10: Hypothesis Testing and Confidence Intervals

Naijia Liu

Spring 2025

Gov 2001

Interval estimation - what and why?

- $\hat{\tau} = \overline{Y}_n \overline{X}_n$ is our best guess about $\tau = \mu_y \mu_x$
- But $\mathbb{P}(\hat{\tau} = \tau) = 0!$
- Alternative: produce a range of plausible values instead of one number.

► Hopefully will increase the chance that we've captured the truth.

• We can use the distribution of estimators to derive these intervals.

Definitions

- Interval estimator of θ is an interval between two statistics C = [L, U].
 - $L = L(X_1, ..., X_n)$ and $U = U(X_1, ..., X_n)$ are functions of the data.
 - An estimator just like \overline{X}_n but with two values.
 - ▶ Goal: to infer that C covers or contains the true value.
- Coverage probability of C = [L, U] is the probability that C covers the true value θ .
- In math, $\mathbb{P}(L \leq \theta \leq U) = \mathbb{P}(\theta \in C)$
- Important: interval is the random quantity, not the parameter.

What is a confidence interval?

Definition

A $1 - \alpha$ confidence interval for a population parameter θ is an interval estimator C = (L, U) with coverage probability $1 - \alpha$.

- The random interval $(L,\,U)$ will contain the truth $1-\alpha$ of the time.
- Ideally, we'd want a 100% confidence interval, but usually not possible.
- Extremely useful way to represent our uncertainty about our estimate.
 - Shows a range of plausible values given the data.

Simple confidence intervals

- Estimator $\hat{\theta}$ for θ with estimated standard error $\hat{se}[\hat{\theta}]$.
- Quick-and-dirty 95% confidence interval:

$$C = \left[\hat{\theta} - 2\widehat{\mathsf{se}}(\hat{\theta}), \ \hat{\theta} + 2\widehat{\mathsf{se}}(\hat{\theta})\right]$$

• More formal, normal-based $1 - \alpha$ confidence interval:

$$C = \left[\hat{\theta} - z_{1-\alpha/2}\widehat{\mathsf{se}}(\hat{\theta}), \ \hat{\theta} + z_{1-\alpha/2}\widehat{\mathsf{se}}(\hat{\theta})\right]$$

• $z_{1-\alpha/2}$ is the $1-\alpha/2$ quantile of the standard normal.

• Student-t-based $1 - \alpha$ confidence interval:

$$C = \left[\hat{\theta} - q_{1-\alpha/2}\widehat{\mathsf{se}}(\hat{\theta}), \ \hat{\theta} + q_{1-\alpha/2}\widehat{\mathsf{se}}(\hat{\theta})\right]$$

• $q_{1-\alpha/2}$ is the $1-\alpha/2$ quantile of the student t with df = r.

Deriving confidence intervals

- How do we know the coverage of these confidence intervals?
- Sample mean: \overline{X}_n with X_i i.i.d. $\mathcal{N}(\mu, \sigma^2)$ with $\widehat{se} = s/\sqrt{n}$.

$$T = \frac{\overline{X}_n - \mu}{s/\sqrt{n}} \sim t_{n-1}$$

- T is a **pivotal quantity**: distribution doesn't depend on θ .
- If $q_{1-\alpha/2}$ is the $1-\alpha/2$ quantile of the t_{n-1} , we have

$$\mathbb{P}\left(-q_{1-\alpha/2} \le \frac{\overline{X}_n - \mu}{s/\sqrt{n}} \le q_{1-\alpha/2}\right) = 1 - \alpha$$

Finding the critical values

- How do we figure out what $q_{1-\alpha/2}$ will be?
- Intuitively, we want the q values that puts $\alpha/2$ in each of the tails.

$$\mathbb{P}(q_{\alpha/2} \le T \le q_{1-\alpha/2}) = 1 - \alpha$$

- Because t is symmetric, we have $q_{\alpha/2} = -q_{1-\alpha/2}$
- ▶ If G(t) is the c.d.f. of *T*, then we have $q_{1-\alpha/2} = G^{-1}(1-\alpha/2)$

Deriving the interval

• Let's work backwards to derive the confidence interval:

$$1 - \alpha = \mathbb{P}\left(-q_{1-\alpha/2} \le \frac{\overline{X}_n - \mu}{s/\sqrt{n}} \le q_{1-\alpha/2}\right)$$
$$= \mathbb{P}\left(-q_{1-\alpha/2} \times \frac{s}{\sqrt{n}} \le \overline{X}_n - \mu \le q_{1-\alpha/2} \times \frac{s}{\sqrt{n}}\right)$$
$$= \mathbb{P}\left(-\overline{X}_n - q_{1-\alpha/2} \times \frac{s}{\sqrt{n}} \le -\mu \le -\overline{X}_n + q_{1-\alpha/2} \times \frac{s}{\sqrt{n}}\right)$$
$$= \mathbb{P}\left(\overline{X}_n - q_{1-\alpha/2} \times \frac{s}{\sqrt{n}} \le \mu \le \overline{X}_n + q_{1-\alpha/2} \times \frac{s}{\sqrt{n}}\right)$$

• Lower bound: $\overline{X}_n - q_{1-\alpha/2} s / \sqrt{n}$

• Upper bound: $\overline{X}_n + q_{1-\alpha/2} s/\sqrt{n}$

▶ For 95% confidence interval with n = 100, $q_{1-\alpha/2} = 1.98$

Bounds are random! Not μ!

Gov 2001

Asymptotic confidence intervals

• What about the $1 - \alpha$ normal confidence interval:

$$C = \left[\hat{\theta} - z_{1-\alpha/2}\widehat{\mathsf{se}}(\hat{\theta}), \ \hat{\theta} + z_{1-\alpha/2}\widehat{\mathsf{se}}(\hat{\theta})\right]$$

• Asymptotically valid if our estimator is asymptotically normal so that:

$$\frac{\hat{\theta}_n - \theta}{\widehat{\mathsf{se}}(\hat{\theta})} \stackrel{d}{\to} \mathcal{N}(0, 1)$$

• Then as $n \to \infty$

$$\mathbb{P}\left(-z_{1-\alpha/2} \leq \frac{\hat{\theta}_n - \theta}{\widehat{\mathsf{se}}(\hat{\theta})} \leq z_{1-\alpha/2}\right) = \mathbb{P}(\theta \in C) \to 1 - \alpha$$

• Again,
$$z_{1-lpha/2}=\Phi^{-1}(1-lpha/2)$$
 (qnorm in R)

Interpreting the confidence interval

- **Caution:** a common **incorrect** interpretation of a confidence interval:
 - "I calculated a 95% confidence interval of [0.05, 0.13], which means that there is a 95% chance that the true difference in means is in that interval."
 - This is WRONG.
- The true value of the population mean, μ , is **fixed**.
 - It is either in the interval or it isn't—there's no room for probability at all.
- The randomness is in the interval: $\overline{X}_n \pm 1.96 \times s/\sqrt{n}$
- Correct interpretation: across 95% of random samples, the constructed confidence interval will contain the true value.

Simulations

Simulations

Inverting a hypothesis test

- 95% confidence interval: $\overline{X}_n \pm 1.96 \times s/\sqrt{n}$
- Cl/Test duality: A 1α confidence interval contains all null hypotheses that we would not reject with a α -level test.
- Test of the null $H_0: \mu=\mu_0$ at size α and reject when $|\mathit{T}|>z_{1-\alpha/2}$ where

$$T = \frac{\overline{X}_n - \mu_0}{s/\sqrt{n}}$$

• Reject when $\mu_0 > \overline{X}_n + z_{1-\alpha/2} \, s/\sqrt{n}$ or $\mu_0 < \overline{X}_n - z_{1-\alpha/2} \, s/\sqrt{n}$

 $\blacktriangleright \; \rightsquigarrow \;$ reject any null outside the 95% confidence interval at size $\alpha = 0.05$

• Cls are a range of plausible values in the sense we cannot reject them as null hypotheses.