
Gov 2001 Section 7, 2025

Review of Estimation

Prove/explain why the following statements are true, or give a counterexample if false:

1. There exists an estimator θ̂ for some parameter θ for which MSE(θ̂) = (Bias(θ̂))2.

2. If θ̂ is an unbiased estimator for θ, all other estimators for θ are biased.

3. The sample mean is an unbiased estimator under all models for which a mean exists.

4. The squared error loss of an estimator for its estimand L(θ, θ̂) = (θ̂ − θ)2 is an r.v.

Solutions:

1. True. Consider any constant estimator θ̂ = C. Because MSE is variance plus the squared

bias, and the variance of a constant is zero, the statement is true.

2. False. Consider 2 i.i.d. data points with mean µ. The first data point, the second data

point, and the sample mean are all unbiased estimators of the true mean. Note that the

sample mean has lower variance, and therefore lower MSE.

3. False. This is a bit of a trick question. A counterexample would be for i.i.d. normal data

with parameters µ and σ2, the sample mean is biased for σ2. Always specify your estimand!

With that said, the sample mean is an unbiased estimator for the mean, if it exists.

4. True. MSE, on the other hand, is the expectation of the squared error loss, yielding just a

number.

Important Inequalities

1. Markov’s inequality. Let X be a nonnegative rv such that E(X) exists. For any t > 0,

P (X ≥ t) ≤ E(X)

t
.

Proof: Consider 1{X ≥ t}. There are two cases X ≥ t and X < t. In either case, we have

1{X ≥ t} ≤ X

t
.

Taking expectation on both sides, we get the desired inequality.

2. Chebyshev’s inequality. Let X ∼ [µ, σ2]. We use this notation to express that r.v. X

has mean µ and variance σ2 (but it is not necessarily normal). For any t > 0,

P (|X − µ| ≥ t) ≤ σ2

t2
.

Proof: Let Z = (X − µ)/σ ∼ [0, 1]. So E(Z2) = 1. Then

P (|X − µ| ≥ t) = P

((
X − µ

σ

)2

≥ t2

σ2

)
= P

(
Z2 ≥ t2

σ2

)
≤ E(Z2)

t2/σ2
=

σ2

t2
.
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3. Cauchy-Schwartz inequality. If X, Y have finite variances, then

E|XY | ≤
√

E(X2)E(Y 2).

4. Jensen’s inequality. If g is a convex function such that E[g(X)] exists, then

E[g(X)] ≥ g(E[X]).

Convergence

1. Convergence in probability: Xn
p−→ X if for all ε > 0,

P (|Xn −X| ≥ ε)
n→∞−−−→ 0.

You can interpret |Xn−X| as the distance between two r.v.s, and |Xn−X| ≥ ε is the event

that Xn is outside the circle of which X is the center and ε is the radius. Convergence

in probability indicates that when you have more data (n goes to infinity), even for an

extremely small ε, it becomes very unlikely that Xn is outside the circle (the probability

goes to zero). In other words, Xn moves arbitrarily close to X. Notice that though in most

cases we use Xn
p−→ c for constant c, which implies that the variance vanishes when n → ∞,

Xn can also converge to a random variable. For example, let the sequence Xn = X + 1
n
Z,

where r.v. Z ∼ N (0, 1), independent of r.v. X. Then Xn
p−→ X.

Note: Convergence in probability can usually be proved by Markov’s inequality or Cheby-

shev’s inequality. For example, let Xi
i.i.d∼ [µ, σ2] for i = 1, . . . , n, and X̄n =

∑n
i=1Xi/n.

Then, for any ε > 0,

P (|X̄n − µ| > ε) ≤ Var(X̄n)

ε2
=

σ2

nε2
→ 0

2. Convergence in distribution: Xn
d−→ X if the CDF of Xn converges pointwise to the CDF

of X, i.e.,

lim
n→∞

FXn(u) = FX(u)

Notice that convergence in probability is stronger than convergence in distribution: Xn
p−→

X ⇒ Xn
d−→ X but Xn

d−→ X ⇏ Xn
p−→ X.

Example: Let Xn ∼ N (1/n, 1) for n ∈ N; and X ∼ N (0, 1), where X,X1, X2, . . . , Xn are

mutually independent. As always, denote the CDF of N (0, 1) by Φ(·). By the continuity

of Φ, we have

P(Xn ≤ x) = Φ(x− 1/n) → Φ(x) = P(X ≤ x).

So, Xn
d−→ X, which means their distributions are close for n large. However, it does not

mean that |Xn −X| is close to zero with high probability. Indeed, Xn ̸ p−→ X. Since Xn and

X are independent normal distribution, Xn −X ∼ N (1/n, 2). So for any fixed ε > 0,

P(|Xn −X| > ε) = 2

{
1− Φ

(
ε− 1/n√

2

)}
̸→ 0.
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3. Interpretation in estimation: usually, our statistic or estimator (remember: they are func-

tions of the data X1, . . . , Xn) is treated as a sequence, written as Tn. We are interested in

how they behave as we add a sufficiently large amount of data (n → ∞). For example, the

sample mean is X̄n = 1
n

∑n
i=1Xi, and this forms a sequence when n increases. Both modes

of convergence try to assert that “some sort of estimation error” is small:

(a) Xn
p−→ X tells that getting large error, i.e., |Xn −X| ≥ ε is unlikely.

(b) Xn
d−→ X tells that the error in the shape of x 7→ P (Xn ≤ x) relative to x 7→ P (X ≤ x)

is small.

Tools for Asymptotics

1. Weak Law of Large Numbers (WLLN): Let X1, · · · , Xn
i.i.d.∼ with mean µ (and variance

σ2). Let X̄n = 1
n

∑n
i=1Xi, then as n → ∞,

X̄n
p−→ µ

2. Central Limit Theorem (CLT): Let X1, · · · , Xn
i.i.d.∼ with mean µ and variance σ2. Let

X̄n = 1
n

∑n
i=1 Xi, then as n → ∞,

√
n

(
X̄n − µ

σ

)
d−→ N (0, 1) or

√
n
(
X̄n − µ

) d−→ N (0, σ2)

For n sufficiently large (often n ≈ 30 in practice), this implies X̄n ∼̇ N (µ, σ
2

n
). But notice

that in principle, you should not write

X̄n − µ
d−→ N (0, σ2/n)

It is technically incorrect because the right hand side still depends on n.

3. Slutsky’s theorem: If X1, X2, . . . and Y1, Y2, . . . are sequences of random variables, such

that

Xn
d−→ X and Yn

p−→ c (c a constant),

then

(a) Xn + Yn
d−→ X + c,

(b) XnYn
d−→ cX,

(c) if c ̸= 0, then Xn/Yn
d−→ X/c.

Important: In general, Xn
d−→ X, Yn

d−→ Y does NOT imply that Xn + Yn
d−→ X + Y

4. Continuous mapping theorem: If X1, X2, . . . are sequences of random variables and g is a

continuous function, then

(a) if Xn
d−→ X, then g(Xn)

d−→ g(X),
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(b) if Xn
p−→ X, then g(Xn)

p−→ g(X).

5. Delta method: Suppose that √
n(θ̂ − θ)

d−→ N (0, ω2)

as n → ∞ and g is a continuously differentiable function. Then as n → ∞,

√
n(g(θ̂)− g(θ))

d−→ N

(
0,

(
∂g(θ)

∂θ

)2

ω2

)

Example: If we have X̄n ∼̇ N (µ, σ
2

n
), then

g(X̄n) ∼̇ N
(
g(µ), (g′(µ))2

σ2

n

)

Consistency

An estimator T (Y ) = θ̂ is said to be consistent for the estimand θ if, as n → ∞, θ̂
p−→ θ∗, i.e.,

it converges in probability to the estimand’s true value. To prove consistency, there are several

approaches you may consider:

1. Mean Squared Error: A sufficient (but not necessary) condition for consistency of θ̂ for θ

is MSE(θ̂, θ) → 0.

2. LLN (sample mean): For i.i.d. Xi with finite expectation E(Xi) = µ, X̄
p−→ µ.

3. Continuous mapping theorem (function of sample mean): Suppose g is continuous, if Xn
p−→

µ, then g(Xn)
p−→ g(µ).

Interval Estimator

1. Definition: Let L(Y ) and U(Y ) be functions of the data Y such that L(y) ≤ U(y) for

all y. The random interval [L(Y ), U(Y )] is an interval estimator of a parameter θ if upon

observing Y = y, the inference L(y) ≤ θ ≤ U(y) is made.

Remark. Notice that frequentists treat the parameter θ as fixed. The randomness comes

from where the ends of the interval are positioned as a function of the observed data.

2. Coverage: The coverage probability of an interval estimator is the probability that the

true parameter lies within the interval, i.e.,

P(θ ∈ [L(Y ), U(Y )]).

Note that the coverage probability is a function of θ.

3. Confidence interval: An interval estimator with coverage probability at least 1 − α for

all possible values of θ is called a 100(1− α)% confidence interval (CI). We call 1− α the

level of CI, and call the half-width 0.5(U(Y )− L(Y )) the margin of error.

Remarks.
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• We often use α = 0.05 and work with 95% confidence intervals.

• Confidence intervals are widely misinterpreted. Do not interpret a 95% CI as there

being a 95% probability of a random θ being between two values. In this frequentist

setting, we treat θ as fixed, so we should say “the probability that the random interval

generated by repeated draws of the data contains the fixed θ∗ is 0.95.” In other words,

if we generate the n data points 100 times and construct the CI for each dataset, then

on average 95 of the CIs will contain the true θ∗.

• A 95% CI is not unique. We can choose between CIs based on the following criteria:

– Shortest expected width: minimize E(U(Y )− L(Y )).

– Equal-tailed: require that P(θ < U(Y )) = P(θ > L(Y )).

– Centered on estimator: the CI is [θ̂−C(Y ), θ̂+C(Y )], where θ̂ is some estimator

of θ.

4. Asymptotic confidence interval: [Ln, Un] such that

lim
n→∞

P(θ ∈ [Ln, Un]) = 1− α

To derive the asymptotic confidence interval of an estimator (particularly for those that

are constructed as the mean of data), use CLT and then calculate the upper and lower

bounds of the parameter θ, which should be the functions of θ̂.

θ̂ − θ

se(θ̂)

d−→ N (0, 1)

Since we know Φ(−1.96) = 1 − Φ(1.96) = 0.025, we get the symmetric 95% asymptotic

confidence interval:

P
(
θ̂ − 1.96 · se(θ̂) ≤ θ ≤ θ̂ + 1.96 · se(θ̂)

)
→ 0.95

Practice Questions

1. For X1, . . . , Xn
i.i.d.∼ N (µ, σ2) with both parameters unknown, show that sample variance

is unbiased and consistent for estimand σ2:

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

Solution:

5



(a) Unbiasedness: We have

E[S2] =
1

n− 1
E

(
n∑

i=1

X2
i − nX̄2

)

=
1

n− 1

(
n∑

i=1

E[X2
i ]− nE[X̄2]

)
=

1

n− 1

(
nE[X2

1 ]− nE[X̄2]
)

=
n

n− 1

(
E[X2

1 ]− E[X̄2]
)

=
n

n− 1

(
σ2 + µ2 −

(
σ2

n
+ µ2

))
=

n

n− 1

(
σ2 − σ2

n

)
=

n

n− 1
· n− 1

n
σ2

= σ2.

Alternatively, since Xi
i.i.d∼ N (µ, σ2), we know:

(n− 1)S2

σ2
∼ χ2

n−1 ⇒ E[S2] = σ2,

because the mean of χ2
n−1 is n− 1. Hence, S2 is unbiased.

(b) Consistency: Again, using the fact that

(n− 1)S2

σ2
∼ χ2

n−1,

By the definition of chi-square distribution, let Z1, . . . , Zn−1
i.i.d.∼ N (0, 1), then

∑n−1
i=1 Z2

i ∼
χ2
n−1. Let Yn−1 =

1
n−1

∑n−1
i=1 Z2

i . By WLLN, we know that Yn−1
p−→ E[Z2

1 ] = 0 + 1 = 1.

Therefore,

1

n− 1
· (n− 1)S2

σ2

p−→ 1 ⇒ S2

σ2

p−→ 1 ⇒ S2 p−→ σ2.

So S2 is a consistent estimator for σ2.

2. All probability distributions have moments, which are standard expressions that define its

shape in ways you’ve already heard of and other more nuanced ways (the variance, the skew,

kurtosis, etc.). Describing a population distribution (or empirical sample distribution) in

terms of its moments is really useful in social science (e.g., the skew of income in the U.S.

population is positive).

Specifically, the nth central moment of a random variable X is defined as E[(X −E[X])n],

but it is more common to work with the nth moment defined as E[Xn] (getting rid of the

E[X]n part).
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Suppose the random variable X for your population has the following first four moments:

E[X] =
1

2
, E[X2] =

1

2
, E[X3] =

3

4
, E[X4] =

3

2
.

Suppose you took an i.i.d. sample {X1, . . . , X20} of size 20 from this distribution. Let

T =
1

20
(X2

1 +X2
2 + · · ·+X2

20) = X̄2,

an estimator of the second moment.

(a) What are E[T ] and Var(T )? Be sure to explain why.

(b) Use CLT to approximate the probability that T ≤ 1. Leave your answer as a function

of standard normal CDF Φ.

Solution:

(a) Since T = 1
20

∑20
i=1X

2
i , and the Xi’s are i.i.d.,

E[T ] = E[X2] =
1

2
.

To compute the variance of T , we use:

Var(T ) =
1

202
· 20 · Var(X2) =

1

20
· Var(X2).

We compute:

Var(X2) = E[X4]− (E[X2])2 =
3

2
−
(
1

2

)2

=
3

2
− 1

4
=

5

4
.

So,

Var(T ) =
1

20
· 5
4
=

1

16
.

(b) By the Central Limit Theorem:

√
20(T − E[T ]) d−→ N (0,Var(X2)) = N

(
0,

5

4

)
.

We standardize T :

P(T ≤ 1) ≈ P

(
T − 1

2√
1/16

≤
1− 1

2

1/4

)
= P(Z ≤ 2),

where Z ∼ N (0, 1). So:

P(T ≤ 1) ≈ Φ(2) ≈ 0.9772.
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3. We have learned that if the variance of a sequence of random variables with finite mean

goes to zero as n → ∞, then the sequence will converge in probability to some value. But

this is a sufficient condition, not a necessary one.

To see this, consider the sequence of random variables Xn with the following probability

distribution:

Xn =

{
0 with probability 1− 1

n
,

n with probability 1
n
.

(a) Find E[Xn].

(b) Use the definition of convergence in probability to show that Xn
p−→ 0.

Solution:

(a) By definition of probability:

E[Xn] = 0 ·
(
1− 1

n

)
+ n · 1

n
= 1.

So the expected value is constant: E[Xn] = 1 for all n.

(b) We use the definition: for any ε > 0, we must show

P(|Xn − 0| > ε) → 0 as n → ∞.

Now observe:

P(|Xn| > ε) = P(Xn = n) =
1

n
.

Since 1
n
→ 0 as n → ∞, we conclude:

P(|Xn − 0| > ε) → 0 ⇒ Xn
p−→ 0.

Conclusion: Xn
p−→ 0, even though Var(Xn) = n2 · 1

n
− 12 = n− 1 → ∞, so variance

does not go to zero.

4. Let Xi
iid∼ Unif[a, a+1], for i = 1, 2, . . ., where 0 < a < ∞. What is the probability limit of

the arithmetic mean (AM), geometric mean (GM), and harmonic mean (HM):

An =
1

n

n∑
i=1

Xi, Gn =

(
n∏

i=1

Xi

)1/n

, Hn =
n∑n

i=1 1/Xi

.

Solution:

(a) (AM) Note that E(X1) = a+ 1/2 and Var(X1) < ∞. By LLN,

An
p−→ E(X1) = a+ 1/2.
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(b) (GM) Note that E(logXi) =
∫ a+1

a
log x dx = (a + 1) log(a + 1) − a log a − 1, and

Var(logXi) < ∞. By LLN,

logGn =
1

n

n∑
i=1

logXi
p−→ E(logX1) = log

[
(a+ 1)a+1

eaa

]
.

Note that t 7→ log t is continuous for t > 0. By the Continuous Mapping Theorem

(CMT),

Gn
p−→ (a+ 1)a+1

eaa
.

(c) (HM) Note that E(1/Xi) =
∫ a+1

a
1
x
dx = log(a + 1) − log a, and Var(1/Xi) < ∞. By

LLN,
1

Hn

=
1

n

n∑
i=1

1

Xi

p−→ E
(

1

X1

)
= log

(
a+ 1

a

)
.

Note that 1/t 7→ log t is continuous for t > 0. By CMT,

Hn
p−→ 1

log
(
a+1
a

) .
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