the outcomes and treatment

assignment indicators are fully observed. In practice, when covariate values are missing, it is

also likely that there is outcome and treatment information as well. Future work could account

for missingness in outcomes and treatment in observational settings. Furthermore, extensions of

this framework should consider missing data in settings when researchers are using instrumental

variables to estimate a local average treatment effect, as well as settings with multi-valued and/or

continuous treatments. We anticipate that in settings when researchers have continuous treatments,

outcome-response ignorability can still be used to identify the treatment effect; however, there may
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be additional complexities in estimating the conditional average treatment effect for a continuous

treatment. Furthermore, throughout the paper, we are currently agnostic as to how researchers

perform the outcome modeling. Specific estimation approaches, like tree-based algorithms using

surrogate splits, can better accommodate missing data in the covariates. Future work should explore

whether there are more robust approaches that can leverage outcome-response ignorability while

relaxing estimation assumptions.

Second, a closely related strain of literature considers observations that are not necessarily

missing, but subject to measurement error. This can be due to actual measurement issues (i.e.,

data coding errors, enumerator fixed effects, to name a few), or response biases that arise from

respondents masking their true answers on surveys (i.e., social desirability bias) or failing attention

checks. While we have not considered settings in which there are measurement errors in the under-

lying covariates, an interesting future avenue of research could extend the proposed identification

and estimation strategy to consider how to account for settings in which there is measurement error

in the underlying covariates.

Finally, we have assumed positivity holds throughout. An interesting avenue of future

work should consider what happens under violations of positivity of missingness. Recent work in

causal inference has introduced sensitivity analyses to consider overlap violations–i.e., settings in

which specific subsets of units are systematically missing from a study (Huang, 2024). A similar

framework could be considered for positivity violations in missing data.
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A Extensions

A.1 Imputation with Weighted Estimators
Example A.1 (Weighting) Consider the same bivariate setting as Example 3.1. Then, define
the oracle and imputed propensity scores as follows:

eoracle(Xi) = Pr(Zi = 1 | X1, X2), eimpute(X̃i) = Pr(Zi = 1 | X1, X̃2, Ri).

Then, the propensity scores estimated with the imputed data (i.e., eimpute(X̃i)) can be written as a
function of eoracle, as well as a multiplicative error:

eimpute(Xi) = Pr(Zi = 1 | X1, X̃2, Ri)

=
Pr(Ri | X1, X̃2, Zi = 1) · Pr(Zi = 1 | X1, X̃2)

Pr(Ri | X1, X̃2)

= Pr(Zi = 1 | X1, X2)︸ ︷︷ ︸
eoracle(Xi)

·Pr(Ri | X1, X̃2, Zi = 1)

Pr(Ri | X1, X̃2)
· Pr(Zi = 1 | X1, X̃2)

Pr(Zi = 1 | X1, X2)
.

In other words, without invoking further assumptions, eimpute(Xi) ̸= eoracle(Xi).

If missing-at-random holds, then we expect Pr(Ri | X1, X̃2, Zi = 1) = Pr(Ri | X1, X̃2) = Pr(Ri =
1p | X1). However, in order for eimpute(Xi) to be equal to eoracle(Xi), then Pr(Zi = 1 | X1, X̃2) =
Pr(Zi = 1 | X1, X2). This will only occur if X2 is independent of Zi, conditional on the fully
observed X1. In other words, X2 is not a confounder. We provide two examples of when this could
occur. First, if X2 is erroneous (i.e., Zi |= X2). Second, consider the setting in which X2 can be
perfectly explained by X1. Paradoxically, when considering imputation, we are trying to impute
the missing values as well as possible with the observed covariates. What this example highlights
is that in settings when we can successfully impute missing values well, we may not need to impute
at all.

A.2 Bias under Missing-Not-at-Random
In practice, we may not believe that missing-at-random holds–i.e., the observed covariates may
be insufficient to account for the missingess pattern Ri. However, in the following section, we
demonstrate that even in the presence of MNAR, we expect the projection estimator to have
less bias in recovering the ATE than the existing methods. Furthermore, we propose a partial
identification approach that allows researchers to bound the range of possible ATE estimates under
violations of MAR.

To begin, the following corollary formalizes the bias of a projection estimator under MNAR.

Corollary A.1 (Bias of Projection Estimator under Missing-Not-at-Random)
When the missing confounders are missing-not-at-random, the bias of the projection estimator can
be written as follows:

E(τ̂proj)− τ = Pr(Ri ̸= 1p)

Å∫
τ̂(X̃i)f(X̃i | Ri ̸= 1p)dν(X̃i)−

∫
τ̂(Xi)f(Xi | Ri ̸= 1p)dν(Xi)

ã
= Pr(Ri ̸= 1p)

{
E
[
τ̂(X̃i) | Ri ̸= 1p

]
− E

[
τ̂(Xi) | Ri ̸= 1p

]}
.
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Informally, in settings when the missing covariates are not very important for treatment effect
heterogeneity, then bias will be minimized. Alternatively, if we are able to recover the missing
values well with the observed covariates, then the bias will also be minimized.

We can compare the bias of the projection estimator under missing-not-at-random with the
bias of the alternative estimators.

Theorem A.1 (Relative Reduction in Bias under Missing-Not-at-Random)
Under outcome-response ignorability, the bias from the projection estimator will be less than, or
equal to, the bias from an imputation estimator:

Bias(τ̂proj) ≤ Bias(τ̂impute),

even under missing-not-at-random. Furthermore, if the following holds:∫ Ä
τ̂cc(X̃i)f(X̃i | Ri ̸= 1p)− τ̂cc(Xi)f(Xi | Ri ̸= 1p)

ä
dν(Xi)

≤
∫

(τ̂cc(Xi)f(Xi | Ri = 1p)− τ̂cc(Xi)f(Xi | Ri ̸= 1p)) dν(Xi),

then the bias from using the projection estimator will be less than the complete case estimator (i.e.,
Bias(τ̂proj) ≤ Bias(τ̂cc)).

Intuitively, we expect that the bias from τ̂proj will be less than the bias from the complete case
estimator, because f(X̃i | Ri = 0) is at least an approximation of the missing values. In contrast,
the complete case bias is driven by how close the distribution of the complete cases f(Xi | Ri = 1p)
are to the missing (i.e., f(Xi | Ri ̸= 1p)). Since f(X̃i | Ri ̸= 1p) leverages the observed data
(i.e., Xobs

i ) across Ri ̸= 1p), we expect that as long if the imputation model can account for some
variation in the missing covariates Xmis

i , there will be an improvement in bias over the complete
case estimator.

Practical Considerations. In practice, researchers may have a covariate with substantially
more missingness than the other covariates. In such a setting, if using a complete case estimator,
to minimize precision loss, researchers often omit this covariate entirely from estimation. To assess
the impact of omitting such a covariate, researchers may leverage tools from the omitted variable
bias literature.

A.3 Relationship with Yang et al. (2019)
Recall from Section 4, while outcome-response ignorability directly allows for the identification of
the CATE (i.e., τ(Xi)), the distribution of the covariates f(Xi) is not still not directly observable.
In the following subsection, we walk through the non-parametric identification result from Yang
et al. (2019), as well as the approximation approach they propose.

To begin, note that we can write the joint density of f(Xi, Zi, Yi) as a function of the
observed distribution:

f(Xi, Zi, Yi) =
f(Xi, Zi, Yi, Ri = 1p)

f(Ri = 1p | Xi, Zi, Yi)
.

f(Xi, Zi, Yi, Ri = 1p) is observable, as it relies on only the complete cases Ri = 1p. As such,
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recovering f(Ri = 1p | Xi, Zi, Yi) allows us to recover f(Xi, Yi, Zi). To start, define φrz(Xi) as:

φrz(Xi) =
Pr(Ri = r | Zi = z,Xi, Yi)

Pr(Ri = 1p | Zi = z,Xi, Yi)
=

Pr(Ri = r | Zi = z,Xi)

Pr(Ri = 1p | Zi = z,Xi)
,

where
Pr(Ri = 1p | Zi = z,Xi) =

1

1 +
∑

r′ ̸=1p
φr′z(X)

,

and r ∈ R, which is the possible missingness patterns present in the covariates X. φrz(X) then
allows us to identify Pr(Ri = 1p | Xi, Zi, Yi). Let Xr represent the observed part of X. Then,
following Theorem 1 from Yang et al. (2019), identification follows from solving the following
integral equation:

f(Z = z,Xr, Y,R
′ = r) =

∫
φrz(X)f(Z = z,X, Y,R′ = 1p)dν(Xr). (6)

Equation (6) leverages the different missingness patterns in the data to identify φrz(X). While
Equation (6) allows for the identification of φrz(X), and by extension, the ATE, solving the integral
equation in practice is often infeasible. In particular, Yang et al. (2019) show that while the
population-level estimating equation has a unique solution, for a given sample, there is no guarantee
that there will be a unique solution. Furthermore, directly solving Equation (6) with the consistent
estimators of the densitiesf(Z = z,Xr, Y,R

′ = r) and f(Z = z,X, Y,R′ = 1p) does not necessarily
yield a consistent estimator of φrz(X) (Yang et al., 2019).

Approximating the solution. The estimator proposed in Yang et al. (2019) works by first
estimating the CATE via standard outcome-based modeling approaches, and then estimating the
probability that a covariate value is observed, πz(x) = Pr(R = 1 | Z = z,X = x). The authors start
by estimating how the distribution of the outcome differs between units with missing covariates
(R ̸= 1p) and units with observed covariates (R = 1p). This difference is summarized by a density
ratio, which compares the two outcome distributions rz(y) =

fY |Z=z,R=0(y)

fY |Z=z,R=1(y)
, which measures how

the outcome distribution differs between units with missing and observed covariates. The key idea is
that this ratio can be approximated by regressing rz(y) onto a set of conditional moment functions

H(y) = E[ϕ(X) | Y = y, Z = z,R = 1],

where ϕ(X) is a chosen basis (e.g., polynomials or splines). From this regression, they obtain a
sieve approximation

ξz(x) ≈ ϕ(x)⊤β, πz(x) =
1

1 + ξz(x)
.

In practice, even solving the approximated solution by estimating these objects is difficult.
Each component—the outcome density estimates, the conditional-moment regressions for H(y),
the projection of rz onto H, and the regularization used to stabilize the problem—introduces
sampling error. These errors also interact: for example, changing the flexibility of the spline basis
for H(y) changes the L2(f1) projection of rz, so improving one step can worsen another. Because
the procedure is not doubly robust, small misspecifications in any part can propagate directly into
the final estimate τ̂ .

The challenges are amplified in high-dimensional, continuous settings. Representing func-
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tions of p covariates with degree-D tensor-product bases requires

K =

D∑
d=0

Ç
p+ d− 1

d

å
=

Ç
p+D

D

å
,

which grows combinatorially. Large K leads to unstable regressions, strong shrinkage, and high
computational cost. Second, estimating the conditional-moment functions H(y) well typically re-
quires flexible smoothing and many interaction terms, which increases variance and effectively forces
the use of cross-fitting to avoid overfitting. Third, estimating the ratio of two outcome densities
is sensitive to the tails: if the distributions for R = 1p and R ̸= 1p do not have sufficient overlap,
the ratio becomes unstable and needs to be truncated or re-normalized, which in turn introduces
additional bias.

For these reasons, even with careful tuning—orthonormal bases, trimmed grids, self-normalized
ratios, and cross-fitting—the estimator can remain statistically unstable and computationally ex-
pensive when p is moderate or large. In contrast to the Yang et al. (2019) approach, the two-stage
projection estimator relies on an imputation model to approximate the density f(Xi). The weighted
estimator considered in the simulations is a parametric alternative to the sieve-based approxima-
tions used in Yang et al. (2019), and is discussed in the following subsection.

A.4 Alternative Estimation Approaches
We provide an overview of alternative estimation approaches that similarly leverage outcome-
response ignorability. In particular, we focus on two additional approaches. The first is weighting,
where researchers model the density ratio between the fully observed and incomplete cases (i.e.,
f(Xi)/f(Xi | Zi = z,Ri = 1p)).

A.4.1 Weighting

To begin, we introduce a weighting estimator. Bias from using only the complete cases arises
from distributional differences in the covariates across the fully observed and incomplete cases, as
represented by the density ratio f(Xi)/f(Xi | Zi = z,Ri = 1p). The weighting estimator thus
constructs weights that directly target the density ratio.

To begin, we re-write the density ratio as the inverse conditional probability of being fully
observed and being assigned to treatment Zi = z:

f(Xi)

f(Xi | Zi = z,Ri = 1p)
=

Pr(Ri = 1p, Zi = z)

Pr(Ri = 1p, Zi = z | Xi)
.

Then, define the weights wz(Xi) for z ∈ {0, 1} as:

wz(Xi) =
1

Pr(Ri = 1p, Zi = z | Xi)
.

Because the joint probability depends on the full set of Xi, we leverage a decomposition,
first introduced in Sun and Liu (2021), which allows us to re-write Pr(Ri = 1p, Zi = z | Xi) as a
function of (1) the propensity of receiving treatment assignment Zi = z across the complete cases
(i.e., e(Xi;Ri = 1p) := Pr(Zi = 1 | Xi, Ri = 1p)), and (2) the probability of being a fully observed
case (i.e., πr(Xi, Zi) := Pr(Ri = 1p | Zi = z,Xi)).

Usefully, e(Xi;Ri = 1p) depends only on the complete cases. As such, researchers can
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employ standard propensity score approaches across the complete cases to estimate probability of
receiving treatment. To estimate πr(Xi, Zi), researchers can solve a set of estimating equations
that balance the probability of being a fully observed case across the treatment assignments and
outcomes. Helpfully, the estimating equations only require having covariate data across the fully
observed cases Ri = 1p.

Following Sun and Liu (2021), we represent the specified model with ϕ(Zi, Xi; γ), where γ
represents the set of parameters estimated for some model ϕ(·). Then, with the specified model,
we solve the following estimation equation:

E
ïÅ

Ri

ϕ(Zi, Xi; γ)
− 1

ã
h(Zi, Yi)

ò
= 0,

where h(Zi, Yi) is a differentiable, vector function of Zi and Yi.
As a concrete example, consider the setting where researchers assume the probability of

being a complete case follows a logistic function. Then:

ϕ(Zi, Xi; γ) =
1

1 + exp(γα + γzZ + γ⊤x Xi)
,

where γ = (γα, γz, γx) ∈ Rp+2, and h(Zi, Yi) = (1, Zi, Yi)
⊤. The estimating equations can then be

written as: 
E
î
Ri ·
¶
1 + exp(γα + γzZ + γ⊤x Xi)

©ó
= 1

E
î
RiZi ·

¶
1 + exp(γα + γzZ + γ⊤x Xi)

©ó
= E[Zi]

E
î
RiYi

¶
1 + exp(γα + γzZ + γ⊤x Xi)

©ó
= E[Yi]

With estimates ê(Xi;Ri = 1p) and π̂r(Xi, Zi), researchers can then estimate {ŵ1(Xi), ŵ0(Xi)}.
The weights allow researchers to account for the distributional differences in the covariates Xi,
across the fully observed cases and the missing cases:

τ̂w :=
1∑n

i=1 ZiRi

n∑
i=1

ZiRiYiŵ1(Xi)−
1∑n

i=1(1− Zi)Ri

n∑
i=1

(1− Zi)RiYiŵ0(Xi).

Then, assuming ê(Xi;Ri = 1p) and π̂r(Xi, Zi) are consistent estimates of the true proba-
bilities, the weighted estimator will be a consistent estimator for the ATE.

Theorem A.2 (Consistency of the Weighted Estimator) Assume Assumptions 1-3, and 7
(outcome-response ignorability) hold. Furthermore, assume the following estimation assumptions:

• Consistent propensity score model: ê(Xi;Ri = 1p)
p→ Pr(Zi = 1 | Ri = 1p, Xi)

• Consistent complete case probability model: π̂r(Xi, Zi)
p→ Pr(Ri = 1p | Zi, Xi)

Then, τ̂w will be a consistent estimator for the ATE:

τ̂w
p→ τ.

To perform inference, researchers can employ a standard sandwich estimator, which will
provide conservative estimates of the underlying uncertainty in τ̂w.
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A.4.2 Details on Augmented Weighted Estimator

An alternative approach to estimation is to use an augmented weighted estimator:

τ̂aug =
1∑n

i=1 ZiRi

n∑
i=1

ZiRiŵ1(Xi) (Yi − m̂1(Xi;S1))−
1∑n

i=1(1− Zi)Ri

n∑
i=1

(1− Zi)Ri

Ä
Yi − m̂0(X̃i;S1)

ä
ŵ0(Xi)

+
1

n

n∑
i=1

¶
m̂1(X̃i;S1)− m̂0(X̃i;S1)

©
,

where m̂1, m̂0, ŵ1, ŵ0 correspond to the estimated outcome models and estimated weights, respec-
tively. The augmented weighted estimator allows researchers to combine both the weighting esti-
mator with the outcome model estimated in the two-stage projection approach. We establish the
consistency of the augmented weighted estimator.

Theorem A.3 (Consistency of the Augmented Weighted Estimator) Assume Assumptions
1-3, and 7 (outcome-response ignorability) hold. Then, with a valid imputation model, if either the
propensity score model and complete case probability model or if the outcome models are consistently
estimated, the augmented weighted estimator will be a consistent estimator for the ATE:

τ̂aug
p→ τ.

Notably, the augmented weighted estimator will have properties of doubly robustness. This
means that the weights can be misspecified, or the outcome models can be misspecified, and the
augmented weighted estimator will still consistently recover the ATE. However, while the weights
or the outcome model can be misspecified, the doubly robustness does not extend towards the
assumption that the imputation model can consistently recover the density of the missing covari-
ates. This is analogous to the property highlighted in Sun and Liu (2021), who show that doubly
robustness depends crucially that a density ratio can be parametrically modeled correctly.

A.5 Details on the Sensitivity Analysis
To begin, we introduce the following assumption, which constrains the amount of error that can
occur when recovering the missing covariate values.

Assumption 8 (Constrained Imputation Error) For X
(j)
i ∈ X⟩mis

, where j ∈ {1, ..., |X⟩mis
|},

||X̂(j)
i −X

(j)
i ||p ≤ Lj

The p-norm chosen corresponds to the error metric we are constraining. For example, if p = 1,
this constrains the average absolute error of the imputation model. If we constrain p = 2, this
constrains the root mean squared error. The assumption constrains the error for each individual
covariate within the set of missing covariates.

Definition A.1 (Imputation Uncertainty Set)

Θ(L; p) =

|Xmis
i |⋃
j=1

{
X

mis(j)
i | ||X̂mis(j)

i −X
mis(j)
i ||p ≤ Lj

}
Θ(L; p) represents the set of all possibleXmis

i values that exist, given a constraint on the imputation
error. Each covariate j can have its own constraint. In practice, researchers can choose to set a
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single constraint across all covariates, which would serve as a global constraint on the entire set of
missing covariates. However, this can be overly conservative in settings when researchers are able
to impute many covariates well, but do a poor job imputing one covariate. For ease of notation,
we will denote the setting in which researchers are choosing an L∞ norm error on the imputation
error constraint as Θ(L), suppressing the p.

We also allow for potential violations in outcome-response ignorability by evaluating the
ratio between the CATE for the incomplete cases (i.e., Ri ̸= 1p) and the complete cases.

Assumption 9 (Violation in Outcome-Response Ignorability) For all x ∈ X :

Γ(x) :=
E[Yi(1)− Yi(0) | Xi = x,Ri ̸= 1p]

E[Yi(1)− Yi(0) | Xi = x,Ri = 1p]
≤ Γ.

Then, for a fixed set of covariates, we can define the CATE uncertainty set as ε(Γ, Xi).

Definition A.2 (CATE Uncertainty Set)

ε(Γ, Xi) =

ß
τ(Xi) :

E[Yi(1)− Yi(0) | Xi = x,Ri ̸= 1p]

E[Yi(1)− Yi(0) | Xi = x,Ri = 1p]
≤ Γ

™
Then, accounting for both imputation error and violations in outcome-response ignorability,

the CATE uncertainty set is written as ε(Γ;Θ(L)). As a result, for a fixed ε(Γ;Θ(L)), the partially
identified region is defined as follows:

τ ∈
ñ

inf
ε(Γ;Θ(L))

τ(X̃i), sup
ε(Γ;Θ(L))

τ(X̃i)

ô
To estimate the range of possible values, that the ATE can take on, given the imputation

uncertainty set, we must solve the following optimization problem:

min /max
ε(Γ;Θ(L))

1

n

n∑
i=1

τ̂(X̃i) · γi,

s.t. ||X̃(j)
i − X̂

(j)
i ||p ≤ Lj for all j,

X̃
(j)
i − X̂

(j)
i = 0 if R(j)

i = 1 (7)
γi ≤ Γ for all Ri ̸= 1p

γi = 1 for all Ri = 1p

Given mild regularity conditions on the estimated treatment effect heterogeneity model, we can
employ existing optimization methods to efficiently estimate the range of possible estimates (Boyd
et al., 2004; Sinha et al., 2017). By solving Problem (7), we are generating the set of adversarial,
missing Xi that would result in the largest (and smallest) possible ATE estimates. As such, we
expect the bounds to be sharp by construction.

There are connections to the distributionally robust optimization literature. We can gener-
alize the proposed partial identification approach to account for uncertainty sets constructed from
constraining distributional divergences between the imputed X̃i and true Xi (i.e., ϕ-divergences,
MMD, etc.) In particular, Equation (7), which constrains p-norm balls around X̃i is a special case
of constrained optimization, constraining the Wasserstein distance between the distribution of the
imputed X̃i and true Xi. However, we focus on the p-norm constraints for several reasons. First,
the constraints are relatively straightforward to interpret. Second, Wasserstein-style constraints
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allow for covariate shift outside of the support of the observed data. This is important for our spe-
cific setting, because we are worried that the support of the observed covariates may not necessarily
contain the full support of the covariates.

B Proofs
Following Yang et al. (2019), Assumption 7 allows us to identify the conditional average treatment
effect. We provide the formal lemma for completeness.

Lemma B.1 (Nonparametric Identification of τ (Xi) Across Observed Data)
Under Assumptions 1-2 and 7, τ(Xi) := E(Yi(1)− Yi(0) | Xi = x) can be identified:

τcc(X) = E(Y | Z = 1, X = x,R = 1p)− E(Y | Z = 0, X = x,R = 1p)

= E(Y (1) | Z = 1, X = x,R = 1p)− E(Y (0) | Z = 0, X = x,R = 1p)

By Assumption 7 (Outcome-Response Ignorability):

= E(Y (1) | Z = 1, X = x)− E(Y (0) | Z = 0, X = x)

By Assumption 1 (Conditional Ignorability of Treatment Assignment):

≡ τ(X)

B.1 Nonparametric Identification under Imputation

E(Y (z) | Z = z,X1, X̃2)

=E(Y (z) | Z = z,X1, X̃2, Ri = 1p) Pr(R = 1p | Z = z,X1, X̃2)+

E(Y (z) | Z = z,X1, X̃2, R ̸= 1p) Pr(R ̸= 1p | Z = z,X1, X̃2)

=E(Y (z) | Z = z,X1, X2, R = 1p) Pr(R = 1p | Z = z,X1, X̃2)+

E(Y (z) | Z = z,X1, g(X1), R ̸= 1p) Pr(R ̸= 1p | Z = z,X1, X̃2)

=E(Y (z) | Zi = z,X1, X2, R = 1p)︸ ︷︷ ︸
=E(Y (z)|X1,X2,R=1p)

Pr(R = 1p | Z = z,X1, X̃2)+

E(Y (z) | Z = z,X1, Ri = 0)Pr(R ̸= 1p | Z = z,X1, X̃2)

If Y (z) |= Z | X1, R ̸= 1p and Y (z) |= Z | X1, X2, R = 1p, then:

=E(Y (z) | X1, X2, Ri = 1p) Pr(R = 1p | Z = z,X1, X̃2)+

E(Y (z) | X1, R ̸= 1p) Pr(R ̸= 1p | Z = z,X1, X̃2)

=E(Y (z) | X1, X̃2)

As such, under the modified selection on observables assumption, we can identify the conditional
ATE from imputation:

E(Y | Z = 1, X1, X̃2)− E(Y | Z = 0, X1, X̃2)
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=E(Y (1) | Z = 1, X1, X̃2)− E(Y (0) | Z = 0, X1, X̃2)

=E(Y (1)− Y (0) | X1, X̃2)

B.2 Proof of Theorem 4.1
We will show that τ̂proj is a consistent estimator for the ATE. To begin, we apply law of large
numbers, such that τ̂proj

p→ E(τ̂proj). Then:

E(τ̂proj) = E

(
1

n

n∑
i=1

{m̂1(Xi;S1)− m̂0(Xi;S1)}Ri︸ ︷︷ ︸
≡(1) Complete Case Estimator

+
1

n

n∑
i=1

¶
m̂1(X̃i;S1)− m̂0(X̃i;S1)

©
(1−Ri)︸ ︷︷ ︸

(2) Projected Component

)

= E ({m̂1(Xi;S1)− m̂0(Xi;S1)}Ri) + E
Ä¶

m̂1(X̃i;S1)− m̂0(X̃i;S1)
©
(1−Ri)

ä
= E ({m1(Xi;S1)−m0(Xi;S1)}Ri)︸ ︷︷ ︸

(a)

+E
Ä¶

m1(X̃i;S1)−m0(X̃i;S1)
©
(1−Ri)

ä
︸ ︷︷ ︸

(b)

+E {m̂1(Xi;S1)−m1(Xi;S1)} − E {m̂0(Xi;S1)−m0(Xi;S1)}

(8)

For ease of notation , we will define τ(Xi,S1) := m1(Xi;S1)−m0(Xi;S1). From Equation (8)-(a),
it follows immediately from Assumptions 1-2, and Assumption 7:

E (τ(Xi;S1)Ri) = E(τ(Xi;S1) | Ri = 1p) · Pr(Ri = 1p) = EX(τ(Xi) | Ri = 1p) · Pr(Ri = 1p).

Similarly, for Equation (8)-(b), we can write E(τ(X̃i;S1)·(1−Ri)) = E(τ(X̃i;S1) | Ri ̸= 1p)·Pr(Ri ̸=
1p). Then:

E(τ(X̃i;S1) | Ri ̸= 1p) =

∫
τ(Xi)f(X̃i | Ri ̸= 1p)

=

∫
τ(Xi)f({Xobs

i , X̂mis
i } | Ri ̸= 1p)

Under the assumption of a valid imputation model (i.e., f({Xobs
i , X̂mis

i } | Ri ̸= 1p) = f({Xobs
i , Xmis

i } |
Ri ̸= 1p)):

=

∫
τ(Xi)f({Xobs

i , Xmis
i } | Ri ̸= 1p)

= EX [τ(Xi) | Ri ̸= 1p]

Notably, the assumption of a valid imputation model will hold under MAR:

f({Xobs
i , X̂mis

i } | Ri ̸= 1p) = f(Ri ̸= 1p | Xobs
i , X̂mis

i )f(X̂mis
i | Xobs

i )f(Xobs
i ) · 1

f(Ri ̸= 1p)

Under MAR (Xmis
i |= Ri | Xobs

i ):

=
f(Ri ̸= 1p | Xobs

i , Xmis
i )f(Xmis

i | Xobs
i , Ri = 1p)f(X

obs
i )

f(Ri ̸= 1p)
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=
f(Xobs

i , Xmis
i | Ri ̸= 1p)f(X

mis
i | Xobs

i , Ri = 1p)f(X
obs
i )

f(Xobs
i , Xmis

i )

=
f(Xobs

i , Xmis
i | Ri ̸= 1p)f(X

mis
i | Xobs

i , Ri = 1p)

f(Xmis
i | Xobs

i )

=
f(Xobs

i , Xmis
i | Ri ̸= 1p)f(X

mis
i | Xobs

i , Ri = 1p)

f(Xmis
i | Xobs

i , Ri ̸= 1p)

= f(Xobs
i , Xmis

i | Ri ̸= 1p)

Combining together, and under our assumption that E {m̂z(Xi;S1)−mz(Xi;S1)} = op(1) for z ∈
{0, 1}:

E(τ̂proj) = EX(τ(Xi)) + op(1) → τ as n → ∞.

As such, we have shown τ̂proj
p→ τ .

B.3 Proof of Theorem A.2
Proof: We begin by showing that with the oracle weights w1(Xi) and w0(Xi), the weighted
estimator will provide unbiased estimates of the ATE.

E [ZiRiYiw1(Xi)]

= EX [E [ZiRiYi(1)w1(Xi)|Xi]]

= EX [E [Yi(1)w1(Xi)|Xi, Zi = 1, Ri = 1]Pr(Zi = 1, Ri = 1 | Xi)]

= EX

ï
E(Yi(1) | Xi, Zi = 1, Ri = 1) · Pr(Zi = 1, Ri = 1 | Xi)

Pr(Zi = 1, Ri = 1 | Xi)

ò
= EX [E(Yi(1) | Xi, Zi = 1, Ri = 1)]

= EX [E(Yi(1) | Xi, Zi = 1)] (Outcome-response ignorability)
= EX [E(Yi(1) | Xi)] (Conditional ignorability)
≡ E(Yi(1))

We can similarly show that E [(1− Zi)RiYiw0(Xi)] = E(Yi(0)). Then, it follows immediately:

E

[
1

n1

n∑
i=1

ZiRiYiw1(Xi)−
1

n0

n∑
i=1

(1− Zi)RiYiw0(Xi)

]
= EX [E(Yi(1)− Yi(0) | Xi)]

≡ τ

Now,

τ̂w :=
1∑n

i=1 ZiRi

n∑
i=1

ZiRiYiŵ1(Xi)−
1∑n

i=1(1− Zi)Ri

n∑
i=1

(1− Zi)RiYiŵ0(Xi).

τ̂w =
1∑n

i=1 ZiRi

n∑
i=1

ZiRiYiŵ1(Xi)−
1∑n

i=1(1− Zi)Ri

n∑
i=1

(1− Zi)RiYiŵ0(Xi)
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=
1∑n

i=1 ZiRi

n∑
i=1

ZiRiYiw1(Xi)−
1∑n

i=1(1− Zi)Ri

n∑
i=1

(1− Zi)RiYiw0(Xi)+

1∑n
i=1 ZiRi

n∑
i=1

ZiRiYi {ŵ1(Xi)− w1(Xi)} −
1∑n

i=1(1− Zi)Ri

n∑
i=1

(1− Zi)RiYi {ŵ0(Xi)− w0(Xi)}

Since ŵz(Xi) − wz(Xi) = op(1) for z ∈ {0, 1}, we can apply Weak Law of Large Numbers, which
directly shows τ̂w

p→ τ . □

B.4 Proof of Theorem A.3
Proof: We will now show that τ̂aug is a consistent estimator for τ if ...

To start, we will show that under a valid imputation model, if ŵz(Xi) − wz(Xi) = op(1),
then τ̂aug

p→ τ . We can re-write τ̂aug as follows:

τ̂aug =
1∑n

i=1 ZiRi

n∑
i=1

ZiRiŵ1(Xi) (Yi − m̂1(Xi;S1))−
1∑n

i=1(1− Zi)Ri

n∑
i=1

(1− Zi)Ri

Ä
Yi − m̂0(X̃i;S1)

ä
ŵ0(Xi)

+
1

n

n∑
i=1

¶
m̂1(X̃i;S1)− m̂0(X̃i;S1)

©
=

1∑n
i=1 ZiRi

n∑
i=1

ZiRiYiŵ1(Xi)−
1∑n

i=1(1− Zi)Ri

n∑
i=1

(1− Zi)RiYiŵ0(Xi)

+
1

n

n∑
i=1

Ä
m̂1(X̃i;S1)− m̂0(X̃i;S1)

ä
−

(
1∑n

i=1 ZiRi

n∑
i=1

ZiRim̂1(Xi;S1)ŵ1(Xi)−
1∑n

i=1(1− Zi)Ri

n∑
i=1

(1− Zi)Rim̂0(Xi;S1)ŵ0(Xi)

)

= τ̂w +
1

n

n∑
i=1

Ä
m̂1(X̃i;S1)− m̂0(X̃i;S1)

ä
−

{
1∑n

i=1 ZiRi

n∑
i=1

ZiRim̂1(Xi;S1)ŵ1(Xi)−
1∑n

i=1(1− Zi)Ri

n∑
i=1

(1− Zi)Rim̂0(Xi;S1)ŵ0(Xi)

}
︸ ︷︷ ︸

(∗)

.

Then, under the assumption that ŵz(Xi)− wz(Xi) = op(1), we can re-write (∗) as:

1∑n
i=1 ZiRi

n∑
i=1

ZiRim̂1(Xi;S1)ŵ1(Xi)−
1∑n

i=1(1− Zi)Ri

n∑
i=1

(1− Zi)Rim̂0(Xi;S1)ŵ0(Xi)

=
1∑n

i=1 ZiRi

n∑
i=1

ZiRim̂1(Xi;S1)w1(Xi)−
1∑n

i=1(1− Zi)Ri

n∑
i=1

(1− Zi)Rim̂0(Xi;S1)w0(Xi)

+
1∑n

i=1 ZiRi

n∑
i=1

ZiRim̂1(Xi;S1){ŵ1(Xi)− w1(Xi)}

− 1∑n
i=1(1− Zi)Ri

n∑
i=1

(1− Zi)Rim̂0(Xi;S1){ŵ0(Xi)− w0(Xi)}
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Then, taking the expectation of the term:

E

[
1∑n

i=1 ZiRi

n∑
i=1

ZiRim̂1(Xi;S1)ŵ1(Xi)−
1∑n

i=1(1− Zi)Ri

n∑
i=1

(1− Zi)Rim̂0(Xi;S1ŵ0(Xi)

]
=E [m̂1(Xi;S1)− m̂0(Xi;S1)] + op(1),

where the final equality follows from a similar argument to Theorem A.2. Then, under a valid impu-
tation model, E

î
1
n

∑n
i=1

Ä
m̂1(X̃i;S1)− m̂0(X̃i;S1)

äó
= E [m̂1(Xi;S1)− m̂0(Xi;S1)]. As a result,

we have shown:

E [τ̂aug] = E [τ̂w] + E [m̂1(Xi;S1)− m̂0(Xi;S1)] + op(1)− E [m̂1(Xi;S1)− m̂0(Xi;S1)]

= E [τ̂w] + op(1)

= τ + op(1)

As such, we have shown τ̂aug
p→ τ .

Now, assume a valid imputation model and m̂z(Xi;S1)−mz(Xi;S1) = op(1) for z ∈ {0, 1}.
Then,

E

[
1∑n

i=1 ZiRi

n∑
i=1

ZiRiŵ1(Xi) (Yi − m̂1(Xi;S1))

]

= E

[
E

{
1∑n

i=1 ZiRi

n∑
i=1

ZiRiŵ1(Xi) (Yi − m̂1(Xi;S1))

∣∣∣∣∣ Xi

}]

= E

[
1∑n

i=1 ZiRi

n∑
i=1

ŵ1(Xi)

w1(Xi)
E {Yi − m̂1(Xi;S1) | Xi}

]

= E

[
1∑n

i=1 ZiRi

n∑
i=1

ŵ1(Xi)

w1(Xi)
E {Yi − m̂1(Xi;S1) | Xi, Zi = 1, Ri = 1}

]

= E

[
1∑n

i=1 ZiRi

n∑
i=1

ŵ1(Xi)

w1(Xi)
{E [Yi | Xi, Zi = 1, Ri = 1p]− m̂1(Xi;S1)}

]
= op(1)

We can similarly show E
î

1∑n
i=1(1−Zi)Ri

∑n
i=1(1− Zi)Riŵ0(Xi) (Yi − m̂0(Xi;S1))

ó
= op(1). Then,

E [τ̂aug] = E

[
1

n

n∑
i=1

m̂1(X̃i;S1)− m̂0(X̃i;S1)

]
+ op(1)

= τ + op(1),

where the final equality follows from applying Theorem 4.1. As such, we have shown τ̂aug
p→ τ .

□
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B.5 Example 3.1
Proof: Applying Frisch-Waugh-Lovell (FWL) theorem,

τ̂impute =
cov(Z⊥{X1,X̃2,Ri}

i , Y ⊥{X1,X̃2,Ri})

var(Z⊥{X1,X̃2,Ri}
i )

=
cov(Z⊥{X1,X̃2,Ri}

i , τ̂Z
⊥{X1,X̃2,Ri}
i + β̂2X

⊥{X1,X̃2,Ri}
2 )

var(Z⊥{X1,X̃2,Ri}
i )

= τ̂oracle + β̂2
cov(Z⊥{X1,X̃2,Ri}

i , X
⊥{X1,X̃2,Ri}
2 )

var(Z⊥{X1,X̃2,Ri}
i )

□
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C Additional simulation results

C.1 Details on estimation
We provide details on how we construct each estimator in the simulation study on the fololwing
table.

Estimator Estimation Details
Complete Case Subset to complete cases R = 1, and regress outcomes with treatment, X1, X2.

Y ∼ Z · (X1 +X2) | R = 1

Imputation Impute missing values in X2 → X̂2

X̂2 = g(X1), where g(X1) : X2 ∼ X1 | R = 1

Regress outcomes with treatment, X1, X̂2, and missingness indicator.
Y ∼ Z · (X1 + X̂2 +R)

Missing Indicator Impute missing values in X2 → X̂2

X̂2 = mean(X2 | R = 1)

Regress outcomes with X1, X̂2, interacted with treatment and missingness indicator.
Y ∼ Z ·R · (X1 + X̂2)

Multiple Imputation Impute X2, Y (1), and Y (0) simultaneously using Amelia.
Ŷ1 = gAmelia(Y · Z,X1, X2), Ŷ0 = gAmelia(Y · (1− Z), X1, X2)

Weighting Subset to complete cases R = 1
Model probability of treatment across complete cases using a logistic model.
ê(Xi;Ri = 1) = logit−1(X1 +X2 | R = 1)
Model propensity of being a complete case via GMM.
π̂r(Xi, Zi) = logit−1(X1 +X2 + Z)
Re-weight complete cases.

Projection Subset to complete cases R = 1.
Model both treatment/control outcomes using a linear regression:
m̂1 : Y ∼ X1 +X2 | R = 1, Z = 1
m̂0 : Y ∼ X1 +X2 | R = 1, Z = 0

Impute missing values in X2 → X̂2

X̂2 = g(X1), where g(X1) : X2 ∼ X1 | R = 1

Predict treatment/control outcomes across R = 0 cases using m̂1, m̂0, X̂2:
Ŷ1 = m̂1(X1, X̂2), Ŷ0 = m̂0(X1, X̂2)

Augmented Follow procedure for both weighting and projection estimators to estimate outcome models and weights.
Residualize the outcomes across the complete cases.
Re-weight the residuals, and augment with the outcome models.

C.2 Model Misspecification
We update the outcome data generation process to the following:

Yi = τ · Zi +
2∑

j=1

{
βjX

(j)
i + φj

(
X

(j)
i · Zi) + δj

Ä
X

(j)
i

ä2}
+ ui, where ui ∼ N(0, 1),

where we have added in an additional higher-order term, controlled by δ1, δ2. We consider four
different scenarios, in which we toggle α. toggling α and δ. In particular, when α = 0, this implies
missingness in X

(2)
i can be fully explained by variation in X

(1)
i (i.e., missing-at-random holds).

When α ̸= 1, this means missingness in X
(2)
i depends on the values of X(2)

i (i.e., missing-not-at-
random). Similarly, when δ = 0, this implies that the outcome is a linear function of the covariates
X. However, when δ ̸= 0, this implies that the outcome will contain non-linearities in the covariates.
We summarize the different settings in Table 4.
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Scenario Description Parameters
1 MAR, correct outcome model specification δ = 0, α = 0
2 MAR, incorrect outcome model specification δ ̸= 0, α = 0
3 MNAR, correct outcome model specification δ = 0, α ̸= 0
4 MNAR, incorrect outcome model specification δ ̸= 0, α ̸= 0

Table 4: Simulation parameters

Because we do not include higher-order terms in the models, this means that in Scenarios
2 and 4 (where the outcome includes a second-order of X(1)), the models will be misspecified. Sce-
narios 1 and 3, where the outcome is a function of only the first-order covariate values, correspond
to the simulation settings presented in the main manuscript.

We visualize the performance of the estimators in Figure 6, which displays the mean squared
error of each estimator in each scenario. We see that the general patterns from the main manuscript
(i.e., Scenario 1 and 3) hold for Scenario 2 and 4. However, we see that the projection estimator
incurs more bias, as a result of the outcome model being misspecified. We see that the augmented
weighted estimator, which is doubly robust, is still unbiased in Scenario 2, as the weights are
correctly specified. In Scenario 4, because the imputation model does not exactly recover the density
of the missing covariates, both the projection estimator and the augmented weighted estimator are
still biased. However, the augmented weighted estimator has much lower bias in comparison.
Furthermore, in all of these settings, the projection and augmented weighted estimator outperform
the weighted estimator on an MSE basis due to the variance inflation from the re-weighting.

C.3 Simulating Modified Conditional Ignorability
We also consider an alternative alternative data generating process where we generate the outcomes
such that the modified version of conditional ignorability holds. More specifically, we generate the
outcomes as a piece-wise function:

Yi =

{
τ · Zi +

∑2
j=1

¶
βjX

(j)
i + φj

(
X

(j)
i · Zi)

©
+ ui if Ri = 1

τ · Zi + β1X
(1)
i + φ1Zi ·X(1)

i + ui if Ri = 0
,

where ui ∼ N(0, 1). The treatment assignment and missingness indicator are generated following
the set-up in Section 6.1. We vary how correlated X

(1)
i and X

(2)
i are to each other, and then

evaluate the performance of the estimators across these settings.
The imputation estimator and the missing indicator estimator perform well in settings when

there is no correlation between X
(1)
i and X

(2)
i . Under correlated covariate settings, the imputation

estimator and missing indicator estimator incur a small amount of bias, which likely arises from
estimation error due to the correlations between the covariates. In contrast, the multiple imputation
estimator performs poorly when there is no correlation–likely because it struggles to recover the
counterfactual outcome values. In contrast, when there is high correlation, the multiple imputation
estimator is effectively unbiased. Notably, the projection estimator is unbiased in all of this setting.
Table 5 summarizes the results.
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Scenario 3 Scenario 4
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Figure 6: Simulation results across four different scenarios (described in Table 4). While the general
paterns from the main manuscript hold, we additionally see that in settings where there is outcome model
misspecification, the augmented weighted estimator helps mitigate the bias that arises in the projection
estimator, which solely relies on outcome modeling.
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(a) Boxplot of all estimators
Scenario 1 Scenario 2 Scenario 3 Scenario 4
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(b) Boxplot, excluding Weighted/Augmented Weighted Estimators
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Figure 7: Boxplots of the different estimators across the different simulation scenarios (described in Table 4).
In facet (b) of the plot, we exclude the weighted and augmented weighted estimators, as there is substantially
more variance in the resulting estimates.
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No Correlation Medium Correlation High Correlation
Bias s.d. Bias s.d. Bias s.d.

Complete Case 0.21 0.04 0.29 0.04 0.37 0.04
Imputation 0.00 0.02 0.04 0.03 0.05 0.03
Missing Indicator 0.00 0.02 0.04 0.02 0.08 0.03
Multiple Imputation 0.10 0.03 0.07 0.03 0.00 0.03
Weighted -0.02 0.17 0.02 0.27 0.11 0.30
Projection 0.00 0.04 0.00 0.04 0.00 0.04
Augmented Weighted 0.00 0.05 -0.00 0.06 -0.00 0.06

Table 5: Performance of the estimators under modified conditional ignorability.

C.4 Coverage Evaluation
We adopt the same simulation setup in Section 6, under Scenario 1 (i.e., MAR). We generate
100 datasets, with 1000 bootstrap iterations for each dataset, and compute the coverage as the
proportion of times the estimated percentile bootstraps provide coverage of the oracle average
treatment effect. Because the imputation estimator is so biased, we see that it does not provide
adequate coverage. In contrast, the projection estimator has at least nominal coverage, with the
percentile confidence intervals often being conservative.

Correlation Imputation Projection
0 0 1
0.2 0 1
0.4 0 1
0.6 0 1
0.8 0 1
1 1 0.98

Table 6: Coverage for imputation and projection estimator under MAR. We adopted the same simulation
setup in section 6. The results are calculated for 100 datasets, with 1000 bootstrap each.

D Extended Empirical Results

D.1 Additional Details on Estimation
Details on fixed effects. We include fixed effects corresponding to time and state. For the
outcome of proportion of bills enacted, we include a time fixed effect for the decade that the
observation corresponds to (i.e., pre-1975, 1976-1985, 1986-1995, 1996- 2005, and 2006 onward).
For the outcome of polarization, we include a time fixed effect for every five year period (i.e., pre-
1995, 1996-2000, 2001-2005, and 2006 onward). Finally, for kurtosis, we include a time fixed effect
for every five year period (i.e., pre-1985, 1986-1990, 1991-1995, 1996-2000, 2001-2005, and 2006
onward).

We also examine the percentage of missingness across the different fixed effects. See Figure
8 and 9 for a visualization. Notably, when looking at the percentage of missingness across states,
we see that the state of Nebraska is missing certain covariates 100% of the time (and in some
cases, missing all of the covariate values). Because this is a violation of positivity, we remove

55



Nebraska from the analysis. Looking at the percentage of missingness across the time fixed effects,
we see that there is a greater proportion of missing values for more recent time periods. From the
visualizations, it is clear that the missingness is not completely at random. As a result, we expect
that methods like a complete case estimator will produce biased estimates.
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Figure 8: Heat maps corresponding to the percentage of missing covariate values, sorted by state-level
fixed effects. We see that across all three outcome measures, the Ranney Index is fully missing for the state
of Nebraska (abbreviated ‘NE’). For the outcome of polarization, all covariate values are fully missing for
Nebraska.
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Figure 9: Heat maps corresponding to the percentage of missing covariate values, sorted by time-level fixed
effects. We see there is a greater proportion of missing values for the time period corresponding to after
2006 for all three outcomes.

Details on implementation. We provide details on the implementation of each of the estimators
evaluated in the empirical application.

• Imputation estimator: the imputation estimator is estimated in the same way as Harden
and Kirkland (2021). We first impute the missing covariates using Amelia (Honaker et al.,
2011). We simulate five datasets from Amelia. Across each of the imputed datasets, we
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run a regression including the covariates and state/time fixed effects, as well as a missingness
indicator for whether or not the covariate was initially observed. We then average the resulting
estimator for the final estimate.

• Complete case estimator: Across the complete cases, we run a regression including the
covariates and state/time fixed effects.

• Multiple imputation estimator: We use Amelia to directly impute the missing counter-
factual outcome values. This simultaneously imputes the missing covariate values, as well as
the missing counterfactual outcomes. We generate five simulated datasets from Amelia, and
then directly compute the ATE using the imputed counterfactual outcomes, and then average
the resulting multiple imputation estimator across the five simulated datasets for the final
estimate.

• Weighted estimator: Across the complete cases, we model the probability of treatment
across the complete cases using a logistic model, and model the propensity of being a complete
case via GMM, using the available pre-treatment covariates.

• Projection estimator: Across the complete cases, we estimate a causal forest, distilled
into a linear model (e.g., leveraging a best linear predictor approach from Chernozhukov
et al., 2018). Then, we impute the missing covariates using Amelia (Honaker et al., 2011).
We simulate five datasets from Amelia. Across each of the imputed datasets, we use the
estimated model to predict the overall ATE.

• Augmented: Using the weights estimated in the same way as the weighted estimator and
the outcome model estimated in the projection estimator, we combine the two together for
the augmented weighted estimator.

D.2 Evaluating the Imputation Model Performance
We simulate three different missingness mechanisms for each covariate: (1) missing-at-random; (2)
missing-not-at-random (with a slight dependency on the missing covariate values); (3) missing-
not-at-random (with a larger dependency on the missing covariate values). For each missingness
mechanism, we calibrate the proportion of total missing values to match the true proportion of
missing values. See Table 8 for the full validation results. To construct the missing-at-random
missingness mechanism, we begin by estimating a logistic regression using the missing values in
each covariate, and the other covariates:

Pr(R̃MAR
(j) | X−(j)

i ;α(j)) = logit

Ñ∑
k ̸=j

β̂kX
(k)
i + α(j)

é
We then add in dependency in the underlying logit function to the covariate value for

scenarios (2) and (3):

Pr(R̃MNAR
(j) | X−(j)

i ;α(j)) = logit

Ñ∑
k ̸=j

β̂kX
(k)
i + γX

(j)
i + α̃(j)

é
where for MNAR (low), we set γ = 0.5, and for MNAR (high), we set γ = 1. For both settings, we
set α̃(j) to ensure the proportion of the missing values for each covariate matches the observed miss-
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ingness proportions. We simulate the missingness mechanisms across 100 iterations and compute
the mean absolute error for each covariate. The full results are provided in Table 8.

In particular, we are most worried about covariates that explain the most variation in the
outcomes. We examine the variable importance associated with each of the models for the three
outcomes. Figure 10 provides a visualization.

5. MDS 1

4. MDS 2

3. log(Population)

2. Ranney Index

1. State Citizen Ideology

0.00 0.05 0.10 0.15 0.20 0.25

Variable Importance

Prop. Enactment

5. MDS 2

4. State government ideology

3. log(Population)

2. Ranney Index

1. MDS 1

0.00 0.05 0.10 0.15

Variable Importance

Kurtosis

5. Veto

4. MDS 2

3. State Citizen Ideology

2. Ranney Index

1. MDS 1

0.0 0.1 0.2 0.3 0.4

Variable Importance

Polarization

Figure 10: We plot the top five covariates that have the greatest variable importance, as proxied by the
number of times they were split on within the causal random forest (Tibshirani et al., 2018).

D.3 Observable Implications of Outcome-Response Ignorability.
We report the R2 values estimated across the observed treatment and control groups.

Complete Case Ri = 1p Projected Subset Ri ̸= 1p

Outcome Z = 0 Z = 1 Z = 0 Z = 1

Proportion of Bills Enacted 0.32 0.22 0.20 0.15
Polarization 0.32 0.18 0.23 0.11
Kurtosis 0.01 0.02 0.01 0.01

Table 7: R2 values for the regressions fit across the observed treatment and control groups.
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D.4 Additional Tables

Covariate Prop. Missing MAR MNAR (Low) MNAR (High)
Outcome: Proportion of Bills Enacted
State Citizen Ideology 0.04 0.35 (0.04) 0.35 (0.04) 0.35 (0.03)
Gross State Product 0.14 0.83 (0.09) 1.09 (0.17) 1.18 (0.23)
State Gov. Ideology 0.04 0.31 (0.04) 0.33 (0.03) 0.33 (0.03)
Total Expenditure 0.14 1.25 (0.73) 3.99 (2.44) 5.61 (4.4)
MDS 1 0.14 21.65 (1.28) 19.36 (0.69) 19.06 (0.48)
MDS 2 0.14 17.14 (0.94) 17.25 (0.66) 17.11 (0.43)
State Population 0.09 0.48 (0.02) 0.51 (0.02) 0.53 (0.02)
Ranney Index 0.15 0.13 (0.01) 0.14 (0.01) 0.14 (0.01)
Num. of Bills Vetoed 0.02 1.55 (0.52) 1.09 (0.2) 1.03 (0.11)
Outcome: Kurtosis
State Citizen Ideology 0.08 0.31 (0.04) 0.3 (0.03) 0.32 (0.03)
Gross State Product 0.18 0.6 (0.06) 0.83 (0.15) 0.92 (0.18)
State Gov. Ideology 0.05 0.29 (0.03) 0.31 (0.03) 0.32 (0.03)
Total Expenditure 0.18 0.71 (0.35) 4.01 (3.72) 5.23 (2.92)
MDS 1 0.14 11.18 (0.88) 9.95 (0.6) 9.75 (0.38)
MDS 2 0.14 309.44 (22.18) 317.09 (18.06) 306.16 (12.27)
State Population 0.13 0.4 (0.03) 0.44 (0.03) 0.47 (0.02)
Ranney Index 0.20 0.12 (0) 0.12 (0.01) 0.13 (0.01)
Num. of Bills Vetoed 0.11 1.35 (0.21) 1.05 (0.09) 0.99 (0.04)
Outcome: Polarization
State Citizen Ideology 0.09 0.29 (0.03) 0.29 (0.03) 0.3 (0.02)
Gross State Product 0.27 0.27 (0.06) 0.44 (0.15) 0.61 (0.17)
State Gov. Ideology 0.09 0.3 (0.03) 0.3 (0.03) 0.3 (0.03)
Total Expenditure 0.27 0.9 (0.93) 3.38 (4.06) 4.6 (4.04)
MDS 1 0.16 5.72 (0.52) 5.16 (0.32) 5.02 (0.21)
MDS 2 0.16 5.71 (0.48) 6.11 (0.42) 6.05 (0.29)
State Population 0.18 0.24 (0.03) 0.28 (0.03) 0.3 (0.03)
Ranney Index 0.27 0.09 (0) 0.1 (0.01) 0.1 (0.01)
Num. of Bills Vetoed 0.10 1.23 (0.13) 1.1 (0.09) 1.06 (0.08)

Table 8: We report the normalized mean absolute average error for imputing missing values for each
covariate under three different missingness mechanisms.
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Outcome Estimator Estimate CI (Low) CI (High)
Enactment Complete Case -0.02 -0.04 0.00
Enactment Imputation (OLS) -0.01 -0.03 0.00
Enactment Multiple Imputation 0.05 0.04 0.06
Enactment Projection 0.04 0.03 0.05
Enactment Weighted 0.06 0.05 0.08
Enactment Augmented 0.07 0.04 0.08
Polarization Complete Case -0.12 -0.20 -0.02
Polarization Imputation (OLS) 0.01 -0.11 0.15
Polarization Multiple Imputation 0.01 -0.03 0.03
Polarization Weighted 0.00 -0.08 0.05
Polarization Projection -0.09 -0.13 -0.07
Polarization Augmented -0.12 -0.18 -0.08
Kurtosis Complete Case 0.11 0.05 0.17
Kurtosis Imputation (OLS) 0.10 0.05 0.15
Kurtosis Multiple Imputation 0.01 -0.01 0.03
Kurtosis Weighted 0.03 0.00 0.08
Kurtosis Projection 0.05 0.02 0.08
Kurtosis Augmented 0.09 0.04 0.14

Table 9: Corresponding point estimates to Figure 4.
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