
Gov 2001 Section 8, 2025

Delta Method Practice (Hypothesis testing to be uploaded later)

Delta method: Suppose that √
n(θ̂ − θ)

d−→ N (0, ω2)

as n → ∞ and g is a continuously differentiable function. Then as n → ∞,

√
n(g(θ̂)− g(θ))

d−→ N

(
0,

(
∂g(θ)

∂θ

)2

ω2

)
Notice that the asymptotic distribution should not contain n. Or we can write as for large n,

g(θ̂)
·∼ N

(
g(θ),

(g′(θ))2 ω2

n

)
Example: If we have X1:n

i.i.d∼ N (µ, σ2), and thus X̄n ∼̇ N (µ, σ
2

n
), then for large n,

g(X̄n) ∼̇ N
(
g(µ), (g′(µ))2

σ2

n

)
Practice 1: Assume

√
n(θ̂ − θ)

d−→ N (0, v2).

(a) Use the Delta method to find the asymptotic distribution of θ̂4.

Solution:

Let g(θ̂) = θ̂4. Then g′(θ) = 4θ3.

By the Delta method:
√
n(g(θ̂)− g(θ))

d−→ N (0, [g′(θ)]2v2) = N (0, 16θ6v2).

So,

θ̂4 ∼̇ N
(
θ4,

16θ6v2

n

)
.

(b) Use the Delta method to find the asymptotic distribution of

1

1 + exp(−θ̂)
.

Solution:

Let g(θ̂) =
1

1 + exp(−θ̂)
. Then this is the logistic function, and its derivative is:

g′(θ) =
e−θ

(1 + e−θ)2
= g(θ)(1− g(θ)).

By the Delta method: √
n(g(θ̂)− g(θ))

d−→ N (0, [g′(θ)]2v2).

So,
1

1 + exp(−θ̂)
∼̇ N

(
1

1 + exp(θ)
,

e−2θv2

n(1 + e−θ)4

)
.
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(c) Explain how you can approximately derive the Delta method using the Taylor polynomials.

The first-order Taylor approximation of f(x) at value c is f(x) = f(c) + (x− c)f ′(c).

Solution:

Delta method uses the first-order Taylor expansion of the function g(θ̂) around θ:

g(θ̂) ≈ g(θ) + g′(θ)(θ̂ − θ).

Multiply both sides by
√
n:
√
n(g(θ̂)− g(θ)) ≈

√
ng′(θ)(θ̂ − θ).

Since
√
n(θ̂ − θ)

d−→ N (0, v2), by continuous mapping theorem:

g′(θ)
√
n(θ̂ − θ)

d−→ N (0, [g′(θ)]2v2).

Therefore, √
n(g(θ̂)− g(θ))

d−→ N (0, [g′(θ)]2v2).

Practice 2: Let Y1, . . . , Yn be i.i.d. random variables such that E(Yi) = 0, Var(Yi) = 1, and the

fourth moment E(Y 4
i ) exists. Also, define

Sn =
1

n

n∑
i=1

Y 2
i , Vn =

1

n

n∑
i=1

(Y 2
i − 1)2.

The goal is to identify a constant c such that

c ·
√
n (exp(Sn)− e)√

Vn

d−→ N (0, 1).

(a) What is the approximated distribution of Sn as n → ∞? Your answer can include Var(Y 2
i )

but should not include E[Y 2
i ]. (Hint: Use CLT. . . )

Solution:

Since Yi are i.i.d. with E(Yi) = 0 and Var(Yi) = 1, we have E(Y 2
i ) = 1. By CLT,

√
n(Sn − E(Sn)) =

√
n (Sn − 1)

d−→ N (0,Var(Y 2
i )).

Therefore, Sn is approximately N
(
1,

Var(Y 2
i )

n

)
for large n.

(b) Show that
√
Vn

p−→
√

Var(Y 2
i ). (Hint: LLN and CMT. . . )

Solution:

Since Vn is the sample mean of i.i.d. (Y 2
i − 1)2, By LLN,

Vn =
1

n

n∑
i=1

(Y 2
i − 1)2

p−→ E[(Y 2
i − 1)2] = Var(Y 2

i ).

Since the square root function is continuous, by the Continuous Mapping Theorem (CMT),√
Vn

p−→
√

Var(Y 2
i ).
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(c) Given parts (a) and (b), prove the following asymptotic result. (Hint: Slutsky. . . )

√
n · (Sn − 1)√

Vn

d−→ N (0, 1).

Solution:

From part (a),
√
n(Sn − 1)

d−→ N (0,Var(Y 2
i )). From part (b),

√
Vn

p−→
√

Var(Y 2
i ).

By Slutsky’s theorem and the linear (scale) transformation of normal distribution,

√
n(Sn − 1)√

Vn

d−→ N (0, 1).

(d) Find the constant c such that

c ·
√
n (exp(Sn)− e)√

Vn

d−→ N (0, 1).

(Hint: Delta method!)

Solution:

Let g(x) = exp(x). Then g′(x) = exp(x). Applying the Delta method around x = 1,

√
n (g(Sn)− g(1)) =

√
n (exp(Sn)− e)

d−→ N (0, e2Var(Y 2
i )).

To match the variances, set c = 1
e
. Thus,

1

e
·
√
n (exp(Sn)− e)√

Vn

d−→ N (0, 1).
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