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OLS Interval Estimation

1. The foundation of constructing an asymptotic CI of β is the asymptotic normality of β̂

with large sample. We have

β̂ − β =

(
1

n

n∑
i=1

XiX
′
i

)−1(
1

n

n∑
i=1

Xiei

)
Both components are in the form of sample mean, so by LLN and CMT, we have

β̂
p−→ β + (E[XiX

′
i])

−1E[Xiei] = β

And we can use CLT to find the asymptotic distribution of the second component:

√
n

(
1

n

n∑
i=1

Xiei − E[Xiei]

)
=

1√
n

n∑
i=1

Xiei
d−→ N (0, E[e2iXiX

′
i])

Since 1
n

∑n
i=1 XiX

′
i

p−→ E[XiX
′
i] and

√
n(β̂ − β) =

(
1

n

n∑
i=1

XiX
′
i

)−1(
1√
n

n∑
i=1

Xiei

)
By Slutsky’s theorem, we have

√
n(β̂ − β)

d−→ N (0,Vβ), Vβ = (E[XiX
′
i])

−1 E[e2iXiX
′
i] (E[XiX

′
i])

−1

2. The variance of β̂’s asymptotic distribution contains expectations, which are not directly

observable in real life, so we need to estimate them. The most straightforward method is

again plug-in estimators, replacing population means with sample means:

V̂β =

(
1

n

n∑
i=1

XiX
′
i

)−1(
1

n

n∑
i=1

êi
2XiX

′
i

)(
1

n

n∑
i=1

XiX
′
i

)
, êi = Yi −X′

iβ̂

This is called the robust variance estimator, as it does not assume Var(e2i |Xi) = Var(e2i ) =

σ2. If we assume homoskedasticity, we have by Law of iterated expectations,

E[e2iXiX
′
i] = E[E[e2i |Xi]XiX

′
i] = E[e2i ]E[XiX

′
i] = σ2

(
1

n

n∑
i=1

XiX
′
i

)−1

.

We just need to estimate σ2, replacing it by σ̂2 = 1
n−k−1

∑n
i=1 ê

2
i . Plugging in to Vβ, the

homoskedasticity (standard) variance estimator is just

V̂lm
β = σ̂2

(
1

n

n∑
i=1

XiX
′
i

)−1

The robust and standard SEs are just
√

V̂β/n and
√
V̂lm

β /n respectively.
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3. For each β̂j in β̂, we test H0 : β̂j = 0 versus H1 : β̂j ̸= 0. Under the null, we have

β̂j − 0

ŝe(β̂j)

d−→ N (0, 1), ŝe(β̂j) =

√
ˆ[Vβ]jj

n

using robust SE (similar for standard SE). Therefore, we can invert the test and easily get

95% CI: [
β̂j − 1.96ŝe(β̂j), β̂j + 1.96ŝe(β̂j)

]
Practice Questions

1. In recent years it has become common in statistics to want to perform many simultaneous

hypothesis tests. Let p1 . . . pm be indepedent p-values, corresponding to m hypothesis tests.

Each of the m hypothesis tests has a simple null. Suppose that m0 of the m null hypotheses

are true. We decide in advance to conduct these tests at level α (i.e., we reject the null

for tests where the p-value is less than α). The familywise error rate is the probability of

making at least one Type I error.

(a) Find the familywise error rate (FWER). What happens to the familywise error rate

as m0 gets large? (Hint: Let V be the number of Type I error rates. Then FWER is

P (V > 0). You can simplify it further by using α and m0.)

(b) One of the common procedure to deal with multiple hypothesis testings is called the

Bonferroni procedure. Intuitively, this procedure allows us to deal with the increased like-

lihood of type I errors. This procedure is described as follows: instead of rejecting the null

hypotheses with pi < α, we reject the null hypotheses with pi <
α
m

(i.e., correcting the

cutoff by the number of hypotheses). Show that under this procedure, the familywise error

rate is at most α. (Hint: You might find Markov’s Inequality helpful: P(X ≥ a) ≤ E[X]
a

.

You want to bound the FWER using Markov’s Inequality by setting the value of a appro-

priately.)

(c) In (b), why not instead reject the null hypotheses with pi < α
m0

, considering that

m0 ≤ m (and often in practice m0 is much smaller than m), which would seem to result in

rejecting more false nulls while still keeping the familywise error rate at most α?

(d) Another procedure is to reject all null hypotheses with pi < 1 − (1 − α)1/m (This is

known as the Sidak Procedure). Show that under this procedure, the familywise error rate

is again at most α.

2. Often our data is collected with error, which we refer to as measurement error. For instance,

for a dependent variable Y you’re trying to measure in a survey, respondents may randomly

mis-click, or they may systematically lie about having a socially undesirable trait. In this

question, we will explore the impact of measurement error in regression analysis in the most

favourable case where the measurement error is independent of the true values. Consider

the linear projection:

L[Y | 1, X] = β0 + β1X
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with the projection error denoted as e = Y − L[Y | 1, X], and V[X] = σ2
X . Unfortunately,

we do not observe Y or X but instead noisy proxies for them {Ỹ , X̃}, where

Ỹ = Y + v, X̃ = X + w

Where v is one realization from V ∼ N (0, σ2
v) and w is one realization fromW ∼ N (0, σ2

w),

where W and V are independent of X and Y . This implies that Cov(v,X) = Cov(v, e) =

Cov(v, w) = Cov(w,X) = Cov(w, e) = Cov(w, v) = 0. This is commonly referred to as

classical measurement error.

(a) Consider the linear projection of these observable variables, L[Ỹ | 1, X̃] = α0 + α1X̃.

Find α1 in terms of {β1, σ
2
w, σ

2
v , σ

2
X}. Hint: first derive an expression of the coefficients in

terms of the X̃ and Ỹ .

(b) From your expression in part (a), briefly explain (1-2 sentences) the effect of this type

of measurement error in X on the sign and magnitude of the coefficient α1 compared to

β1. Hint: what parameter controls the amount of measurement error in X?

(c) From your expression in part (a), briefly explain (1-2 sentences) the effect of this type

of measurement error in Y on the sign and magnitude of the coefficient α1 compared to β1.

Hint: what parameter controls the amount of measurement error in Y ?

3. Decide whether each of the following statements are true or false and explain your reasoning

briefly.

(a) If Y = Xβ + e, X ∈ R, and E[e|X] = 0, then E[e] = 0.

(b) If Y = Xβ + e, X ∈ R, and E[e|X] = 0, then E[X3e] = 0.

(c) If Y = Xβ + e, X ∈ R, and E[Xe] = 0, then E[X2e] = 0.

(d) If Y = Xβ + e, X ∈ R, and E[e|X] = 0, then e and X are independent.

4. In most linear regression models, the dependent variable Y is expressed as a function of

independent variables X1, X2, ..., Xk (or to use the vector notation, just X as a vector in

Rk). That is,

Y = Xβ + e

where β is a k × 1 coefficient vector and e is the error.

(a) Explain briefly what it means for g(X), a function of X, to be the best predictor of Y .

(b) Show that for g(X) to be the best predictor, g(X) must be equal to the conditional

expectation function E[Y |X]. (Hint: You can assume that, for the CEF error e = Y −
E[Y |X], we have E

∣∣e{E[Y |X]− g(X)}
∣∣ < ∞).

Now, for unifying definition, we also need to consider an intercept-only model, where there

is no X and α is simply a constant:

Y = α + e

(c) Find argmin
α

E[(Y − α)2].
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5. Consider the following multivariate regression:

Y = Xβ + Zγ + ϵ

(a) Show that for any {X,Z}, we can decompose Z into PXZ +MXZ, where PX and MX

are the projection matrix and annihilator matrix of X respectively. (**Hint**: Apply the

definitions of the projection and annihilator matrices.) Also show that PX and MX are

orthogonal. (**Hint**: Show that P T
XMX = 0.)

(b) Show that ifX ⊥ Z, then the coefficients we get from regressing Y onX and Y on Z will

be the same coefficients from the joint regression above. (**Hint**: One way to work on this

problem is to notice that Y = Xβ+Zγ+ ϵ, and thus Cov(Y,X) = Cov(Xβ+Zγ+ ϵ,X).)

(c) Suppose β̂ and γ̂ are the OLS estimators for β and γ for the regression above. Find a

β̂′ such that:

Ŷ = Xβ̂′ + (MXZ)γ̂

Write β̂′ in terms of β̂ and γ̂, and provide a substantive interpretation of β̂′ in plain English

(**Hint**: X and Z are not necessarily orthogonal anymore. Use results from part (a). ).

(d) Lastly, show that the following regression

MX Ŷ = (MXZ)γ̂

will return the same OLS estimator γ̂ as in the multivariate regression Y = Xβ + Zγ + ϵ,

explain this result in plain English.

6. The standard output from OLS will give the standard errors for the estimated coefficients,

but often we want to obtain measures of uncertainty for the predicted value of Yi given

some value of Xi (that is, the conditional expectation function). Using the example from

lecture, we might be interested in the average wait times to vote for individuals making

$25,000, $50,000, or $100,000 in annual income, along with measures of uncertainty around

those estimates. In this problem we will look at how to calculate interval estimates for

these predicted values. Assume the following *true* population model for Yi|Xi:

Yi = β0 + β1Xi + ui,

where the Xi are random variables and ui are i.i.d. random variables with E[ui | Xi] = 0

and V ar(ui | Xi) = σ2. Suppose we observe a random sample of n paired observations

{Yi, Xi}. Assume the Gauss-Markov assumptions hold (i.e., the OLS estimator is unbiased)

and that we have a large sample. Our goal is to estimate the predicted value at some value

Xi = x:

µ(x) = E[Yi | Xi = x] = β0 + β1x.

(a) Let β̂0 and β̂1 be OLS estimators of the regression of Y on X. Use what you know

about the unbiasedness of OLS estimates to show that µ̂(x) = β̂0 + β̂1x is an unbiased

estimator of the population quantity µ(x) = E[Yi | Xi = x].
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(b) Find the conditional variance of β̂0, V ar(β̂0 | X1, . . . , Xn), using the following two facts.

You answer should be in terms of σ2 and functions of Xi.

Cov(Y , β̂1 | X1, . . . , Xn) = 0 and V ar(β̂1 | X1, . . . , Xn) =
σ2∑n

i=1(Xi −X)2
.

(c) Find the covariance of the OLS estimates given our X values, Cov(β̂0, β̂1|X1, . . . , Xn),

again in terms of σ2 and functions of the Xi. (**Hint**: It’s not zero.)

(d) Using what you found in (b) and (c), find the standard error of µ̂(x) = β̂0 + β̂1x.

(e) Assume that we don’t know σ2 and instead construct our estimate of the standard error

by plugging in for σ2 our unbiased estimate s2 using the residuals. Give the formula for a

large-sample 95% confidence interval estimator for µ(x) = E[Y | X = x] using what you

found above and substituting s2 for σ2. How do we interpret this confidence interval?

Practice Question Solutions

1. (a) Let V be the number of Type I errors, i.e., the number of true null hypotheses incorrectly

rejected. Then the FWER is:

FWER = P(V > 0)

Under the assumption that the m0 true nulls are independent and each test is conducted

at level α, the probability that a single true null hypothesis is not rejected is 1−α. Hence,

the probability that none of the m0 true nulls are rejected is:

P(V = 0) = (1− α)m0

Therefore, the familywise error rate is:

FWER = 1− (1− α)m0

As m0 increases, (1− α)m0 → 0, so:

FWER → 1

That is, the FWER increases with the number of true null hypotheses, and we almost

surely would make one or more false discoveries.

(b) Let V again denote the number of Type I errors. Since each true null has probability

at most α
m

of being rejected, the expected number of false rejections is:

E[V ] ≤ m0 ·
α

m
≤ α

since m0 ≤ m. By Markov’s Inequality:

P(V ≥ 1) ≤ E[V ] ≤ α
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Thus, under the Bonferroni procedure:

FWER = P(V > 0) ≤ α

(c) While using α
m0

as the cutoff would indeed increase power (since m0 ≤ m), the issue

is that m0 is unknown in practice. If we underestimate m0, we risk violating the FWER

control (i.e., making it exceed α). Thus, we use α
m

to ensure valid FWER control without

knowing which nulls are true. However, this also makes the Bonferroni procedure extremely

conservative.

(d) Under the assumption of independence, the probability that all m0 true null hypotheses

are not rejected is:

P(V = 0) = (1− α)m0/m

So the FWER becomes:

FWER = 1− (1− α)m0/m ≤ α

since (1−α)m0/m ≥ 1−α when m0 ≤ m. Therefore, the Sidak procedure also controls the

familywise error rate at level α under independence.

2. (a) Substituting the original Y and X by the noisy observation, we have

Ỹ = β0 + β1X̃ − β1w + e+ v

Now, we know that

α1 =
Cov[X̃, Ỹ ]

V [X̃]
=

Cov[X + w, β0 + β1X + e+ v]

V [X + w]
=

β1Cov[X,X]

σ2
X + σ2

w

=
β1σ

2
X

σ2
X + σ2

w

(b) The measurement error w biases the estimate of the coefficient. When σ2
w > 0, we have

α1 < β1, and β1 is biased towards zero by
β1σ2

X

σ2
X+σ2

w
. This is because we introduced additional

variance to the predictor.

(c) The measurement error v does not bias the estimate of the coefficient. It is uncorrelated

with other variables and just causes less precision when estimating the mean effect.

3. (a) True. If E[e | X] = 0, then taking the expectation over X gives E[e] = E[E[e | X]] = 0

by the Law of Iterated Expectations.

(b) True. Again using the Law of Iterated Expectations, and remember that E[g(X)|X] =

g(X) for any function g:

E[X3e] = E[E[X3e | X]] = E[X3 · E[e | X]] = E[X3 · 0] = 0.

(c) False. E[Xe] = 0 does not imply E[X2e] = 0. The expectation E[X2e] involves a

different function of X and may not be zero unless E[e | X] = 0. Counterexample:
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Let X ∼ N (0, 1), and define e = X2 − 1. Then:

E[Xe] = E[X(X2 − 1)] = E[X3]− E[X] = 0− 0 = 0.

So E[Xe] = 0. But

E[X2e] = E[X2(X2 − 1)] = E[X4]− E[X2] = 3− 1 = 2 ̸= 0.

(d) False. E[e | X] = 0 implies mean independence, not full independence. e and X can

still be dependent in higher moments or in distribution. Stochastic independence implies

mean independence, but the converse is not true; mean independence implies uncorrelat-

edness, while the converse is not true.

4. (a) A function g(X) is the best predictor of Y if it minimizes the expected squared predic-

tion error, i.e.,

g(X) = argmin
f(X)

E[(Y − f(X))2].

(b) Let e = Y − E[Y |X] be the CEF error. For any function g(X), we have:

E[(Y − g(X))2] = E[(E[Y |X] + e− g(X))2]

= E[(E[Y |X]− g(X))2] + 2E[e(E[Y |X]− g(X))] + E[e2]

Since E[e|X] = 0, the cross term vanishes by the Law of Iterated Expectations (remember

that CEF given X is a function of X):

E[e(E[Y |X]− g(X)) | X] = E[E[e|X](E[Y |X]− g(X))] = 0.

Thus,

E[(Y − g(X))2] = E[(E[Y | X]− g(X))2] + E[e2],

which is minimized when g(X) = E[Y | X]. Therefore, the CEF is the best predictor.

(c) We want to minimize E[(Y − α)2] over α. Taking the derivative:

d

dα
E[(Y − α)2] = E[−2(Y − α)] = −2(E[Y ]− α).

Setting to zero gives α = E[Y ]. So the best constant predictor is the mean:

argmin
α

E[(Y − α)2] = E[Y ].

5. (a) By definition, the projection matrix PX = X(X ′X)−1X ′, and the annihilator matrix is

MX = I − PX . So for any Z,

Z = IZ = (PX + I − PX)Z = PXZ +MXZ,
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which decomposes Z into its projection onto the column space of X and its residual.

To show orthogonality, since projection matrices are symmetric and idempotent,

P T
XMX = PXMX = PX(I − PX) = PX − PX = 0.

Thus, PX and MX are orthogonal.

(b) If X ⊥ Z, then Cov(X,Z) = 0. From the regression:

Y = Xβ + Zγ + ϵ,

we have:

Cov(Y,X) = Cov(Xβ + Zγ + ϵ,X) = βCov(X,X) + γCov(Z,X) + Cov(ϵ,X).

Since X ⊥ Z and E[ϵ] = E[Xϵ] = 0, the last two terms are zero, and we get the same

result as in the simple regression of Y on X alone:

Cov(Y,X) = Cov(βX + ε,X) = βCov(X,X) + Cov(ε,X) = βVar(X)

A similar argument applies to Z. Hence, the marginal regressions recover the same coeffi-

cients as in the joint regression.

(c) Ŷ = Xβ̂ + Zγ̂. From the decomposition Z = PXZ +MXZ, we can write:

Zγ̂ = PXZγ̂ +MXZγ̂.

So:

Ŷ = Xβ̂ + PXZγ̂ +MXZγ̂.

Note that PXZ = X(X ′X)−1X ′Z, we have

Ŷ = X
(
β̂ + (X ′X)−1X ′Zγ̂

)
+ (MXZ)γ̂.

Thus, define:

β̂′ = β̂ + (X ′X)−1X ′Zγ̂.

Interpretation: β̂′ captures both the direct effect of X on Y , i.e., β̂, and the part of Z’s

effect on X (the second term).

(d) Consider:

MX Ŷ = MX(Xβ̂ + Zγ̂) = MXZγ̂,

since MXX = 0 by the property of annihilator matrix. So regressing MX Ŷ on MXZ yields

γ̂. This result shows that the coefficient on Z in the multivariate regression is the same

as the coefficient obtained when projecting both Y and Z orthogonally to X. That is, γ̂

represents the effect of Z on Y after removing the influence of X from both.
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6. (a) Given Gauss-Markov, we already know that β̂1 and β̂0 are unbiased estimators, so

E[µ(x) | Xi = x] = E[β̂0 + β̂1Xi | Xi = x] = E[β̂0 | Xi = x] + E[β̂1Xi | Xi = x] = β0 + β1x

(b) Noting that the two hints include sample averages of X and Y , let’s try to write our

estimated model (denoting ε̂i as the residual in our estimated model, and all quantities

with ∗̄ as the sample averages):

Yi = β̂0 + β̂1Xi + ε̂i,

Thus,

Ȳ = β̂0 + β̂1X̄ + ε̄

Notice that ε̄ is mechanically zero (remember the first-order condition when deriving β̂ in

the second approach in Section 10 is just
∑n

i=1 ε̂i = 0).

Now, let’s take the conditional variance by subbing in for β̂0 (denoting X1, . . . , Xn as X):

Var(β̂0 | X) = Var(Ȳ − X̄β̂1 | X)

= Var(Ȳ | X) + Var(X̄β̂1 | X)− 2Cov(Ȳ , X̄β̂1 | X)

= Var(Ȳ | X) + X̄2 · Var(β̂1 | X)− 2X̄ · Cov(Ȳ , β̂1 | X)

= Var(Ȳ | X) + X̄2 · σ2∑n
i=1(Xi − X̄)2

= Var

(
1

n

n∑
i=1

Yi | X

)
+

X̄2σ2∑n
i=1(Xi − X̄)2

=
σ2

n
+

X̄2σ2∑n
i=1(Xi − X̄)2

This is tricky but note that even though E[u] = 0, it is not true that
∑n

i=1 ui = 0. There’s

a difference between the expectation of a random variable (the former) and the average of

n finite draws of that variable (the latter)!

(c) We have

Cov(β̂0, β̂1 | X) = Cov(Ȳ − X̄β̂1, β̂1 | X)

= Cov(Ȳ , β̂1 | X)− X̄ · Cov(β̂1, β̂1 | X)

= − X̄σ2∑n
i=1(Xi − X̄)2

(d) Once we start expanding out this variance expression, we quickly find we have all the

9



ingredients we need:

Var(µ̂(x) | X) = Var(β̂0 + β̂1x | X)

= Var(β̂0 | X) + x2 · Var(β̂1 | X) + 2x · Cov(β̂0, β̂1 | X)

=
σ2

n
+

X̄2σ2∑
(Xi − X̄)2

+
x2σ2∑

(Xi − X̄)2
− 2xX̄σ2∑

(Xi − X̄)2

=
σ2

n
+

σ2(X̄2 + x2 − 2xX̄)∑
(Xi − X̄)2

=
σ2

n
+

σ2(x− X̄)2∑
(Xi − X̄)2

So the standard error is:

SE(µ̂(x) | X) =

√
σ2

n
+

σ2(x− X̄)2∑
(Xi − X̄)2

(e) Since we don’t know σ2 in data analysis, we estimate it with the residual variance:

σ̂2 = s2 =
1

n

n∑
i=1

ε̂2i

So the estimated standard error is:

ŜE(µ̂(x)) =

√
σ̂2

n
+

σ̂2(x−X)2∑
(Xi − X̄)2

The asymptotic distribution is:

√
n · (µ̂(x)− µ(x))

ŜE(µ̂(x))

d−→ N (0, 1)

So the large-sample 95% confidence interval is:

µ̂(x)± 1.96 · ŜE(µ̂(x))

Interpretation: In repeated large samples, 95% of such confidence intervals will contain the

true conditional expectation of Y at a given x, assuming we estimate OLS from an i.i.d.

sample {X1, . . . , Xn}.
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