
Gov 2001 Section 5, March 7, 2025

Conditional Expectation

1. Remember that conditional expectation E[Y |X] is a function of X. When confused, re-

member it is in essence an expression µ(x) = E[Y |X = x] for all possible x, and then we

replace X = x with X (this is just for simplicity of notation) to get µ(X) = E[Y |X].

2. E[Y |X] is the projection of Y on X, i.e., it minimizes mean squared error:

E[Y |X] = argmin
g(X)

E[(Y − g(X))2]

3. CEF error is orthogonal to every function of X, i.e., for all functions h, we have

E[(Y − E[Y |X])h(X)] = 0

A quick proof using the Law of iterated expectation and factoring out h(X):

E[(Y − E[Y |X])h(X)] = E[h(X)Y ]− E[E[Y |X]h(X)]

= E[E[h(X)Y |X]]− E[E[Y |X]h(X)]

= E[h(X)E[Y |X]]− E[E[Y |X]h(X)] = 0

4. Important properties of conditional expectation:

(a) If X ⊥ Y , we have E[Y |X] = E[Y ], E[XY ] = E[X]E[Y ].

(b) E[h(X)|X] = h(X). Notice that the result is still a function of X rather than an

expected value. E[h(X)Y |X] = h(X)E[Y |X] for all functions h.

(c) Linearity: E[cY |X] = cE[Y |X] for any constant c.

(d) Law of iterated expectation (Adam’s Law, law of total expectation): E[Y ] = E[E[Y |X]] =∫
x
E[Y |X = x]fX(x) dx = E[Y |B]P (B) + E[Y |Bc]P (Bc). With extra conditioning,

we have E[Y |Z] = E[E[Y |X,Z]|Z] =
∫
x
E[Y |X,Z]fX|Z(x|Z) dx.

5. Conditional variance Var(Y |X) is also a function of X, denote as σ2(X). We have

Var(Y |X) = E[(Y − E[Y |X])2|X] = E[Y 2|X]− (E[Y |X])2

which is repeatedly used in the proof of EVVE.

6. EVVE’s law: Var(Y |X) = E[Var(Y |X)] +Var(E[Y |X]). We can interpret it as the sum of

within-group variation and between-group variation.
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Example

You are approached by a mysterious stranger, who allows you to bid on a mystery box containing

a mystery prize! The value V of the prize is Uniform on [0, 1] (measured in millions of dollars).

You can choose to bid any amount b (in millions of dollars). If b ≥ 2V/3 then your bid is accepted

(and your payoff is V − b, value minus bid). Otherwise, the bid is rejected and nothing happens.

What is your optimal bid?

Solution: Let W be the payoff. If b < 2/3, we have by law of total expectation,

E[W ] = E[W |b ≥ 2V/3]P (b ≥ 2V/3) + E[W |b < 2V/3]P (b < 2V/3)

= E[V − b|b ≥ 2V/3]P (b ≥ 2V/3) + 0

= (E[V |V ≤ 3b/2]− b)P (V ≤ 3b/2)

=

(∫ 3b/2

0

2v

3b
dv − b

)(∫ 3b/2

0

1 dv

)
= (3b/4− b)(3b/2) = −3b2/8 ≤ 0

If b ≥ 2/3, we always have b ≥ 2V/3, and

E[W ] = E[V − b] =
1

2
− b ≤ −1

6

So the optimal bid is just 0.

Question 1

Suppose we want to model the relationship between legislation and politician quality. There are

two types of politician quality: high and low. When a high quality politician proposes a bill,

it has a probability p1 to pass; conversely, when a low quality politician proposes a bill, it has

a probability p2 to pass, where p1 > p2. Unfortunately, we cannot directly observe politicians’

quality, but instead rely on our prior that a politician is a high type with probability h and low

type with probability (1 − h), where h ∈ (0, 1). Let X be the number of passed bills after a

randomly picked politician has made n proposals.

(a) Find the marginal distribution of X.

(b) Find the mean and variance of X.

Solution to Question 1

(a) Marginal distribution of X. Let H denote the event that the politician is of high quality,

and L the event of low quality.

X | H ∼ Binomial(n, p1), X | L ∼ Binomial(n, p2).
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By the law of total probability and using the prior that the politician is high quality with

probability h,

P (X = k) = P (X = k | H)P (H) + P (X = k | L)P (L).

Hence, the marginal distribution is a mixture of two Binomial distributions:

P (X = k) = h

(
n

k

)
pk1(1− p1)

n−k + (1− h)

(
n

k

)
pk2(1− p2)

n−k, k = 0, 1, . . . , n.

(b) Mean and variance of X.

E[X] = E[E[X | type]] = hE[X | H] + (1− h)E[X | L].

Since X | H ∼ Binomial(n, p1) and X | L ∼ Binomial(n, p2),

E[X | H] = n p1, E[X | L] = n p2.

Therefore,

E[X] = hn p1 + (1− h)n p2 = n
[
h p1 + (1− h) p2

]
.

For the variance, use the law of total variance:

Var(X) = E[Var(X | type)] + Var(E[X | type]).

We know

Var(X | H) = n p1(1− p1), Var(X | L) = n p2(1− p2).

Hence,

E[Var(X | type)] = h
(
n p1(1− p1)

)
+ (1− h)

(
n p2(1− p2)

)
.

Also,

E[X | H] = n p1, E[X | L] = n p2.

So

Var(E[X | type]) = h (n p1)
2 + (1− h) (n p2)

2 −
(
n
[
h p1 + (1− h) p2

])2
.

Putting it all together gives the total variance:

Var(X) = hn p1(1−p1)+(1−h)n p2(1−p2)+h (n p1)
2+(1−h) (n p2)

2−
(
n
[
h p1+(1−h) p2

])2
.

You can leave it in this form or simplify it as needed.

!!!Notice: If you pick a new random politician each time for a new proposal, then we can do

X ∼ Bin(n, p1h+ p2(1− h)) and directly derive the mean and variance.

Question 2

We know from the definition of the variance that

E
[
(Y − E[Y ])2

]
= E[Y 2]− (E[Y ])2.

Prove that this equality still holds when we condition on X, i.e.,

E
[
(Y − E[Y | X])2 | X

]
= E[Y 2 | X] − (E[Y | X])2.
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Solution to Question 2

Recall that conditioning on X, we treat X as fixed while taking expectation with respect to Y .

By definition:

E
[
(Y − E[Y | X])2

∣∣X] = E
[
Y 2 − 2Y E[Y | X] +

(
E[Y | X]

)2 ∣∣∣X].
Since E[Y | X] is treated as a constant when conditioning on X,

= E[Y 2 | X]− 2E[Y | X]E[Y | X] +
(
E[Y | X]

)2
= E[Y 2 | X]−

(
E[Y | X]

)2
.

Hence,

E[(Y − E[Y | X])2 | X] = E[Y 2 | X] − (E[Y | X])2,

as required.

Question 3

Let X1, X2, . . . , Xn be i.i.d. random variables with mean µ and variance σ2, and n ≥ 2. A

bootstrap sample of X1, . . . , Xn is a sample of n random variables X∗
1 , . . . , X

∗
n formed from the

Xj by sampling with replacement with equal probabilities. Let X
∗
denote the sample mean of

the bootstrap sample:

X
∗
=

1

n

(
X∗

1 + · · ·+X∗
n

)
.

(a) Find E[X∗
j ] and Var(X∗

j ) for each j. (Hint: What is the distribution of X∗
j ?)

(b) Find E
[
X

∗ | X1, . . . , Xn

]
and Var

[
X

∗ | X1, . . . , Xn

]
. (Hint: Conditional on X1, . . . , Xn,

the X∗
j are independent, each putting probability 1/n at each of the points X1, . . . , Xn.)

(c) Find E
[
X

∗]
and Var

[
X

∗]
. (Hint: Recall that the sample variance 1

n−1

∑n
j=1(Xj − X)2 is

an unbiased estimator of the population variance σ2.)

Solution to Question 3

Let us denote the original sample asX1, . . . , Xn (i.i.d. with mean µ and variance σ2). A bootstrap

sample (X∗
1 , . . . , X

∗
n) is drawn with replacement from {X1, . . . , Xn}.

(a) Distribution of each X∗
j . Conditioned on X1, . . . , Xn, the random variable X∗

j is equally

likely to be any of X1, . . . , Xn, with probability 1/n each. Hence:

E[X∗
j | X1, . . . , Xn] =

1

n

n∑
i=1

Xi.

Unconditionally, this random variable still has expectation µ, but more precisely,

E[X∗
j ] = E

[
E[X∗

j | X1, . . . , Xn]
]
= E

[
1
n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[Xi] = µ.
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For the variance, again conditioning on X1, . . . , Xn:

Var(X∗
j | X1, . . . , Xn) =

1

n

n∑
i=1

(Xi −X)2 =
1

n

n∑
i=1

X2
i −

(
X
)2
.

By EVVE’s law, we have

Var(X∗
j ) = E[Var(X∗

j | X1, . . . , Xn)] + Var(E[X∗
j | X1, . . . , Xn])

=
1

n

n∑
i=1

E[X2
i ]− E[X̄2] + Var(X̄)

= E[X2
1 ]− (E[X1])

2

= Var(X1) = σ2

(b) Mean and variance of X
∗
conditional on X1, . . . , Xn. We have

X
∗
=

1

n

n∑
j=1

X∗
j .

Since, given X1, . . . , Xn, each X∗
j is an i.i.d. draw from the empirical distribution that places

mass 1/n on each Xi,

E
[
X

∗ | X1, . . . , Xn

]
=

1

n

n∑
j=1

E[X∗
j | X1, . . . , Xn] =

1

n

n∑
j=1

X = X.

Hence, conditional on the original sample, the mean of the bootstrap sample average is simply

X.

For the variance,

Var
(
X

∗ | X1, . . . , Xn

)
=

1

n2

n∑
j=1

Var(X∗
j | X1, . . . , Xn),

because the X∗
j are independent given X1, . . . , Xn. Each term Var(X∗

j | X1, . . . , Xn) is the same,

so

=
1

n2
nVar(X∗

1 | X1, . . . , Xn) =
1

n
Var(X∗

1 | X1, . . . , Xn).

Using the fact that, conditionally, X∗
1 takes the values X1, . . . , Xn each with probability 1/n:

Var(X∗
1 | X1, . . . , Xn) =

1

n

n∑
i=1

X2
i −

(
X
)2
.

Thus

Var
(
X

∗ | X1, . . . , Xn

)
=

1

n

[
1

n

n∑
i=1

X2
i −

(
X
)2]

.
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(c) Mean and variance of X
∗
unconditional. First, for the mean:

E
[
X

∗]
= E

[
E[X∗ | X1, . . . , Xn]

]
= E[X] = µ.

Next, for the variance, use the law of total variance:

Var
(
X

∗)
= E

[
Var(X

∗ | X1, . . . , Xn)
]
+ Var

(
E[X∗ | X1, . . . , Xn]

)
.

From part (b),

E[X∗ | X1, . . . , Xn] = X.

Hence

Var
(
E[X∗ | X1, . . . , Xn]

)
= Var(X) =

σ2

n
.

Also from part (b),

Var(X
∗ | X1, . . . , Xn) =

1

n

[ 1
n

n∑
i=1

X2
i − (X)2

]
.

Taking expectation over (X1, . . . , Xn) yields

E
[
Var(X

∗ | X1, . . . , Xn)
]
=

1

n
E
[ 1
n

n∑
i=1

X2
i −X

2
]
.

Observe that

E
[ 1
n

n∑
i=1

X2
i

]
= E[X2] = σ2 + µ2,

and

E[X2
] = Var(X) +

(
E[X]

)2
=

σ2

n
+ µ2.

Hence

E
[ 1
n

n∑
i=1

X2
i −X

2
]
= (σ2 + µ2)−

(σ2

n
+ µ2

)
= σ2 − σ2

n
= σ2

(
1− 1

n

)
.

Thus

E
[
Var(X

∗ | X1, . . . , Xn)
]
=

1

n
σ2

(
1− 1

n

)
=

σ2

n

(
1− 1

n

)
= σ2 n− 1

n2
.

Putting both pieces together for the total variance,

Var
(
X

∗)
= σ2 n− 1

n2
+

σ2

n
=

σ2(n− 1)

n2
+
σ2

n
=

σ2(n− 1)

n2
+
σ2n

n2
=

σ2
(
n− 1 + n

)
n2

=
σ2(2n− 1)

n2
.
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