
Gov 2001: Midterm Exam
Spring 2025

March , 2025

Midterm Instructions:

• This midterm exam is due on March 14, 11:59 pm Eastern time. Please upload a
PDF of your solutions to Gradescope.

• We will accept hand-written solutions but we strongly advise graduate students to
typeset your answers in LATEX.

• This is a semi-closed book test. You are NOT allowed to: search internet / AI for
solutions or communicate amongst each other.

• You are allowed to utilize class materials (slides, section slides, pset solutions).

1 Variance and Covariance (25pt)
• Write down the definition of Covariance and interpret with no more than 2 sentences.

(5pt)

• Give a counter example when X and Y are dependent but with a covariance of zero.
(5pt)

See slides/textbook for the definition and interpretation. Counter example: Y = X2

where X ∼ N (0, 1) or Unif(−1, 1), i.e., a distribution symmetric to zero, which makes odd
moments zero. They are clearly dependent since knowing X gives you all the information
about Y , but cov(X,Y ) = E[X3]− E[X]E[X2] = 0− 0 = 0.

1.1 Prove the following:
(5pt each)

• cov(X,X) = V (X)

• cov(X + Y, Z +W ) = cov(X,Z) + cov(X,W ) + cov(Y, Z) + cov(Y,W )

• V (X + Y ) = V (X) + V (Y ) + 2cov(X,Y )
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• cov(X,X) = E[X2]− E[X]E[X] = V (X)

• We should use the definition of covariance and linearity of expectation:

cov(X + Y, Z +W ) = E[(X + Y )(Z +W )]− E[X + Y ]E[Z +W ]

= E[XZ] + E[XW ] + E[Y Z] + E[YW ]

− E[X]E[Z]− E[X]E[W ]− E[Y ]E[Z]− E[Y ]E[W ]

= cov(X,Z) + cov(X,W ) + cov(Y, Z) + cov(Y,W )

• Use the above two conclusions:

V (X + Y ) = cov(X + Y,X + Y )

= cov(X,X) + 2cov(X,Y ) + cov(Y, Y )

= V (X) + V (Y ) + 2cov(X,Y )

2 Correlation (30pt)
• Write down the definition of Correlation between two r.v.s X1 and X2 and show why

it’s always in between -1 and 1. (10pt)
Hints: you will need to utilize Cauchy-Schwarz inequality: For any real-valued random
variables X and Y ),

|E[AB]| ≤
√

E[A2]E[B2].

The correlation between two random variables X1 and X2 is given by the Pearson
correlation coefficient:

ρ(X1, X2) =
Cov(X1, X2)

σX1σX2

.

where:

– Cov(X1, X2) = E[(X1 − E[X1])(X2 − E[X2])] is the covariance between X1 and
X2,

– σX1 =
√

Var(X1) and σX2 =
√

Var(X2) are the standard deviations of X1 and
X2, respectively.

We start with the Cauchy-Schwarz inequality, which states that for any two random
variables X1 and X2:

|E[(X1 − E[X1])(X2 − E[X2])]| ≤
√

E[(X1 − E[X1])2]E[(X2 − E[X2])2].

Since the left-hand side is the absolute value of Cov(X1, X2) and the right-hand side
is σX1σX2 , we obtain:
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|Cov(X1, X2)| ≤ σX1σX2 .

Dividing both sides by σX1σX2 (assuming both standard deviations are nonzero):∣∣∣∣Cov(X1, X2)

σX1σX2

∣∣∣∣ ≤ 1.

Since the correlation coefficient is defined as:

ρ(X1, X2) =
Cov(X1, X2)

σX1σX2

,

we conclude:

−1 ≤ ρ(X1, X2) ≤ 1.

• Let’s say you are studying the returns of two stocks, X1 and X2. Suppose the daily
returns of these stocks are normally distributed with means µ1 and µ2, variances σ2

1

and σ2
2, and correlation ρ, meaning:

Cov(X1, X2) = ρσ1σ2.

1. (10pt) Derive the expected return and variance of a portfolio consisting of an
equal-weighted combination of these two stocks, i.e.,

S =
X1 +X2

2
.

The expected return of the portfolio is:

E[S] = E

[
X1 +X2

2

]
=

E[X1] + E[X2]

2
=

µ1 + µ2

2
.

The variance of the portfolio is:

Var(S) = Var
(
X1 +X2

2

)
.

Using the variance properties:

Var(aX + bY ) = a2Var(X) + b2Var(Y ) + 2abCov(X,Y ),

we substitute a = b = 1
2
:

Var(S) =
(
1

2

)2

σ2
1 +

(
1

2

)2

σ2
2 + 2 · 1

2
· 1
2
· ρσ1σ2.

=
σ2
1 + 2ρσ1σ2 + σ2

2

4
.
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2. Let’s try to standardize the stock returns using:

Z1 =
X1 − µ1

σ1

, Z2 =
X2 − µ2

σ2

.

(a) Compute the correlation coefficient between Z1 and Z2 (5pt).
After standardization, we have σZ1 = σZ2 = 1, and µZ1 = µZ2 = 0. Therefore:

Corr(Z1, Z2) =
E[Z1Z2]− µZ1µZ2

σZ1σZ2

= E[Z1Z2]

=
1

σ1σ2

E[(X1 − µ1)(X2 − µ2)]

=
Cov(X1, X2)

σ1σ2

=
ρσ1σ2

σ1σ2

= ρ

Or you can directly use the property: since standardization does not affect
the correlation (see section 4 notes), we have:

Corr(Z1, Z2) = ρ.

(b) Explain the significance of this correlation in the stock returns context with
no more than 2 sentences. (5pt)

– Correlation between standardized returns helps in risk assessment (low
or zero correlation helps reduce potential fluctuations in returns).

– Even when returns are measured on different scales, their standardized
correlation remains unchanged.

– Portfolio diversification benefits depend on correlation, not just individ-
ual variances.

3 “Tea” Testing and Forecast (30pt)
In this problem, we’re going to explore a real-world example of Fisher’s ”lady tasting tea”
experiment from lecture: election forecasters – who have, for better or worse, become a big
part of politics in the United States and elsewhere.

• Suppose that Bob has correctly predicted six of the last eight election outcomes. What
is the probability that someone randomly flipping a coin each of the same elections
would have experienced at least the same success as Bob? Compute your answer
analytically (i.e. not by simulation).(10pt)
Bob has correctly predicted 6 out of the last 8 election outcomes. If a person were
randomly flipping a fair coin for each election, the probability of guessing correctly
follows a binomial distribution:
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X ∼ Binomial(n = 8, p = 0.5).

We need to compute:

P (X ≥ 6) = P (X = 6) + P (X = 7) + P (X = 8).

Using the binomial probability mass function:

P (X = k) =

(
8

k

)
(0.5)8.

Computing each term:

P (X = 6) =

(
8

6

)
(0.5)8 =

8!

6!(8− 6)!
(0.5)8 =

28

256
= 0.1094.

P (X = 7) =

(
8

7

)
(0.5)8 =

8!

7!(8− 7)!
(0.5)8 =

8

256
= 0.0313.

P (X = 8) =

(
8

8

)
(0.5)8 =

1

256
= 0.0039.

Summing these probabilities:

P (X ≥ 6) = 0.1094 + 0.0313 + 0.0039 = 0.1445.

Thus, the probability that a random guesser achieves Bob’s success is approximately
0.1445.

• Forecasting has become so popular that riffraff are flooding the market. These ”uni-
form amateurs” predict the vote share for each state in the U.S. presidential election
by drawing a uniform random variable between 0 and 1, independently across states.
You are deciding whether or not to hire a forecaster, Nate, to forecast each of the 50
state election winners in the 2024 presidential general election based on the perfor-
mance of his 2020 election forecast, but you are worried that Nate might be one of
these amateurs. When you ask him to justify his 2020 forecasts, he says ”my highest
predicted [Democratic] vote share was 0.8 which is very unlikely if I were a uniform
amateur.” Let’s evaluate his claim.
Suppose Nate is a uniform amateur and let X be the maximum of the 51 uniform vote
share draws (include D.C.). Derive the CDF and PDF of X. Use these to calculate
the probability of Nate’s highest Democratic vote share being 0.8 or less if he were a
uniform amateur. (10pt)
If Nate is a uniform amateur, he assigns a vote share Ui ∼ Uniform(0, 1) independently
across the 51 regions (50 states + D.C.). Define:
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X = max(U1, U2, . . . , U51).

The cumulative distribution function (CDF) of X is:

P (X ≤ x) = P (U1 ≤ x, U2 ≤ x, . . . , U51 ≤ x).

Since the Ui are independent:

P (X ≤ x) = P (U1 ≤ x)P (U2 ≤ x) . . . P (U51 ≤ x).

Since P (Ui ≤ x) = x for Ui ∼ Uniform(0, 1):

FX(x) = x51, for 0 ≤ x ≤ 1.

The probability density function (PDF) is obtained by differentiating:

fX(x) =
d

dx
x51 = 51x50, for 0 ≤ x ≤ 1.

We now compute:

P (X ≤ 0.8) = FX(0.8) = (0.8)51.

Using numerical computation:

(0.8)51 ≈ 0.00017.

Thus, the probability that an amateur’s highest predicted vote share is 0.8 or less is
**0.00017**, which is very small, suggesting that Nate’s claim is reasonable.

• To be on the lookout for more uniform amateurs, it’s helpful to know what highest
vote share we should expect. To that end, calculate E[X].(10pt)
To compute E[X], we use:

E[X] =

∫ 1

0

xfX(x)dx.

Substituting fX(x) = 51x50:

E[X] =

∫ 1

0

x(51x50)dx.

= 51

∫ 1

0

x51dx.

6



Evaluating the integral: ∫
x51dx =

x52

52

∣∣∣1
0
=

1

52
.

Thus,

E[X] = 51× 1

52
=

51

52
≈ 0.9808.

The expected maximum vote share for a uniform amateur is **0.9808**.

4 Normal Distribution (15pt + bonus 10pt)
Let a standard normal r.v to be Z ∼ N (0, 1).

• Express the random variable Y ∼ N (1, 2) as a simple function in terms of Z. Make
sure to check that your Y has the correct mean and variance. (5pt)
A general normal random variable Y ∼ N (µ, σ2) can be expressed in terms of a
standard normal variable Z ∼ N (0, 1) as:

Y = µ+ σZ.

For Y ∼ N (1, 2), we identify µ = 1 and σ2 = 2, meaning σ =
√
2. Thus, we express Y

as:

Y = 1 +
√
2Z.

Verification: To confirm that Y ∼ N (1, 2):

E[Y ] = E[1 +
√
2Z] = 1 +

√
2E[Z] = 1 + 0 = 1.

Var(Y ) = Var(1 +
√
2Z) = Var(

√
2Z) = (

√
2)2Var(Z) = 2× 1 = 2.

Thus, the mean and variance match the given distribution, confirming the correctness.

• Express the probability of |Y | ≤ 1 as a function of Φ, the CDF of the standard Normal
distribution.(10pt)
We need to express:

P (|Y | ≤ 1) = P (−1 ≤ Y ≤ 1)

Using the transformation Y = 1 +
√
2Z, we rewrite the probability:
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P (−1 ≤ 1 +
√
2Z ≤ 1).

Subtracting 1 from all sides:

P (−2 ≤
√
2Z ≤ 0).

Dividing by
√
2:

P

(
−2√
2
≤ Z ≤ 0√

2

)
.

Since −2√
2
= −

√
2 and 0√

2
= 0, this simplifies to:

P (−
√
2 ≤ Z ≤ 0).

Using the CDF Φ(x), we express this probability as:

Φ(0)− Φ(−
√
2).

Since Φ(0) = 0.5, we get:

P (|Y | ≤ 1) = 0.5− Φ(−
√
2).

Using the symmetry property Φ(−x) = 1− Φ(x), we rewrite it as:

P (|Y | ≤ 1) = Φ(
√
2)− 0.5.

Bonus Q: Prove that: If X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2) and X1 ⊥⊥ X2,

X1 +X2 ∼ N (µ1 + µ2, σ
2
1 + σ2

2).

(optional, 10pt)
The moment-generating function (MGF) of a random variable X, denoted MX(t), is
defined as:

MX(t) = E[etX ].

For a normal random variable X ∼ N (µ, σ2), let X = µ + σZ, where Z ∼ N (0, 1).
The MGF of Z is, by LOTUS,

E[etZ ] =

∫ ∞

−∞
etx · 1√

2π
e−x2/2 dx =

1√
2π

∫ ∞

−∞
exp

(
−1

2
(x− t)2 +

t2

2

)
dx = exp

(
t2

2

)
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Since we can consider the following as the integral of a standard normal PDF on its
support: ∫ ∞

−∞

1√
2π

exp

(
−1

2
(x− t)2

)
d(x− t) = 1

Therefore, the MGF of X is

MX(t) = E[et(µ+σZ)] = etµE[e(tσ)Z ] = etµ exp

(
1

2
σ2t2

)
= exp

(
µt+

1

2
σ2t2

)
.

Applying this to X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2), their MGFs are:

MX1(t) = exp

(
µ1t+

1

2
σ2
1t

2

)
,

MX2(t) = exp

(
µ2t+

1

2
σ2
2t

2

)
.

Then, let’s take a look at the MGF of S = X1 +X2

Since X1 and X2 are independent, the MGF of their sum satisfies:

MS(t) = MX1+X2(t) = MX1(t)MX2(t).

Substituting the MGFs:

MS(t) =

[
exp

(
µ1t+

1

2
σ2
1t

2

)]
×
[
exp

(
µ2t+

1

2
σ2
2t

2

)]
.

Using the property eaeb = ea+b, we simplify:

MS(t) = exp

(
(µ1 + µ2)t+

1

2
(σ2

1 + σ2
2)t

2

)
.

Comparing with the known MGF of a normal distribution:

MX(t) = exp

(
µt+

1

2
σ2t2

)
,

we see that MS(t) matches the form of an MGF for a normal distribution with mean
µ1 + µ2 and variance σ2

1 + σ2
2. Thus,

X1 +X2 ∼ N (µ1 + µ2, σ
2
1 + σ2

2).
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