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Regression (Predictive): Defining β

1. Goal: Study (estimate) the relationship between a covariate (or predictor variables) X =

{X1, X2, . . . , XK} and an outcome variable Y . This week, we only discuss how to properly

derive our estimand and do not care about the estimator.

2. We would like to know the predicted outcome (expected value of the outcome) given the

predictors with value X = x. It is thus in the form of a CEF:

µ(x) = E[Y |X = x]

For discrete X, we only need to estimate parameters µ(x) for each possible x, and an easy

way is to use subclassification, constructing a plug-in estimator:

ˆµ(x) =

∑n
i=1 Yi1(Xi = x)∑n
i=1 1(Xi = x)

This is the average of outcomes when X = x.

3. However, if X is continuous, subclassification will not work, as we need an infinite number

of parameters. We can limit our focus and study the linear relations between the predictors

and outcome, assuming that the CEF follows a simple linear function:

µ(x) = E[Y |X = x] = x′β = β1x1 + β2x2 + . . . βkxK

We often add an intercept for mathematical necessity. Intuitively, the outcome may not be

0 if all x1, . . . , xk are set to 0. In coding, this is sometimes called the “bias-merging trick”:

For example, we have a two-dimensional covariate data x = (x1, x2). We add an x0 = 1 in

the first position of the data, making it (1, x1, x2). Then we will have

µ(x) = β0 + β1x1 + β2x2 + · · ·+ βkxK

Now, we only need to estimate β, with k + 1 estimands. Denote the estimator as β̂, and
ˆµ(x) = x′β̂ is the fitted regression. We will discuss how to construct β̂ in detail next week.

4. The true value of outcome Y almost always differs from the conditional expectation, re-

gardless of the model we use. We can write Y = µ(X) + U(x) = E[Y |X = x] + ε, where ε

is the regression error (see the last section), or Y = x′β+ ϵ, where ϵ is the projection error

(residual, see the next section). Notice that in general ε ̸= ϵ.

Regression (Descriptive): Deriving β

1. To derive the exact form of β, we can interpret the regression in another way. Suppose we

are interested in the relationship between two r.v.s X, Y (X is now set to one-dimensional
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for simplicity), and the theoretical regression coefficient β1 can be perceived as a summary

(or description) of this joint distribution, defined as

βY∼X =
Cov(Y,X)

Var(X)

One way to show this is to find the β1 that minimizes the expected difference between Y

and β0 + β1X, so that the latter is the best linear mimic of Y . We are solving:

(β0, β1) = arg min
(a,b∈R2)

E[(Y − a− bX)2]

One important theorem here is that we can differentiate under the integral sign (DUThIS):

d

dt

(∫ b

a

f(x, t) dx

)
=

∫ b

a

∂

∂t
f(x, t) dx

Recall that expectation is essentially an integral
∫ ∫

(y − a − bx)2f(x, y) dx dy, where the

joint PDF f(x, y) is clearly free of a, b, so we can directly apply DUThIS to take derivatives

and get the minimal expected difference (let it be D):

∂D

∂a
= −2E[(Y − a− bX)] = 0,

∂D

∂b
= −2E[X(Y − a− bX)] = 0

And β0 = a∗, β1 = b∗. Reorganize, we get

β0 = E[Y ]− β1E[X]

Plug in back to a∗, we have

E[XY − E[X]E[Y ] + β1E[X]E[X]− β1E[X2]] = 0

Reorganize, it is just

(E[XY ]− E[X]E[Y ]) = (E[X2]− (E[X])2)β1

So we get βY∼X = β1 =
Cov(Y,X)
Var(X)

. If we center (X, Y ) to (X̃ = X − E[X], Ỹ = Y − E[Y ])

so that they have mean zero, then we have

βỸ∼X̃ =
E[X̃Ỹ ]

E[X̃2]

The linear regression can also be written as

µ(x) = E[Y ] + βY∼X(x− E[X])

We also call it the linear projection of Y on X at X = x. It is the best linear function of

x for approximating Y .
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2. To estimate βY∼X with data (X1:n, Y1:n), we can simply use a plug-in estimator:

β̂1 =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2

We will discuss its properties next week.

3. Now consider the generalized case for a K-dimensional X (Note: the intercept term is now

included as the first term X1). We solve

β = arg min
b∈Rk

E[(Y −X′b)2]

For this one, we apply matrix calculus conclusions:

dx⊤a

dx
=

da⊤x

dx
= a,

dx⊤x

dx
= 2x

We use the chain rule (similar to the scalar case) and by DUThIS:

∂

∂b
E[(Y −X′b)2] = 2E

[
(Y −X′b)

∂

∂b
(Y −X′b)

]
= −2E[(Y −X′b)X]

= −2E[XY −XX′b] = 0

Therefore, we have

β =
E[XY ]

E[XX′]

We can thus write the linear projection as

µ(X) = X′(E[XX′])−1E[XY ]

4. The projection error (residual) of a regression is the difference between the true value and

its predicted (fitted) value:

ϵ = Y −X′β

Important property of projection error :

E[Xϵ] = E[X(Y −X′β)]

= E[XY ]− E[XX′]β

= E[XY ]− E[XX′](E[XX′])−1E[XY ]

= E[XY ]− E[XY ] = 0

So for all j ∈ {1, 2, . . . , K}, we have E[Xjϵ] = 0. When including the intercept term X1 = 1

in the regression, we have E[ϵ] = E[X1ϵ] = 0. Then the projection error is uncorrelated

with covariates:

Cov(X, ϵ) = E[Xϵ]− E[X]E[ϵ] = 0− 0 = 0
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Interpretation of Regression Coefficients

1. Simple linear case: µ(x1:K) = β0 +
∑K

j=1 βKxK . We have for any j ∈ {1, . . . , K},

βj = µ(x1, . . . , xj + 1, . . . , xk)− µ(x1, . . . , xj, . . . , xk)

Interpretation: the change in the predicted outcome for increasing Xj by one unit.

2. Polynomial regression: for simplification, consider covariates (x1, x2) with quadratic term

x2
1. We have

µ(x1, x2) = β0 + β1x1 + β2x
2
1 + β3x2

∂µ

∂x1

= β1 + 2β2x1

β1 or β2 alone cannot capture x1’s contribution to the outcome. The slope of the predicted

outcome to x1 is now β1 + 2β2x1, so it depends on x1. Therefore, β2 > 0 implies that the

relationship is convex, i.e., the effect of x1 increases as x1 grows; β2 < 0 implies that the

relationship is concave, i.e., the effect of x1 decreases as x1 grows.

3. Interaction term: for simplification, consider covariates (x1, x2) with interaction term x1x2.

We have

µ(x1, x2, x3) = β0 + β1x1 + β2x2 + β3x1x2

∂µ

∂x1

= β1 + β3x2,
∂µ

∂x2

= β2 + β3x1

Therefore, β3 > 0 means that the marginal effect of one of (x1, x2) on the predicted outcome

increases as the other grows (they amplify each others’ effects); β3 < 0 means that the

marginal effect of one of (x1, x2) on the predicted outcome decreases as the other grows

(they dampen each others’ effects).

Omitted Variable Bias

1. Omitted variable bias occurs when the model to estimate E[Y |X = x] is incorrectly spec-

ified. Intuitively, let Z be an unobserved variable that also explains Y , so that the true

relationship between X, Y, Z is Y = X′β+θZ+U . Z causes bias when it is also correlated

with X, and let their true relationship be Z = X′γ + V . Therefore, the true relationship

between X and Y is Y = X′(β + θγ) + θV + U . So when we fit ˆµ(X) = X′β̂, β̂ is an

unbiased estimator of β + θγ rather than β.

2. One consequence of omitted variable bias is that the projection error’s conditional expec-

tation is non-zero:

E[ϵ|X] = E[Y −X′β|X] = E[θZ + U |X] = θE[Z|X]

which equals to 0 only when Z ⊥ X. Notice that even though the projection and covariates

have zero covariance, they are not necessarily independent.
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3. In many situations, we may need to choose whether to include a variable in a regression, so

it can be helpful to understand how this choice might affect the population coefficients on

the other variables in the regression. Suppose we have a variable Zi that we may add to our

regression, which currently has Xi as the covariates. We can write the original regression

as µY∼X(Xi) = X′
iδ and the new projection as µY∼X,Z(Xi, Zi) = X′

iβ+Ziγ. By projection

we have

δ = (E[XiX
′
i])

−1 E[XiYi].

Let ϵi = Yi−µY∼X,Z(Xi, Zi) be the projection errors from the long regression, we can plug

in and rewrite this as

δ = (E[XiX
′
i])

−1 E[Xi(X
′
iβ + Ziγ + ϵi)]

= (E[XiX
′
i])

−1
(E[XiX

′
i]β + E[XiZi]γ + E[Xiϵi])

= β + (E[XiX
′
i])

−1 E[XiZi]γ

Note that the vector in the second term is the vector of linear projection coefficients of a

population linear regression of Zi on the Xi. If we call these coefficients π, then the short

coefficients are

δ = β + πγ.

We can rewrite this to show that the difference between the coefficients in these two pro-

jections is

δ − β = πγ

or the product of the coefficient on the “excluded” Zi and the coefficient of the included

Xi on the excluded.

4. We introduce Partitioned Regression in general (you will learn more about this in the Frisch-

Waugh-Lovell theorem). With a regression of an outcome on two covariates, understanding

how the coefficients of one variable relate to the other is helpful. Consider the following

best linear projection:

(α, β, γ) = arg min
(a,b,c)∈R3

E
[
(Yi − (a+ bXi + cZi))

2
]

From the above results, we know that the intercept has a simple form:

α = E[Yi]− βE[Xi]− γE[Zi].

Let’s investigate the first order condition for β:

0 = E[YiXi]− αE[Xi]− βE[X2
i ]− γE[XiZi]

= E[YiXi]− E[Yi]E[Xi] + βE[Xi]
2 + γE[Xi]E[Zi]− βE[X2

i ]− γE[XiZi]

= Cov(Yi, Xi)− βV[Xi]− γCov(Xi, Zi)

We can see from this that if Cov(Xi, Zi) = 0, then the coefficient on Xi will be the same

as in the simple regression case, Cov(Yi, Xi)/Var(Xi). When Xi and Zi are uncorrelated,
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we call them orthogonal. To write a simple formula for β when the covariates are not

orthogonal, we orthogonalize Xi by obtaining the prediction errors from a population

linear regression of Xi on Zi:

X̃i = Xi − (δ0 + δ1Zi) where (δ0, δ1) = arg min
(d0,d1)∈R2

E
[
(Xi − (d0 + d1Zi))

2
]

Given the properties of projection errors, we know Cov(X̃i, Zi) = E[X̃iZi] = 0. This time,

we can project Yi ∼ X̃i, and

βYi∼X̃i
= Cov(Yi, X̃i)/Var(X̃i)

You can substitute Xi = X̃i+(δ0+ δ1Zi) into the original regression and verify that βYi∼X̃i

is the same as the coefficient β in multivariate regression. With X, this holds for all Xk.

Regression Error and R2 (Optional)

1. Regression Error : The difference between random and predicted outcome given predictors,

U(x) = Y − E[Y |X = x] = Y − µ(x)

It almost always exists and is the part of Y that cannot be explained by X, even if we knew

the true conditional expectation of Y given X. Sometimes we call µ(x) the “signal term”

and U(x) the “noise term”.

Note: Both the residual (projection error) and regression error are random variables. But

we can observe and calculate the residual in real life, using the crystallized data (X, Y ) =

(x, y), whereas the regression error is a theoretical noise that can never be observed.

Properties of the regression error (writing it for X random):

• E[U(X)|X = x] = E[Y |X = x]− E[E[Y |X = x]] = 0.

• By law of iterated expectation, E[U(X)] = E[E[U(X)|X = x]] = 0.

• For each j ∈ {1, . . . , K},

Cov(U(X), Xj) = E[XjU(X)] = E[E[XjU(X)|X]] = E[XjE[U(X)|X]] = E[0Xj] = 0

Note: The above properties are always true for the regression error but not necessarily for

the projection error (particularly when there is omitted variable bias).

2. R2 Statistic: By EVVE, we have

Var(Y ) = Var(µ(X)) + Var(U(X))

We can decompose variation in outcome to variation in prediction (1st term) and variation

in random noise (2nd term). We thereby define

R2 =
Var(µ(X))

Var(Y )
= 1− Var(U(X))

Var(Y )

to be the proportion of variation in Y that is accounted for by total variation in prediction.

Hence, R2 is between 0 and 1, and having an R2 statistic closer to 1 means less variation in

outcome is due to random noise, which means that the model can explain our data better.
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