
Final Solutions

Hanning Luo

May 7, 2025

Final Exam Instructions:

• This final exam is due on May 5, 11:59 pm Eastern time. Please upload a PDF of your solutions to
Gradescope. When submitting, please match your responses with the questions.

• We will accept hand-written solutions but we strongly advise graduate students to typeset your answers
in LATEX. This is a semi-closed book test. You are NOT allowed to: search internet / AI for solutions
or communicate amongst each other.

• You are allowed to utilize class materials (slides, section slides, pset solutions).
• Always use CGIS Knafel Zipcode 02138 as your seed for coding tasks.

1. OLS (30pt)

Suppose you are studying the relationship between the number of hours a student studies (Xi) and their
exam score (Yi). Assume the following data-generating process for each student i = 1, . . . , n:

Yi = β0 + β1Xi + εi

where:

• Xi ∼ Uniform(0, 10), independent across i
• εi ∼ Normal(0, σ2), independent of Xi and independent across i
• β0 = 50, β1 = 5, and σ2 = 16.

Answer the following:

a. (6 points) Find the mean and variance of Yi .

b. (6 points) By the Law of Large Numbers (LLN), what happens to the sample mean Ȳn = 1
n

∑n
i=1 Yi

as n → ∞?

c. (6 points) By the Central Limit Theorem (CLT), approximate the distribution of
√

n(Ȳn −E[Yi]) as n
becomes large.

d. (6 points) Suppose you run an OLS regression of Yi on Xi (with intercept). What are the probability
limits (i.e., plim, convergence in probability) of the OLS estimates β̂0 and β̂1 as n → ∞?

e. (6 points) Briefly explain why β̂1 is consistent under the given conditions (no need to formally prove,
just check the necessary assumptions). What would happen if εi were correlated with Xi?
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Solutions:

a. We have:
E[Yi] = E[β0 + β1Xi + εi] = β0 + β1E[Xi] + E[εi]

Since E[Xi] = 0+10
2 = 5 and E[εi] = 0, we have:

E[Yi] = 50 + 5 × 5 = 75

Variance:
Var(Yi) = Var(β0 + β1Xi + εi) = β2

1Var(Xi) + Var(εi)

For Xi ∼ Uniform(0, 10):

Var(Xi) = (10 − 0)2

12 = 100
12 = 25

3
Thus:

Var(Yi) = 52 × 25
3 + 16 = 625

3 + 16 = 625 + 48
3 = 673

3 ≈ 224.33

b. By the Law of Large Numbers (LLN), as n → ∞, we have:

Ȳn
p−→ E[Yi] = 75

c. By the Central Limit Theorem (CLT), as n becomes large:

√
n(Ȳn − E[Yi])

d−→ N (0, Var(Yi))

That is:
√

n(Ȳn − 75) d−→ N
(

0,
673
3

)
d. Under the given assumptions (linear model correctly specified, Xi and εi independent, etc.), OLS

estimators are consistent. Thus:

plim(β̂0) = β0 = 50, plim(β̂1) = β1 = 5

e. β̂1 is consistent because:

• The model is correctly specified,
• εi is independent of Xi (exogeneity condition),
• Var(Xi) > 0 (no perfect multicollinearity). If εi were correlated with Xi, then the exogeneity

assumption would be violated, and β̂1 would be biased and inconsistent, even as n → ∞.

2. Publication Bias (30pt)

Political science journals rarely publish statistically insignificant results. Does this publication bias lead to
systematic bias in our understanding of political phenomena? Let’s use simulations to find out. We will
consider the effect of three different political phenomena—in each case, we are interested in the effect of X
on Y . The following are the “true’ ’ models describing the relationship between each (X, Y ) pair:

• X1i ∼ N(0, 1); Y1i = 2 + 0.1X1i + u1i; u1i ∼ N(0, 1)
• X2i ∼ N(0, 1); Y2i = 2 + 5X2i + u2i; u2i ∼ N(0, 1)
• X3i ∼ N(0, 1); Y3i = 2 + 0X3i + u3i; u3i ∼ N(0, 1)
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Thus, the only difference is the size of the true effect of X on Y . In the first model, X1 has a very weak
effect on Y1; in the second, X2 has a very strong effect on Y2; and in the third, X3 has no effect on Y3.

a. (10pt) For each of the three phenomena, simulate 10,000 datasets of size 30 and calculate an OLS slope
estimate for each. For each regression, record the difference between the estimated slope coefficient
and the true value of β (i.e., the estimation error) and also record the p-value from the regression (you
will use the p-value in the next part of this question). Plot the distribution (by histogram or density
plot) of the estimation error among published articles for each of the three phenomena. Indicate the
mean estimation error (an estimate for the bias) with a vertical line, and briefly interpret your plots
in terms of bias.

Hint: To get a p-value from the model, first you run a linear regression: reg1 <- lm(y ~ X). Then the
p-value is obtained by summary(reg1)$coefficients[2,4].

b. (10pt) Now consider a journal editorial policy such that empirical research is not published unless the
results are statistically significant, meaning that the p-value on the coefficient of interest is ≤ 0.05.
Using your simulations from part (a), make a density plot for the difference between the estimated
coefficients and the true value for all the publishable results under this policy. Plot each of the three
phenomena separately. What percentage of studies are considered publishable for each (X, Y ) pair-
ing? Do these studies correctly estimate the regression coefficient on average? Provide an intuitive
explanation of the results. Should we be concerned by the findings?

c. (10pt) In the previous part, we assumed that only studies with significant results ended up getting
published, but of course that is not realistic—null results are sometimes published. Let us assume
instead that the journal is still willing to publish some null results, but significant results are much
more likely to be published. Recreate your plots from part (b), but this time selecting articles for
publication according to Bern(pi) where pi = 0.95 if the study has significant results and pi = 0.05
if the study does not. Separately for each phenomenon, sample a total of n = 1000 studies from the
10,000 you generated in part (a). Make sure to plot a vertical line at the mean of each of your plots
to represent the bias. What do you notice? Under which phenomena should we be worried about this
publishing practice?

Hint: Recall weighted sampling in R from section zero, you can first generate a vector prob_vec with each
unit’s probability of being sampled, and then apply sample(units, size = n, prob = prob_vec)

Solutions:

set.seed(02138)

# Function to simulate one dataset and run regression
simulate_one <- function(beta, n = 30) {

X <- rnorm(n)
u <- rnorm(n)
Y <- 2 + beta * X + u
model <- lm(Y ~ X)
coef_est <- coef(model)[2]
p_val <- summary(model)$coefficients[2, 4]
est_error <- coef_est - beta
return(c(est_error = est_error, p_val = p_val))

}
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# Set parameters
n_sim <- 10000
sample_size <- 30
true_betas <- c(0.1, 5, 0)

# Storage
results_list <- list()

# Simulate for each phenomenon
for (i in 1:3) {

beta <- true_betas[i]
res <- replicate(n_sim, simulate_one(beta, sample_size))
rownames(res) <- c("est_error", "p_val")
res_df <- data.frame(

est_error = res["est_error", ],
p_value = res["p_val", ]

)
results_list[[i]] <- res_df

}

names(results_list) <- c("Weak Effect", "Strong Effect", "Null Effect")

# Plot
pdf("./Downloads/a.pdf", width = 9, height = 4)
par(mfrow = c(1, 3)) # 3 plots side-by-side

for (i in 1:3) {
res_df <- results_list[[i]]
hist(res_df$est_error, breaks = 50, main = names(results_list)[i],

xlab = "Estimation Error", probability = TRUE,xlim=c(-1,0.6),
col = "lightgray", border = "white")

abline(v = mean(res_df$est_error), col = "red", lwd = 2)
legend("topleft", legend = paste0("Mean Bias: \n",

round(mean(res_df$est_error), 4)),
col = "red", bty = "n")

}
dev.off()

## pdf
## 2

############# b
# Base R plotting
pdf("./Downloads/b.pdf", width = 9, height = 4)
par(mfrow = c(1, 3)) # 3 plots side-by-side

publishable_pct <- numeric(3) # To store percentages

for (i in 1:3) {
res_df <- results_list[[i]]

# Filter to publishable studies (p <= 0.05)
publishable <- res_df[res_df$p_value <= 0.05, ]
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# Calculate publishable percentage
publishable_pct[i] <- nrow(publishable) / nrow(res_df) * 100

# Plot density of estimation error
plot(density(publishable$est_error), xlim = c(-1, 1),

main = paste0(names(results_list)[i], "\n",
round(publishable_pct[i], 1), "% Publishable"),

xlab = "Estimation Error", lwd = 2)

# Add vertical line at mean bias
abline(v = mean(publishable$est_error), col = "red", lwd = 2)

# Add mean bias to plot
legend("topleft",

legend = paste0("Mean \n Published \n Bias: \n ", round(mean(publishable$est_error), 4)),
col = "red", bty = "n")

}
dev.off()

## pdf
## 2

####### c
set.seed(02138)

n_sample <- 1000 # Number of studies to select after publication

# Base R plotting
pdf("./Downloads/c.pdf", width = 9, height = 4)
par(mfrow = c(1, 3)) # 3 plots side-by-side

# Storage for sampling percentages
sampling_info <- list()

for (i in 1:3) {
res_df <- results_list[[i]]

# Create publication probability
pub_prob <- ifelse(res_df$p_value <= 0.05, 0.95, 0.05)

# Randomly select studies based on Bernoulli(pub_prob)
published_flag <- rbinom(n = nrow(res_df), size = 1, prob = pub_prob)
published_studies <- res_df[published_flag == 1, ]

# Sample exactly 1000 studies (if more than 1000 available)
if (nrow(published_studies) >= n_sample) {

published_sample <- published_studies[sample(1:nrow(published_studies), n_sample), ]
} else {

warning(paste("Not enough published studies for", names(results_list)[i]))
published_sample <- published_studies

}

sampling_info[[i]] <- nrow(published_studies) / nrow(res_df) * 100 # Save % published
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# Plot density
plot(density(published_sample$est_error), xlim = c(-1, 1),

main = paste0(names(results_list)[i], "\nSampled ", nrow(published_sample), " studies"),
xlab = "Estimation Error", lwd = 2)

# Add vertical line at mean bias
abline(v = mean(published_sample$est_error), col = "red", lwd = 2)

# Add mean bias to plot
legend("topleft",

legend = paste0("Mean Bias: \n", round(mean(published_sample$est_error), 4)),
col = "red", bty = "n")

}

## Warning: Not enough published studies for Null Effect

dev.off()

## pdf
## 2

a. For each plot, the estimation error distribution tightly clusters around zero. OLS provides unbiased
estimates of the true effect.

b. All studies with strong effect are publishable. Most studies with weak or no effect are not publishable,
but a few others show significant results due to the random noise term. Therefore, even when the true
effect is negligible, there could still be false discovery.

c. Probabilistic publication reduces the damage of publication bias. But small effects remain at risk of
exaggeration: the estimation bias is not eliminated.

3. Asymptotic Normality and Missing Data (40 pt)

You will conduct a simulation study to explore the impact of missing data on confidence intervals and
estimator behavior. The true data-generating process is:

• X1 ∼ N (−4, 0.5)
• X2 = 0.5X1 + ϵ, where ϵ ∼ N (0, 1)
• Y = 1 + 2 · X1 − 1 · X2 + η, where η ∼ N (0, 1)

Missingness is introduced in X1 according to:

Pr(X1 missing) = logit−1(X2 + e)

where e ∼ N(1, 1), and
logit−1(x) = 1

1 + e−x

a. (5pt) Explain why the missing data mechanism is Missing At Random (MAR).
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b. (5pt) Write down the definition of asymptotic normality. What does it mean when a confidence interval
has nominal coverage?

c. (10pt) Simulate 1000 datasets with n = 500 observations each. For each simulated dataset:

• Estimate coefficients using (i) Oracle data (no missingness), (ii) Complete case analysis, and (iii)
Multiple Imputation (5 imputations).

• Store point estimates and standard errors for βX1 and βX2 .
• You can use the R package mice for multiple imputation.

For each method and each coefficient, calculate the empirical coverage probability of confidence intervals at
levels from 1% to 99%. Also, Write down analytically the general formula you use for any given level of
confidence interval.

Hint: To generate missingness, you can first generate a prob_vec to store the probability of missing X1
for each unit (you can check out the plogis function), and then generate a vector to indicate each unit’s
missingness by, for example, miss_indicator <- rbinom(n, size = 1, prob = prob_vec).

d. (10pt) For each method, plot the empirical coverage curves (y-axis) against nominal confidence levels
(x-axis, from 1% to 99%). Discuss:

• Whether the estimators are approximately unbiased.
• Whether the nominal confidence level matches the empirical coverage.

e. (10pt) Which method (Oracle, Complete Case, MI) appears most reliable under this missing data
mechanism? Provide an explanation based on your findings. You can use more visualization to support
your claims (for example, you can plot the distribution of simulated estimates under each method).

Solutions:

a. The missingness in X1 depends on an observed variable X2, not on unobserved values of X1 or the
outcome Y , so it is MAR.

b. Asymptotic normality means as the sample size n → ∞, the estimator θ̂n becomes normally distributed
around the true value θ. A confidence interval has nominal coverage if its empirical coverage (the
fraction of times it contains the true value in repeated samples) matches the stated confidence level.

c. Formula for α level CI coverage:
[β̂ − t × ŝe, β̂ + t × ŝe]

where t is the 1 − (1 − α)/2th quantile of t(n − 3) distribution.

library(mice)

# Storage
n_sim <- 500
n <- 1000

# Each row = one simulation, columns = estimates and standard errors
results_oracle <- matrix(NA, nrow = n_sim, ncol = 4)
results_complete <- matrix(NA, nrow = n_sim, ncol = 4)
results_mi <- matrix(NA, nrow = n_sim, ncol = 4)
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colnames(results_oracle) <- c("beta_X1", "beta_X2", "se_X1", "se_X2")
colnames(results_complete) <- colnames(results_oracle)
colnames(results_mi) <- colnames(results_oracle)

set.seed(02138)

for (sim in 1:n_sim) {

# 1. Simulate data
X1 <- rnorm(n, mean = -4, sd = 0.5)
X2 <- 0.5*X1 + rnorm(n, mean = 0, sd = 1)
Y <- 1 + 2 * X1 - 1 * X2 + rnorm(n, mean = 0, sd = 1)

dat_full <- data.frame(X1 = X1, X2 = X2, Y = Y)

# 2. Introduce missingness in X2 based on X1
prob_missing <- plogis(X2 + rnorm(n,1,1),

location = 0, scale = 1) # Logistic function for missingness)
is_missing <- rbinom(n, size = 1, prob = prob_missing)

dat_missing <- dat_full
dat_missing$X1[is_missing == 1] <- NA

## Oracle: regression on full data (no missingness)
fit_oracle <- lm(Y ~ X1 + X2, data = dat_full)
coef_oracle <- coef(summary(fit_oracle))[-1, ] # drop intercept
results_oracle[sim, ] <- c(coef_oracle[, "Estimate"], coef_oracle[, "Std. Error"])

## Complete case: regression on observed data only
fit_complete <- lm(Y ~ X1 + X2, data = dat_missing, na.action = na.omit)
coef_complete <- coef(summary(fit_complete))[-1, ]
results_complete[sim, ] <- c(coef_complete[, "Estimate"], coef_complete[, "Std. Error"])

## Multiple Imputation
imp <- mice(dat_missing[,c("X1","X2")], m = 5, printFlag = FALSE)
fit_mi <- with(imp, lm(Y ~ X1 + X2))
pooled <- pool(fit_mi)
summary_pool <- summary(pooled)

results_mi[sim, ] <- c(summary_pool$estimate[2:3], summary_pool$std.error[2:3])
}

# Convert to dataframes
results_oracle <- as.data.frame(results_oracle)
results_complete <- as.data.frame(results_complete)
results_mi <- as.data.frame(results_mi)

############### check coverage
# Function to calculate empirical coverage over a range of CI levels
calculate_coverage_curve <- function(results, true_value, varname) {

# Extract estimate and standard error
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beta_hat <- results[[paste0("beta_", varname)]]
se_hat <- results[[paste0("se_", varname)]]

nominal_levels <- 1:99 # 1% to 99%
coverage_rates <- numeric(length(nominal_levels))

for (i in seq_along(nominal_levels)) {
level <- nominal_levels[i] / 100 # convert to proportion
t_quantile <- qt(1 - (1 - level) / 2, df = n - 3) # t-distribution quantile

lower_bound <- beta_hat - t_quantile * se_hat
upper_bound <- beta_hat + t_quantile * se_hat

# Check if true value lies inside the interval
covered <- (lower_bound <= true_value) & (upper_bound >= true_value)
coverage_rates[i] <- mean(covered) * 100 # percentage

}

data.frame(
Nominal_Coverage = nominal_levels,
Empirical_Coverage = coverage_rates

)
}

## for X1
true_beta_X1 <- 2
oracle_curve_X1 <- calculate_coverage_curve(results_oracle, true_beta_X1, "X1")
complete_curve_X1 <- calculate_coverage_curve(results_complete, true_beta_X1, "X1")
mi_curve_X1 <- calculate_coverage_curve(results_mi, true_beta_X1, "X1")

## plot
# Plot coverage curve
pdf("./Downloads/x1_coverage.pdf", width = 6, height = 4)
plot(oracle_curve_X1$Nominal_Coverage,

oracle_curve_X1$Empirical_Coverage, type = "l",
col = "black", lwd = 2,
ylim = c(0, 100),
xlab = "Nominal Confidence Level (%)", ylab = "Empirical Coverage (%)",
main = "Coverage Curve for X1 ")

lines(complete_curve_X1$Nominal_Coverage,
complete_curve_X1$Empirical_Coverage, col = "#4a1564", lwd = 2)

lines(mi_curve_X1$Nominal_Coverage,
mi_curve_X1$Empirical_Coverage, col = "#A85E83", lwd = 2)

legend("topleft", legend = c("oracle", "complete","MI"),
col = c("black", "#4a1564","#A85E83"),
lwd = 2, bty = "n")

#abline(0, 1, lty = 2, col = "gray") # Ideal 45-degree line
dev.off()

## pdf
## 2
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###################
## for X1
true_beta_X2 <- -1
oracle_curve_X2 <- calculate_coverage_curve(results_oracle, true_beta_X2, "X2")
complete_curve_X2 <- calculate_coverage_curve(results_complete, true_beta_X2, "X2")
mi_curve_X2 <- calculate_coverage_curve(results_mi, true_beta_X2, "X2")

pdf("./Downloads/x2_coverage.pdf", width = 6, height = 4)
plot(oracle_curve_X2$Nominal_Coverage,

oracle_curve_X2$Empirical_Coverage, type = "l",
col = "black", lwd = 2,
ylim = c(0, 100),
xlab = "Nominal Confidence Level (%)", ylab = "Empirical Coverage (%)",
main = "Coverage Curve for X2 ")

lines(complete_curve_X2$Nominal_Coverage,
complete_curve_X2$Empirical_Coverage, col = "#4a1564", lwd = 2)

lines(mi_curve_X2$Nominal_Coverage,
mi_curve_X2$Empirical_Coverage, col = "#A85E83", lwd = 2)

legend("topleft", legend = c("oracle", "complete","MI"),
col = c("black", "#4a1564","#A85E83"),
lwd = 2, bty = "n")

#abline(0, 1, lty = 2, col = "gray") # Ideal 45-degree line
dev.off()

## pdf
## 2

#################################
pdf("./Downloads/x1_density.pdf", width = 6, height = 4)
plot(density(results_oracle$beta_X1),

col = "black", lwd = 2,
xlim = c(1, 2.5),
xlab = "Estimate", ylab = "Density",
main = "Distribution of Estimates for X1")

lines(density(results_mi$beta_X1), col = "#A85E83", lwd = 2)
legend("topright", legend = c("oracle", "MI"),

col = c("black", "#A85E83"),
lwd = 2, bty = "n")

abline(v=true_beta_X1, lty = 2,lwd=2, col = "gray") # True value line
dev.off()

## pdf
## 2

pdf("./Downloads/x2_density.pdf", width = 6, height = 4)
plot(density(results_oracle$beta_X2),

col = "black", lwd = 2,
xlim = c(-1.2, -0.7),
xlab = "Estimate", ylab = "Density",
main = "Distribution of Estimates for X2")

lines(density(results_mi$beta_X2), col = "#A85E83", lwd = 2)
legend("topright", legend = c("oracle", "MI"),

10



col = c("black", "#A85E83"),
lwd = 2, bty = "n")

abline(v=true_beta_X2, lty = 2,lwd=2, col = "gray") # True value line
dev.off()

## pdf
## 2

d. The MI estimator is very biased and fails to cover. The other two estimators are unbiased. Notice
that if you include Y in the MI model, the MI estimator would also seem to work well. However, this
does not make sense during research, especially if you are making a causal claim. You cannot use Y to
predict the missing values of X and then use the predicted X to estimate the effects of X on Y , which
would cause circular dependence. But for this exam, we regard either way correct.

e. The most realistic and reliable estimator here is the complete case estimator, since MI is biased and
we cannot observe the missing values in reality. The reason is that under bivariate OLS with one of
the variables missing at random, the missing and observed groups are very similar. We can check the
distribution of X2 and Y by X1 missing or observed in a simulated data frame (you can also check the
mean and sd difference over simulations):

dat_missing <- dat_missing %>%
mutate(x1_missing = ifelse(is.na(X1), "Missing", "Observed"))

ggplot(dat_missing, aes(x = X2, fill = x1_missing)) +
geom_density(alpha = 0.5) +
labs(title = "Distribution of x2 by x1 Missingness",

x = "x2",
fill = "x1 Status") +

theme_minimal()
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ggplot(dat_missing, aes(x = Y, fill = x1_missing)) +
geom_density(alpha = 0.5) +
labs(title = "Distribution of y by x1 Missingness",

x = "y",
fill = "x1 Status") +

theme_minimal()
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