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Where are we? Where are we going?

• Learned about estimation and inference in general.
• Now: building to a specific estimator, least squares regression.
• First we need to understand what a “linear model” is and

when/why we need it.
▶ No estimators quite yet. First, let’s understand what we are

estimating.
• Linear model is ubiquitous but poorly understood. Lots of

subtlety here.

Gov 2001 2 / 30



Regression derivatives and partial effects

• Goal of regression: how mean of Y changes with X.
• µ(x) = E[Y | X = x]
• For continuous regressors, we can use the partial derivative:

∂µ(x1, . . . , xk)

∂x1

• For binary X1, we can use the difference in conditional
expectations:

µ(1, x2, . . . , xk)− µ(0, x2, . . . , xk)

• “Partial effect” of X1 holding other included variables constant
• Exact form will depend on the functional form of µ(x).

▶ How do we decide what form µ(x) should take?
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Estimating the CEF for discrete covariates

• To motivate function form, useful to think about estimation.
• How do we estimate µ(x) = E[Y | X = x] for binary X?
• Subclassification: calculate sample averages with levels of Xi:

µ̂(1) =
1

n1

n∑
i=1

YiXi

▶ n1 =
∑n

i=1 Xi is the number of units with Xi = 1 in the sample.
• More generally for any discrete Xi:

µ̂(x) =
∑N

i=1 YiI(Xi = x)∑N
i=1 I(Xi = x)
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Continuous covariates

• What if X is continuous? Subclassification fall apart.
▶ Each i has a unique value:

∑N
i=1 I(Xi = x) = 1

▶ Very noisy estimates
▶ What about any x not in the sample?

• Stratification: bin Xi into categories and treat like as discrete.
▶ Every x in the same bin gets the same conditional expectation.
▶ Depends on arbitrary bin cutoffs/sizes.

• Example:
▶ Personal data science: You wear an activity tracker and have a

smart scale.
▶ Relationship between your weight and active minutes in the

previous day.
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Continuous covariate example
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Continuous covariate CEF: interpolation
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Continuous covariate CEF: stratification
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Continuous covariate CEF: stratification
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Linear CEFs

• Statification requires lots of choices/hidden assumptions.
▶ Number of categories, cutoffs for the categories, constant means

within strata, etc.
• Alternative: assuming that the CEF is linear:

µ(x) = E[Yi | Xi = x] = β0 + β1x

• Intercept, β0: the condition expectation of Yi when Xi = 0

• Slope, β1: change in the CEF of Yi given a one-unit change in Xi

Gov 2001 10 / 30



Why is linearity an assumption?

• Example: Yi is income, Xi is years of education.
▶ β0: average income among people with 0 years of education.
▶ β1: expected difference in income between two adults that differ

by 1 year of education.
• Why is linearity an assumption?

E[Yi | Xi = 12]− E[Yi | Xi = 11]

= E[Yi | Xi = 16]− E[Yi | Xi = 15]

= β1

• Effect of HS degree is the same as the effect of college degree.
• Put another way: average partial effects are constant ∂µ(x)

∂x = β1
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Linear CEF with nonlinear effects

• What if we think the effect is nonlinear?
• We can include nonlinear transformations:

µ(x) = β0 + xβ1 + x2β2

▶ Partial effect now varies: ∂µ(x)/∂x = β1 + 2xβ2

• Linear means linear in the parameters β = (β1, . . . , βk), not X.
• We can also include interactions between covariates:

µ(x1, x2) = β0 + x1β1 + x2β2 + x1x2β3

▶ Average partial effect of X1 depends on X2:
∂µ(x1, x2)/∂x1 = β1 + x2β3
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Linear CEF with a binary covariate

• Wait-times (Yi) and race (Xi = 1 for white, Xi = 0 for POC)
▶ Two possible values of the CEF: µ1 for whites and µ0 for POC.

• Can write the CEF as follows:

µ(x) = xµ1 + (1− x)µ0 = µ0 + x(µ1 − µ0) = β0 + xβ1

• No assumptions, just rewriting! Interpretations:
▶ β0 = µ0: expected wait-time for POC
▶ β1 = µ1 − µ0: diff. in avg. wait times between whites and POC.

• > 2 categories: dummies for all but category and everything is
linear.
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Linear CEF with multiple binary covariates
• What if we have two binary covariates, X1 (race) and X2 (1

urban/0 rural):

µ(x1, x2) =


µ00 if x1 = 0 and x2 = 0 (POC, rural)
µ10 if x1 = 1 and x2 = 0 (white, rural)
µ01 if x1 = 0 and x2 = 1 (POC, urban)
µ11 if x1 = 1 and x2 = 1 (white, urban)

• Can rewrite this without assumptions as a linear CEF with
interaction:

µ(x1, x2) = β0 + x1β1 + x2β2 + x1x2β3
• Interpretations:

▶ β0 = µ00: average wait times for rural POC.
▶ β1 = µ10 − µ00: diff. in means for rural whites vs rural POC.
▶ β2 = µ01 − µ00: diff. in means for urban POC vs rural POC.
▶ β3 = (µ11 − µ01)− (µ10 − µ00): diff. in urban racial diff. vs rural

racial diff.
• Generalizes to p binary variables if all interactions included

(saturated)
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Linear approximation
• Outside of saturated discrete settings, CEF almost never truly

linear.
• Alternative goal: find best linear predictor of Y given X.
• Formally, linear function of X that minimizes squared

prediction errors:

(β0, β1) = arg min
(b0,b1)

E[(Y − (b0 + b1X))2]

• m(x) = β0 + β1X is called the linear projection of Y onto X.
▶ β1 = Cov(X,Y)/V[X]

▶ β0 = µY − µXβ1, where µY = E[Y] and µX = E[X]

• In general, m(x) distinct from the CEF:
▶ CEF, µ(x) is the best predictor of Yi among all functions.
▶ Linear projection is best predictor among linear functions.
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Linear approximation
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Linear approximation
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Linear approximation
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Best linear predictor
• We’ll almost always condition on a vector X = (X1, . . . ,Xk)

′:

m(x) = m(x1, . . . , xk) = x1β1 + · · ·+ xkβk = x′β

▶ Linear predictor when X = x
• X is now a k × 1 random vector of covariates:

▶ May contain nonlinear transformations/interactions of “real”
variables.

▶ Typically, X1 = 1 and is the intercept/constant.
• Assumptions (“Regularity conditions”):

1. E[Y2] < ∞ (outcome has finite mean/variance)
2. E[∥X∥2] < ∞ (X has finite means/variances/covariances)
3. QXX = E[XX′] is positive definite (columns of X are linearly

independent)
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Linear Projection

• How to find β? Minimize squared prediction error!

β = arg min
b∈Rk

E
[
(Y − X′b)2

]
• After some calculus:

β = Q−1
XXQXY = (E[XX′])−1E[XY]

▶ E[XX′] is k × k and E[XY] is k × 1

• Notes about the m(x) = x′β:
▶ β is a population quantity and possible quantity of interest.
▶ Well-defined under very mild assumptions!
▶ Not necessarily a conditional mean nor a causal effect!
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Projection errors

• Projection error: e = Y − X′β

• Decomposition of Y into the linear projection and error:
Y = X′β + e

• Properties of the projection error:
▶ E[Xe] = 0

▶ E[e] = 0 when X contains a constant.
▶ Together, implies Cov(Xj, e) = 0 for all j = 1, . . . , k

• Distinct from CEF errors: u = Y − µ(X) which had the additional
property: E[u | X] = 0

▶ Zero conditional mean is stronger: CEF errors are 0 at every value
of X

▶ E[Xe] = 0 just says they are uncorrelated.
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Regression coefficients

• Sometimes useful to separate the constant:

Y = β0 + X′β + e

• where X doesn’t have a constant.
• Solution for β more interpretable here:

β = V[X]−1Cov(X,Y), β0 = µY − µ′
Xβ
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Interpretation of the coefficients
• Interpretation of βj depends on what nonlinearities are included.
• Simplest case: no polynomials or interactions.
• βj is the average change in predicted outcome for a one-unit

change in Xj holding other variables fixed.
• Let’s compare:
•

m(x1 + 1, x2) = β0 + β1(x1 + 1) + β2x2
m(x1, x2) = β0 + β1x1 + β2x2,

• Then:

m(x1 + 1, x2)− m(x1, x2) = β1

• Holds for all values of x2 and even if we add more variables.
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Interpretation with nonlinear terms
• What if we include a nonlinear function of one covariate?

m(x1, x21, x2) = β0 + β1x1 + β2x21 + β3x2,
• One-unit change in x1 is more complicated:

m(x1 + 1, (x1 + 1)2, x2) = β0 + β1(x1 + 1) + β2(x1 + 1)2 + β3x2
m(x1, x21, x2) = β0 + β1x1 + β2x21 + β3x2,

• Better to think of the marginal effect of Xi1:
∂m(x1, x21, x2)

∂x1
= β1 + 2β2x1

• Interpretations:
▶ β1: “effect” of Xi1 on predicted Yi when Xi1 = 0 (holding Xi2

fixed)
▶ β2/2: how that “effect” changes as Xi1 changes
▶ Maybe better to visualize than to interpret
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Interpretation with interactions
• What if we include an interaction between two covariates?

m(x1, x2, x1x2) = β0 + β1x1 + β2x2 + β3x1x2

• Two different marginal effects of interest:

∂m(x1, x2, x1x2)
∂x1

= β1 + β3x2,

∂m(x1, x2, x1x2)
∂x2

= β2 + β3x1

• Interpretations:
▶ β1: the marginal effect of Xi1 on predicted Yi when Xi2 = 0.
▶ β2: the marginal effect of Xi2 on predicted Yi when Xi1 = 0.
▶ β3: the change in the marginal effect of Xi1 due to a one-unit

change in Xi2 or the change in the marginal effect of Xi2 due to a
one-unit change in Xi1.
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Partitioned Regression

(α, β, γ) = arg min
(a,b,c)∈R3

E
[
(Yi − (a + bXi + cZi))

2
]

• Can we get an expression for just β? With some tricks, yes!
• Population residuals from projection of Xi on Zi:

X̃i = Xi − (δ0 + δ1Zi)

where (δ0, δ1) = arg min
(d0,d1)∈R2

E[(Xi − (d0 + d1Zi))
2]

▶ X̃i is now orthogonal to Zi so that cov(X̃i,Zi) = E[X̃iZi] = 0

• Project Y onto these residuals gives β as coefficient:

β =
cov(Yi, X̃i)

V[X̃i]

▶ Helps with interpretation: connects multivariate regression
coefficients to simple regression coefficients.

▶ The relationship captured by β is between the outcome and the
variation in Xi not linearly explained by Zi
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Partition regression more generally

• More general linear projection coefficients:

β = (E[XX′])−1E[XY]

• Let Xi,−k be the set of covariates without entry k.
• Now define X̃ik = Xik − mk(Xi,−k)

▶ mk(Xi,−k) is the BLP of Xik on Xi,−k

• Generic coefficient βk is:

βk =
cov(Yi, X̃ik)

V[X̃ik]
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Omitted variable bias
• Consider two projections/regressions with and without some Z:

m(Xi,Zi) = X′
iβ + Ziγ,

m−Z(Xi) = X′
iδ,

• How do β and δ relate? Use law of iterated projections:

δ = (E[XiX′
i])

−1E[XiYi]

= (E[XiX′
i])

−1E[Xi(X′
iβ + Ziγ + ei)]

= (E[XiX′
i])

−1(E[XiX′
i]β + E[XiZi]γ + E[Xiei])

= β + (E[XiX′
i])

−1E[XiZi]γ

• Leads to the “omitted variable bias” formula:

δ = β + πγ, π = (E[XiX′
i])

−1E[XiZi]

• δ − β = πγ is the “bias” but this is misleading.
▶ β not necessarily “correct,” we’re just relating two projections
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Best linear approximation

• What is the relationship between m(X) and µ(X) = E[Y | X]?
▶ If µ(X) is linear, then µ(X) = m(X) = X′β.
▶ But µ(X) could be nonlinear, what then?

• Linear projection justification: best linear approximation to µ(X):

β = arg min
b∈Rk

E
[
(µ(X)− X′b)2

]
• Linear projection is best linear approximation to Y and E[Y | X].
• Limitations:

▶ If nonlinearity of µ(X) is severe, m(X) can only be so good.
▶ m(X) can be sensitive to the marginal distribution of X.
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Recap

Y = X′β + e

• “The Linear Model”: is this an assumption?
• Depends on what we assume about the error, e

▶ If E[e | X] = 0, then we are assuming the CEF is linear,
E[Y | X] = X′β

▶ If just E[Xe] = 0, then this is just a linear projection.
▶ First is very strong, second is very mild.

• Why do we care? Affects the properties of OLS.
▶ Some finite-sample properties of OLS (unbiasedness) require linear

CEF
▶ Asymptotic results (consistency, asymptotic normality) apply to

both.
▶ OLS will consistently estimate something, but maybe not what you

want.
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