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This section focuses on the OLS estimator. We observe data (X1:n, Y1:n), (x1:n, y1:n) if crystallized.

Each Xi = (Xi1, . . . , Xik)
T . We offer three ways to derive and interpret it.

OLS as Plug-in Estimator

We first consider the case without intercept: Y = X′β + ϵ. Notice that here X is a random

vector (X1, X2, . . . , Xk)
T . All elements in the vector are random variables. We can also consider

X1 = 1 to include the intercept. We have:

β = argmin
b∈Rk

E[(Y −X′b)2]

Notice that β is a column vector with k elements. With matrix calculus, the result is

β = (E[XX′])−1E[XY ]

We use a plug-in estimator, replacing the theoretical expected value with the sample mean:

β̂ =

∑n
i=1XiYi∑n
i=1XiX′

i

If we consider the intercept (separated from the covariates’ matrix), we have

β, β0 = arg min
b,b0∈Rk

E[(Y −X′b− b0)
2]

Again, β and β0 are column vectors. With matrix calculus, we solve

−2E[Y −X′b− b0] = 0, −2E[X(Y −X′b− b0)] = 0

We have

b0 = E[Y ]− E[X′]b, E[XX′]b = E[XY ]− E[X′]b0

Therefore,

β = [Var(X)]−1Cov(X, Y )

Again, we use a plug-in estimator,

β̂ =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n
i=1(Xi − X̄)(Xi − X̄)′

OLS as Minimization of the Residual

This is the most frequently used OLS interpretation, especially by econometricians and computer

scientists. We use the sampled data (X1:n, Y1:n)
i.i.d.∼ same DGP, trying to fit a line that minimizes

the total distances between predicted outcomes and true outcomes, i.e., the sum of squared

residuals. We first consider the case without intercept. The predicted outcomes are Ŷi = X′
iβ̂,

while the true outcomes are Yi. We are thus solving:

β̂ = argmin
b∈Rk

n∑
i=1

(Yi −X′
ib)
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Taking the derivative, we have

−2
n∑

i=1

Xi(Yi −X′
ib) = 0

Therefore,

β̂ =

∑n
i=1XiYi∑n
i=1XiX′

i

With the intercept term, we solve

β, β0 = arg min
b,b0∈Rk

n∑
i=1

(Yi −X′
ib− b0)
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We have

b0 =
1

n

n∑
i=1

(Yi −X′
ib) = Ȳ − X̄′b,

n∑
i=1

Xi(Yi −X′
ib− b0) = 0

Therefore,

β̂ =

∑n
i=1(XiYi − nX̄Ȳ )∑n
i=1(XiX′

i − nX̄2)
=

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n
i=1(Xi − X̄)(Xi − X̄)′

OLS as Linear Projection

This approach reveals the geometric interpretation of OLS: given the data (X ∈ Rn×k, Y ∈ Rn),

we are finding a vector β̂ ∈ Rk such that it minimizes the total Euclidean distance (L2 norm)

from the predicted Ŷ = Xβ̂ to the true Y :

β̂ = argmin
b

||Y −Xb||2

In other words, we are projecting Y onto the column space of X. Let the projection matrix be

P , such as Ŷ = PY = Xβ̂. The residual vector ϵ̂ = Y −Xβ̂ = Y − PY must be orthogonal to

the column space of X. By matrix calculus, we can derive β̂ by solving:

−2X′(Y −Xb) = 0, so β̂ = (X′X)−1X′Y

Since PY = Xβ̂ = X(X′X)−1X′Y , we have P = X(X′X)−1X′. We have the following properties:

1. P is an orthogonal projection matrix, so it is idempotent P 2 = P and symmetric P = P ′.

2. Let M = I −P . P makes the predicted outcomes, while M makes the residuals: Ŷ = PY ,

ϵ̂ = MY , Y = PY +MY . M is also symmetric and idempotent.

3. PX = X, MX = 0.

4. Important assumption for projection: X′X must be invertible (full-rank, i.e., column vec-

tors linearly independent).

Note: When adding unit fixed effects for a regression on a panel data with m units, you

are essentially adding m− 1 binary covariates as unit indicators (adding all m would lead

to multicollinearity). Adding both unit and time fixed effects is the standard practice and

usually would not cause multicollinearity. However, adding the (factorized) intersection

term of unit and time would cause perfect multicollinearity.
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Frisch–Waugh–Lovell (FWL) Theorem

Y = X1β̂1 +X2β̂2 + ϵ̂ (1)

The coefficient β̂2 from the full OLS regression of Y on (X1,X2) is equal to the coefficient from:

1. Regressing Y on X1, saving the residuals ϵ̃1 = M1Y

2. Regressing X2 on X1, saving the residuals X̃2 = M1X2

3. Regressing M1Y on M1X2:

β̂2 = (X̃′
2X̃2)

−1(X̃′
2ϵ̃1) = (X′

2M1X2)
−1

X′
2M1Y

where M1 = I−P1 is the annihilator matrix for X1.

Proof: Just multiply both sides of (1) by M1, we are essentially fitting the following regression,

M1Y = M1X1β̂1 +M1X2β̂2 +M1ϵ̂ = M1X2β̂2 + ϵ̂

We can do M1ϵ̂ = ϵ̂ because when fitting the regression, the residual must be orthogonal to X1,

and thus P1ϵ̂ = 0, and M1ϵ̂ = (I−P1)ϵ̂ = ϵ̂.
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