
Gov 2001: Problem Set 3
Spring 2025

March 31, 2025

Problem Set Instructions:

• This problem set is due on April 8th, 11:59 pm Eastern time. Please upload a PDF
of your solutions to Gradescope.

• We will accept hand-written solutions but we strongly advise graduate students to
typeset your answers in LATEX.

• Citing your sources is always a good practice in academia. Please list the names of
other students / sources / AI you obtained help from on this problem set.

1 WLLN
Solution:

Let X1, X2, . . . , Xn be i.i.d. random variables with E[Xi] = µ and Var(Xi) = σ2 < ∞.
Define the sample mean:

Xn =
1

n

n∑
i=1

Xi.

(a) Compute E[Xn] and Var(Xn).
Since expectation is linear:

E[Xn] = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[Xi] =
nµ

n
= µ.

Since the Xi are i.i.d., their variances add:

Var(Xn) = Var

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

Var(Xi) =
nσ2

n2
=

σ2

n
.

(b) Use Chebyshev’s inequality to bound P(|Xn − µ| ≥ ε).
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Chebyshev’s inequality states:

P(|Y − E[Y ]| ≥ ε) ≤ Var(Y )

ε2
.

Apply it to Xn:

P(|Xn − µ| ≥ ε) ≤ Var(Xn)

ε2
=

σ2

nε2
.

(c) Show that P(|Xn − µ| ≥ ε) → 0 as n → ∞.
From part (b), we have:

P(|Xn − µ| ≥ ε) ≤ σ2

nε2
.

Since the right-hand side tends to 0 as n → ∞, it follows that:

P(|Xn − µ| ≥ ε) → 0 as n → ∞.

(d) Conclude that Xn
P−→ µ as n → ∞, and state this as the Weak Law of Large

Numbers.
By definition of convergence in probability:

Xn
P−→ µ as n → ∞,

because for any ε > 0, the probability P(|Xn − µ| ≥ ε) → 0.

Weak Law of Large Numbers: Let {Xi} be i.i.d. random variables with finite mean
µ and finite variance σ2. Then the sample mean Xn converges in probability to µ as
n → ∞:

Xn
P−→ µ.

2 WLLN and Uncertainty
1. We plot and describe the distributions:

plot(density(X1), main="Density of X1 (Normal)",
col="blue",xlim=c(min(X1,X2),max(X1,X2)))
lines(density(X2), main="Density of X2 (Exponential)", col="red")

Findings:

• X1 is approximately normally distributed with mean close to 5 and standard
deviation close to 2.

• X2 is right-skewed (exponential distribution) with mean close to 5 and standard
deviation around 5.
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2. We take 100 samples of size 8 from each population and compute their sample means.

set.seed(02138)
n <- 8
reps <- 100
X1_means <- numeric(reps)
X2_means <- numeric(reps)

for (i in 1:reps) {
X1_means[i] <- mean(sample(X1, n))
X2_means[i] <- mean(sample(X2, n))

}

plot(density(X1_means),
main="Sampling Distribution of Mean (X1, n=8)", col="blue")
plot(density(X2_means),
main="Sampling Distribution of Mean (X2, n=8)", col="red")
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Findings:

• The sampling distribution of X1 means is fairly normal.
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• The sampling distribution of X2 means is more spread out and slightly skewed,
though less than the original distribution.

3. We calculate the standard error and see what proportion of sample means fall within
2 SEs of the population mean.

set.seed(02138)
n <- 8
reps <- 100
coverage_X1 <- 0
coverage_X2 <- 0
true_mean_X1 <- mean(X1)
true_mean_X2 <- mean(X2)

for (i in 1:reps) {
x1_samp <- sample(X1, n)
x2_samp <- sample(X2, n)

x1_mean <- mean(x1_samp)
x1_se <- sd(x1_samp) / sqrt(n)
x1_ci <- c(x1_mean - 1.96 * x1_se, x1_mean + 1.96 * x1_se)

x2_mean <- mean(x2_samp)
x2_se <- sd(x2_samp) / sqrt(n)
x2_ci <- c(x2_mean - 1.96 * x2_se, x2_mean + 1.96 * x2_se)

if (true_mean_X1 >= x1_ci[1] && true_mean_X1 <= x1_ci[2]) {
coverage_X1 <- coverage_X1 + 1

}
if (true_mean_X2 >= x2_ci[1] && true_mean_X2 <= x2_ci[2]) {

coverage_X2 <- coverage_X2 + 1
}

}

prop_X1 <- coverage_X1 / reps
prop_X2 <- coverage_X2 / reps
prop_X1
prop_X2

Findings:

• Proportion for X1 is 91%, this is close to 0.95 due to normality.
• For X2 (exponentially distributed), the coverage is noticeably lower — around

78% — due to:
– High skew in the distribution.
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– More variability in the sample standard deviation.
– The Central Limit Theorem not yet fully kicking in for small n.

4. We repeat the process for sample sizes 8, 20, 50, and 500.

set.seed(02138)
X1 <- rnorm(100000, 5, 2)
X2 <- rexp(100000, 0.2)
sample_sizes <- c(8, 20, 50, 500)
reps <- 1000
results <- data.frame(SampleSize = integer(),
Var = character(), Coverage = numeric())

true_mean_X1 <- mean(X1)
true_mean_X2 <- mean(X2)

for (n in sample_sizes) {
coverage_X1 <- 0
coverage_X2 <- 0

for (i in 1:reps) {
x1_samp <- sample(X1, n)
x2_samp <- sample(X2, n)

x1_mean <- mean(x1_samp)
x1_se <- sd(x1_samp) / sqrt(n)
x1_ci_low <- x1_mean - 1.96 * x1_se
x1_ci_high <- x1_mean + 1.96 * x1_se
if (true_mean_X1 >= x1_ci_low && true_mean_X1 <= x1_ci_high) {
coverage_X1 <- coverage_X1 + 1

}

x2_mean <- mean(x2_samp)
x2_se <- sd(x2_samp) / sqrt(n)
x2_ci_low <- x2_mean - 1.96 * x2_se
x2_ci_high <- x2_mean + 1.96 * x2_se
if (true_mean_X2 >= x2_ci_low && true_mean_X2 <= x2_ci_high) {
coverage_X2 <- coverage_X2 + 1

}
}

results <- rbind(results,
data.frame(SampleSize = n, Var = "X1",
Coverage = coverage_X1 / reps),
data.frame(SampleSize = n, Var = "X2",
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Coverage = coverage_X2 / reps))
}
print(results)
stargazer::stargazer(results,type="latex",summary=FALSE)

Results Table:

Table 1:

SampleSize Var Coverage
1 8 X1 0.910
2 8 X2 0.864
3 20 X1 0.943
4 20 X2 0.909
5 50 X1 0.948
6 50 X2 0.927
7 500 X1 0.941
8 500 X2 0.942

2.1 Interpretation
The Central Limit Theorem (CLT) states that the sampling distribution of the sample mean
will approximate normality as sample size increases, regardless of the underlying distribution.
Our findings support this:

• For X1, the sampling distribution is approximately normal even for small n due to the
underlying normality.

• For X2, the distribution of sample means is not normal when n is small (hence low
coverage), but becomes normal as n increases.

• As sample size increases, coverage probabilities for both variables converge to the
nominal 95% level.

This shows the CLT in action and highlights the importance of large sample sizes, espe-
cially when working with skewed data.

3 Delta Method
The Delta method is a very powerful tool for analyzing asymptotic properties of random
variables. Let X1, . . . , Xn be i.i.d. (continuous random variables) with CDF FX(x). Consider
the random variable

Yn(x) =
1

n

n∑
i=1

Zi, where Zi = I{Xi ≤ x}.
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Here I{·} is the usual indicator function, so Zi = 1 if Xi ≤ x and 0 otherwise.

(a) What distribution does Zi follow? Name the distribution. Find its mean and variance
in terms of FX(x). (Hint: Fundamental bridge.)

(b) What is the asymptotic distribution of Yn(x)?

(c) Apply the Delta method to identify the asymptotic distribution of F−1
X

(
Yn(x)

)
. You

may use the identity
d

dx
F−1
X (x) =

1

fX
(
F−1
X (x)

) ,
where fX is the PDF of Xi (Hint: Let g(.) be the quantile function F−1

X (.)).

(d) Let qX,p = F−1
X (p) be the pth quantile of the distribution of X. Given the results

from (c), show that the asymptotic distribution of the pth sample quantile, denoted
QX,p = F−1

X

(
Yn(x)

)
when Yn(x) is near p, can be written as

√
n
(
QX,p − qX,p

) d−→ N
(
0,

p(1− p)[
fX(qX,p)

]2).
Solution
(a) Each Zi = I{Xi ≤ x} is a Bernoulli random variable with parameter p = FX(x). Thus,

E[Zi] = FX(x), Var(Zi) = FX(x)
(
1− FX(x)

)
.

(b) Since Yn(x) =
1
n

∑n
i=1 Zi, by the Central Limit Theorem,

√
n
(
Yn(x)− FX(x)

) d−→ N
(
0, FX(x)

(
1− FX(x)

))
.

(c) We want the asymptotic distribution of F−1
X

(
Yn(x)

)
. Set g(u) = F−1

X (u). Then g′(u) =
1

fX

(
F−1
X (u)

) . By the Delta Method:

√
n
(
g(Yn(x))− g(FX(x))

) d−→ N
(
0,
[
g′(FX(x))

]2
FX(x)

(
1− FX(x)

))
.

Substituting g′(FX(x)) =
1

fX(x)
and noting that g(FX(x)) = x, we get

√
n
(
F−1
X (Yn(x))− x

) d−→ N
(
0,

FX(x)
(
1− FX(x)

)
[fX(x)]2

)
.

(d) For the pth quantile, let x = qX,p = F−1
X (p). Then Yn(qX,p) is approximately p, and

√
n
(
QX,p − qX,p

) d−→ N
(
0,

p (1− p)

[fX(qX,p)]2

)
.

This is the classic asymptotic result for sample quantiles.
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