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Poisson Distribution

1. Important calculus results: Taylor expansion of the exponential function

ex =
∞∑
k=0

xk

k!
, ex ≈ 1 + x for |x| small.

2. PMF and support: X ∼ Pois(λ), then

P (X = k) =
λke−λ

k!
, for k ∈ {0, 1, 2, . . . }

3. Interpretation: There are rare events (low probability events) that occur at an average rate

of λ occurrences per unit space or time. The number of events that occur in that unit of

space or time is X ∼ Pois(λ).

4. Poisson approximation: X ∼ Bin(n, p) where n → ∞ and p → 0 (alternatively, given the

definition of binomial distribution, X = X1+X2+ · · ·+Xn where X1, . . . Xn approximately

follows i.i.d. Bern(p) for n → ∞ and p → 0), then X approximately follows Pois(np).

Continuous Random Variable

1. Definition of CDF is the same as the discrete case: F (x) = P (X ≤ x) for a continuous r.v.

X, F is an increasing function with limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

2. The PDF of X is just f(x) = F ′(x), and F (x) =
∫ x

−∞ f(t) dt.

3. Properties of a PDF: it must be nonnegative and integrate to 1:
∫∞
−∞ f(t) dt = P (x ∈

(−∞,∞)) = 1 (axiom of probability).

4. Find the probability that a continuous r.v. takes on a value within interval [a, b]:

P (a ≤ X ≤ b) = P (X ≤ b)− P (X ≤ a) = F (b)− F (a) =

∫ b

a

f(x) dx

5. LOTUS for continuous r.v. X with pdf f(x):

E[g(X)] =

∫ ∞

−∞
g(x)f(x) dx

Uniform Distribution

PDF of X ∼ Unif(a, b):

f(x) =

{
1

b−a
, a ≤ x ≤ b,

0, otherwise.

CDF of X ∼ Unif(a, b):

F (x) =


0, x < a,
x−a
b−a

, a ≤ x ≤ b,

1, x > b.

E[X] =
a+ b

2
, Var(X) =

(b− a)2

12
Universality of Uniform: for any continuous r.v. X, we have F (X) ∼ Unif(0, 1). For example, for

X ∼ Expo(1) with CDF F (x) = 1− e−x, we have 1− e−X ∼ Unif(0, 1). Proof: Let Y = F (X),

its CDF is F (y) = P (Y ≤ y) = P (F (X) ≤ y) = P (X ≤ F−1(y)) = F (F−1(y)) = y.
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Exercise Questions

1. We have X, Y
i.i.d.∼ Pois(λ), calculate:

(a) E[2X ];

(b) E[e3Y ];

(c) P (X > Y ).

(a) By LOTUS,

E[2X ] =
∞∑
k=0

2k · λke−λ

k!
= e−λ

∞∑
k=0

(2λ)k

k!
= e−λ · e2λ = eλ

(b) By LOTUS,

E[e3Y ] =
∞∑
k=0

e3k · λke−λ

k!
= e−λ

∞∑
k=0

(λe3)k

k!
= eλ(e

3−1)

(c) By symmetry of i.i.d. random variables, we have P (X < Y ) = P (X > Y ). By axioms

of probability, we have P (X > Y ) = 1
2
[1− P (X = Y )]. Now, by LOTP we have

P (X = Y ) =
∞∑
k=0

P (X = k)P (Y = k) = e−2λ

∞∑
k=0

λ2k

(k!)2

2. Prove the following properties of Poisson distribution:

(a) X ∼ Pois(λ), then E[X(X − 1)(X − 2) . . . (X − r + 1)] = λr.

(b) X ∼ Pois(λ), then Var(X) = λ.

(c) X ∼ Pois(λ), then for any function g, we have E[X · g(X)] = λE[g(X + 1)].

(d) If X ∼ Pois(λ1) and Y ∼ Pois(λ2), X ⊥ Y , then X + Y ∼ Pois(λ1 + λ2). Hint: use

the Binomial theorem (a+ b)n =
∑n

k=0

(
n
k

)
an−kbk.

(a) By LOTUS,

E[X . . . (X − r + 1)] =
∞∑
k=r

k!

(k − r)!
· λ

ke−λ

k!
=

∞∑
h=0

λh+re−λ

h!
= λr

Notice that when k < r, we have k . . . (k − r + 1) = 0.

(b) We can write X2 = X(X − 1) +X. Use linearity and the conclusion in (a), we have

E[X2] = E[X(X − 1)] + E[X] = λ2 + λ

Therefore, we can calculate the variance:

Var(X) = E[X2]− (E[X])2 = λ2 + λ− λ2 = λ

2



(c) By LOTUS,

E[Xg(X)] =
∞∑
k=0

kg(k)λke−λ

k!
=

∞∑
k=1

g(k)λke−λ

(k − 1)!
= λ

∞∑
h=0

g(h+ 1)λhe−λ

h!
= λE[g(X + 1)]

(d) Let Z = X + Y , we have by LOTP,

P (Z = z) =
z∑

x=0

P (X = x)P (Y = z − x)

=
z∑

x=0

λx
1e

−λ1

x!
· λ

z−x
2 e−λ2

(z − x)!

= e−(λ1+λ2)
1

z!

z∑
x=0

(
z

x

)
λx
1λ

z−x
2

=
e−(λ1+λ2)(λ1 + λ2)

z

z!

So Z ∼ Pois(λ1 + λ2).

3. In a group of 90 people, find an approximation for the probability that there is at least one

pair of people such that they share a birthday and their biological mothers share a birthday

(Assume that no one among the 90 people is the biological mother of another one of the

90 people, nor do two of the 90 people have the same biological mother). You can use

365 ≈ 360, 89 ≈ 90, and ex ≈ 1 + x for |x| small. Verify your approximation result in R:

pbirthday(90, classes=365^2).

Let X be the number of pairs of people for which this coincidence happens. Let Ij be the

indicator r.v. for pair j, j ∈ {1, 2, . . . ,
(
90
2

)
}. By symmetry, linearity, and the fundamental

bridge, we have

E[X] =

(902 )∑
j=1

P (Ij = 1) =

(
90

2

)
· 1

3652
≈ 902

2 · 3602
=

1

32

A Poisson approximation for X makes sense since for each pair this coincidence is very

unlikely, but there are a lot of pairs, and the indicator r.v.s are approximately independent.

So X is approximately Pois(λ), where λ = E[X] = 1
32

by the property of Poisson. Then we

have

P (X ≥ 1) = 1− P (X = 0) ≈ 1− e−λ ≈ 1− (1− λ) = λ ≈ 1

32

4. Vilfredo would like to study a distribution where the support is (a,∞) and the PDF is

c/xb+1 for x > a, where a, b, c are constants with a > 0 and b > 2.

(a) Find c (in terms of a and b).

(b) Find the mean (in terms of a and b) of a random variable whose PDF is f .
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(c) Vilfredo wants to study this distribution via simulation. So he would like to generate

i.i.d. drawsX1, X2, . . . , Xn, for some large value of n, with eachXj having PDF f . But

he only has access to i.i.d. Unif(0, 1) random variables U1, U2, . . . , Un (by flipping n

fair coins, for example). Give a precise, easy-to-implement description of a procedure

that he can use to achieve his goal.

(a) By definition of PDF, we have ∫ ∞

a

c

xb+1
dx = 1

Therefore,
c

b
a−b = 1

We have c = bab.

(b) By definition of expectation, we have∫ ∞

a

bab

xb
dx =

bab

b− 1
a1−b =

ab

b− 1

(c) We know that ∫ k

a

c

xb+1
dx = bab

(
1

b
a−b − 1

b
k−b

)
= 1−

(a
k

)b

The CDF of Xj is

F (x) =

{
0, x ≤ a

1−
(
a
x

)b
, x > a

By universality of uniform, Vilfredo can use the i.i.d. draws U1, U2, . . . , Un to generate

Xj = F−1(Uj) = a(1− Uj)
− 1

b
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