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Hypothesis Testing

1. For a parameter θ, the null and alternative hypotheses refer to a partition of parameter

space Θ into two disjoint parts Θ0 and Θ1, where Θ = Θ0 ∪Θ1. We write

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1

Note: We want to prove the alternative and reject the null.

2. One-sided vs. two-sided:

(a) One-sided: H0 : θ ≤ θ0 vs. H1 : θ > θ0 or H0 : θ ≥ θ0 vs. H1 : θ < θ0. In this case, Θ

is partitioned at a single point θ0.

(b) Two-sided: H0 : θ = θ0 vs. H1 : θ ̸= θ0. In this case, the null parameter space is a

single point, i.e., Θ0 = {θ0}.

3. We cannot observe true θ, so like in point estimation, we use the data or statistic to infer θ.

The rejection region R of a hypothesis test is a set of possible values of the data y, where

we reject H0 if y ∈ R and retain H0 if y /∈ R. Equivalently, to simplify the test, we can

define the rejection region in terms of a test statistic T (Y ), such that R = {y : T (y) > c} or

R = {y : T (y) < cL or T (y) > cU}, where c, cU , cL are called critical values. A hypothesis

testing procedure (or test) specifies which values of the data (or which values of the test

statistic, as a function of the data) lead to H0 being rejected or retained.

4. There are two types of errors in hypothesis testing:

• Type I error (False positive): θ ∈ Θ0, but y ∈ R

• Type II error (False negative): θ ∈ Θ1, but y /∈ R

We often care more about Type I error and try to construct hypothesis tests in a way that

controls the probability of Type I error occurring.

5. The power function of a test is defined as:

β(θ) = P (Y ∈ R | θ)

In words, this measures how likely we are to reject the null under a given value of θ. Usually,

we calculate P (Y ∈ R | θ ∈ Θ1), i.e., the probability that the test correctly rejects the null

hypothesis when the alternative hypothesis is true. We want to maximize the power. A

power analysis evaluates this function for different sample sizes to find the optimal n.

6. The size (or level) of a test is the maximum probability of Type I error occurring:

α = max
θ∈Θ0

β(θ) = max
θ∈Θ0

P (Y ∈ R | θ)
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To construct a hypothesis test that controls Type I error, we set some value of α (prior to

seeing the data, most frequently α = 0.05, but achieving a smaller α is always better), and

then define the rejection region R such that the (maximum) probability of Type I error

occurring is equal to α. We call this an α-sized test. We want to minimize the size.

7. Given data y, the p-value is the smallest α at which we can reject H0:

p(y) = min{α : T (y) ∈ Rα}

where Rα is the rejection region for a test with size α. For a certain level α, if p(y) < α,

we reject H0 at level α; otherwise, we do not reject. This is why we often use p-value as

an indicator of statistical significance in social science research.

Another interpretation of the p-value is the probability of observing more extreme data

(or the test statistic value) than the current y or T (y) if H0 is true. For example, let the

rejection region be Rα = {y : T (y) ≥ cα}, and by the definition of size α, we have

p(y) = min
T (y)∈Rα

α = min
T (y)≥cα

P (T (Y ) ≥ cα | θ ∈ Θ0) = P (T (Y ) ≥ T (y) | θ ∈ Θ0)

Note: The p-value is not the probability that H0 is true. Large p-values could mean either

(1) H0 is true, or (2) the test has low power.

8. To construct a hypothesis test, we need to specify both the null hypothesis (and alternative)

and the rejection region:

(a) Based on the scientific question, define the null and alternative hypotheses H0 and H1

(e.g. one-sided or two-sided) before observing the data.

(b) Choose a test statistic T (Y ) and find its distribution under the null, i.e. T (Y )|(θ = θ0).

(c) Determine the rejection region R = {y : T (y) > c} (I use a one-sided test as an

example; R can be in other forms). This is usually done by choosing c to obtain an

α-sized test, that is, controlling the Type I error rate such that

P (T (Y ) ∈ R | θ = θ0) = P (T (y) > c | θ = θ0) ≤ α.

Remarks:

• Choosing T (Y ) can be tricky. This is usually based on some estimator for the param-

eter θ and finding some pivot.

• Rejection region for a one-sided test: R = {y : T (y) > c} or R = {y : T (y) < c}; for
two-sided:

R = {y : T (y) < cL or T (y) > cU}.

• Can also use asymptotic distribution of T (Y ) under null if sample size n is large.
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Example: We toss a coin n times and observe the data Y = Y1, . . . , Yn. We assume a model

that the tosses are independent and identical trials where Yi | p ∼ Bern(p). Construct a

hypothesis test to determine whether the coin is fair.

Let the true probability of heads be p. Following the steps outlined above:

(a) We conduct a two-sided test: H0 : p = 1
2
vs. H1 : p ̸= 1

2
.

(b) A sensible approach is to look at how far is the average of the tosses from 0.5. So we

choose the test statistic T (y) = Ȳ . Since Yi | p ∼ Bern(p), we use the story of the

Binomial to get that

T (Y ) | p ∼ 1

n
Bin(n, p).

(c) We want to reject H0 if the average is too far from 0.5, so we define our rejection

region in the form

R = {y : T (y) < cL or T (y) > cU}.

Now, controlling for the Type I error rate at α, we find cL and cU by solving:

P (reject H0 | H0 true) = P

(
y ∈ R

∣∣∣∣ p =
1

2

)
= P

(
T (y) < cL or T (y) > cU

∣∣∣∣ p =
1

2

)
≤ α.

Concepts in hypothesis testing are very confusing. Don’t worry if you cannot remem-

ber or use them correctly for now. You can learn from examples or practice Qs.

Common Hypothesis Tests

1. z-test

• Construct the test statistic based on CLT and normal approximation/asymptotics.

Under H0, the test statistic is:

T (Y ) =
θ̂ − θ0
σ̂/

√
n
∼̇ N (0, 1)

where θ̂ is a consistent estimator for θ and σ̂ is a consistent estimator of the standard

deviation of
√
nθ̂.

2. t-test

• Suppose:

(a) θ̂ ∼ N (θ0, σ
2) under H0

(b) σ̂2 = s2(n− 1) ∼ σ2χ2(n− 1)

(c) θ̂ ⊥⊥ σ̂2 under H0

• Then the test statistic:

T (Y ) =
θ̂ − θ0

σ̂/
√
n− 1

∼ tn−1

where tn−1 is the student’s t-distribution with n− 1 degrees of freedom.
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• Remarks:

– The normality θ̂ ∼ N (θ0, σ
2) is true for finite sample size n, not asymptotically.

Therefore, t-tests (if applicable) are common for small sample size.

– The independence condition is necessary!

– Common settings: normal observations testing mean µ (σ̂2 is the sample variance),

Linear regression model with test on intercept, coefficients, conditional mean, i.e.,

E[Y |X = x], or new response (σ̂2 is the unbiased estimator for variance of error

ϵ), etc.

Constructing Confidence Intervals by Inverting Hypothesis Tests

Suppose that for each θ ∈ Θ we have a hypothesis test of H0 : θ = θ0 versus H1 : θ ̸= θ0
with Type I error equal to α. For each of these hypothesis tests, denote the complement of the

rejection region Rc
θ0,α

(recall this is a set of y values). Then the set

CY,α = {θ : Y ∈ Rc
θ,α}

is a 100(1− α)% confidence region for the unknown θ.

• Hypothesis tests correspond one-to-one with confidence intervals.

• If a CI contains θ0 then we would not reject in the corresponding hypothesis test.

• If we do not reject H0 : θ = θ0 then the corresponding CI contains θ0.

Practice Questions

1. A welfare policy is applied to a group of n people to counter job loss caused by trade shocks,

resulting in X1, . . . , Xn which are i.i.d. N (θ, 1), where θ is the theoretical mean effect of

the remedy (e.g., the logged wage difference between new and old jobs), defined so that

θ > 0 if the remedy is helpful on average, θ < 0 if it is harmful on average, and θ = 0 if it

does nothing. Let our Type I error rate be α = 0.05. Consider testing H0 : θ = 0 versus

H1 : θ ̸= 0. Let the rejection region be

R = {x : |θ̂PI | > c},

where θ̂PI is the plug-in estimator of θ.

(a) What is θ̂PI , the plug-in estimator of θ? Your answer should be a function of the data

X1, X2, . . . , Xn. Also, under the null, what is the distribution of the estimator? (Hint:

Under the null means that we assume that θ = 0.)

(b) Find c so that the test has Type I error rate (i.e., size) α. (Note that c will depend

on the sample size, n.) (Hint: Type I error rate α should be equal to P (|θ̂PI | > c).)
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(c) Find the power of the test, β(θ), for θ > 0. (Hint: This question follows almost the

same procedure as parts (a) and (b), except for (1) we don’t assume that the null is

true and (2) the power function is defined as a conditional probability given θ.)

(d) Prove that the power β(θ) → 1 as n → ∞ (Hint: Use the result from part (c).)

(e) Suppose now that n = 104 and we observe x̄ = 0.02. What is the p-value? Does the

test say to reject or retain H0? (Hint: The critical value is the one obtained in part

(b), i.e., under the null.)

Solutions:

(a) The plug-in estimator θ̂PI is the sample mean:

θ̂PI = X̄ =
1

n

n∑
i=1

Xi.

Since Xi
iid∼ N (θ, 1), by the properties of normal distribution, we have:

X̄ ∼ N (θ, 1
n
).

Under the null hypothesis H0 : θ = 0, it follows that:

X̄ ∼ N (0, 1
n
).

(b) We want:

P(|X̄| > c | H0) = α.

Under H0, X̄ ∼ N (0, 1
n
). So, by symmetry of normal,

P(|X̄| > c) = 2 · P(X̄ > c) = α.

Standardizing:

P
(

X̄

1/
√
n
> c

√
n

)
= P(Z > c

√
n) = 1− Φ(c

√
n) =

α

2
, Z ∼ N (0, 1)

Thus,

c =
z1−α/2√

n
,

where z1−α/2 is the standard normal critical value. For α = 0.05, z0.975 ≈ 1.96, so

c =
1.96√
n
.

(c) Under the alternative Xi ∼ N (θ, 1), so X̄ ∼ N (θ, 1
n
).

The power is the probability of rejecting the null when θ ̸= 0, i.e.:

β(θ) = P(|X̄| > c | θ).
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Standardizing (notice that the distribution of X̄ is no longer symmetric to 0):

β(θ) = P
(
X̄ < −c | θ

)
+ P

(
X̄ > c | θ

)
= P

(
Z <

−c− θ

1/
√
n

)
+ P

(
Z >

c− θ

1/
√
n

)
,

where Z ∼ N (0, 1). Simplified:

β(θ) = Φ
(√

n(−c− θ)
)
+ 1− Φ

(√
n(c− θ)

)
.

(d) As n → ∞, c = 1.96√
n
→ 0. So for fixed θ > 0, we have

√
n(−c− θ) → −∞,

√
n(c− θ) → −∞

And the difference is 2
√
nc = 3.92, which is negligible in relation to infinity. Since Φ

is continuous, we have

β(θ) = Φ
(√

n(−c− θ)
)
+ 1− Φ

(√
n(c− θ)

)
→ 0 + 1 = 1.

This proves that power goes to 1 as n → ∞.

(e) From part (b), for n = 104, we have:

c =
1.96√
104

=
1.96

100
= 0.0196.

Given x̄ = 0.02, we compare it directly to the rejection region R = {x̄ : |x̄| > 0.0196}.
Since:

|x̄| = 0.02 > 0.0196 = c,

We conclude that the result falls in the rejection region. Therefore, we reject H0.

Optionally, to compute the p-value:

T =
0.02

1/
√
10000

=
0.02

0.01
= 2,

p = 2(1− Φ(2)) ≈ 2(1− 0.9772) = 0.0456.

Since p < α = 0.05, we reject the null hypothesis.

2. Suppose X1, . . . , Xn
iid∼ N (µ, σ2) with µ = 0 known and σ2 unknown.

Consider the test:

H0 : σ
2 ≤ 1 vs. H1 : σ

2 > 1.

Adopt the level α = 0.05.

(a) First, let’s use T1(X) =
√
nX̄ as the test statistic. Find the distribution of T1 under

σ2 = 1. Construct a test based on rejection region R1 = {x : T1(x) > c1}. Can you

comment on the power of the test intuitively?

(b) One way to improve the test in (a) is to construct a test based on R2 = {x : T 2
1 (x) >

c2}. Find the critical value c2.

6



(c) Find the distribution of another test statistic T3 =
∑n

i=1X
2
i under σ2 = 1 and con-

struct a test based on it.

(d) Compare the three tests. Derive their corresponding power functions and compare

the power curves based on n = 10, 100, 1000.

Solutions:

(a) Under the null, with σ2 = 1:

T1 ∼ N (0, 1).

The Type I error:

P (T1 ∈ R1 | σ2 = 1) = 1− Φ(c1) = α,

where Φ is the CDF for the standard Normal. So c1 = Φ−1(1− α) = Φ−1(0.95).

The power should not be very high because under H1, when σ2 is large, there is high

probability to observe very negative T1 but still not reject H0 by the test.

(b) Under the null, with σ2 = 1:

T 2
1 ∼ χ2(1).

The Type I error:

P (T 2
1 ∈ R2 | σ2 = 1) = 1− Fχ2(1)(c2) = α,

where Fχ2(1) is the CDF for χ2(1). So c2 = F−1
χ2(1)(0.95), the 95% quantile of χ2(1).

(c) With σ2 = 1:

T3 =
n∑

i=1

X2
i ∼ χ2(n).

Let the rejection region be R3 = {x : T3(x) > c3}. To achieve size α, choose:

c3 = F−1
χ2(n)(0.95),

where F−1
χ2(n) is the quantile function of χ2(n).

(d) Power functions:

• T1 ∼ N (0, σ2), so

β1(σ
2) = P (T1 > c1 | σ2) = P

(
T1

σ
>

c1
σ

)
= 1− Φ

(c1
σ

)
.

• T 2
1 /σ

2 ∼ χ2(1), so

β2(σ
2) = P (T 2

1 > c2 | σ2) = P

(
T 2
1

σ2
>

c2
σ2

)
= 1− Fχ2(1)

( c2
σ2

)
.

• T3/σ
2 ∼ χ2(n), so

β3(σ
2) = P (T3 > c3 | σ2) = P

(
T3

σ2
>

c3
σ2

)
= 1− Fχ2(n)

( c3
σ2

)
.
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library(ggplot2)

library(reshape2)

alpha <- 0.05

n.all <- c(10, 100, 1000)

for(n in n.all){

sigma2.seq <- seq (0.01, 4, length.out = 101)

c1 <- qnorm (1 - alpha)

beta1 <- 1 - pnorm(c1 / sqrt(sigma2.seq))

c2 <- qchisq (1 - alpha , 1)

beta2 <- 1 - pchisq(c2 / sigma2.seq , 1)

c3 <- qchisq (1 - alpha , n)

beta3 <- 1 - pchisq(c3 / sigma2.seq , n)

df.power <- data.frame(sigma2 = sigma2.seq , beta1 = beta1 , beta2 =

beta2 , beta3 = beta3)

df.power <- melt(df.power , id.vars = "sigma2")

g.power <- ggplot(data = df.power , aes(x = sigma2 , y = value , color =

variable)) +

geom_line () +

geom_hline(yintercept = 0.05, linetype = 2) +

geom_vline(xintercept = 1, linetype = 2) +

ggtitle(paste0("n=", n))

print(g.power)

}
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