11: Regression

Naijia Liu

Spring 2025

Gov 2001 1 / 30

Where are we? Where are we going?

- Learned about estimation and inference in general.
- Now: building to a specific estimator, least squares regression.
- First we need to understand what a "linear model" is and when/why we need it.
 - ► No estimators quite yet. First, let's understand what we are estimating.
- Linear model is ubiquitous but poorly understood. Lots of subtlety here.

Gov 2001 2 / 30

Regression derivatives and partial effects

- ullet Goal of regression: how mean of Y changes with X.
- $\mu(x) = \mathbb{E}[Y \mid \mathbf{X} = x]$
- For continuous regressors, we can use the partial derivative:

$$\frac{\partial \mu(x_1,\ldots,x_k)}{\partial x_1}$$

• For binary X_1 , we can use the difference in conditional expectations:

$$\mu(1, x_2, \ldots, x_k) - \mu(0, x_2, \ldots, x_k)$$

- "Partial effect" of X_1 holding other included variables constant
- Exact form will depend on the functional form of $\mu(x)$.
 - ▶ How do we decide what form $\mu(x)$ should take?

Gov 2001 3 / 30

Estimating the CEF for discrete covariates

- To motivate function form, useful to think about estimation.
- How do we estimate $\mu(x) = \mathbb{E}[Y \mid X = x]$ for binary X?
- **Subclassification**: calculate sample averages with levels of X_i :

$$\hat{\mu}(1) = \frac{1}{n_1} \sum_{i=1}^{n} Y_i X_i$$

- ▶ $n_1 = \sum_{i=1}^n X_i$ is the number of units with $X_i = 1$ in the sample.
- More generally for any discrete X_i :

$$\hat{\mu}(x) = \frac{\sum_{i=1}^{N} Y_i \mathbb{I}(X_i = x)}{\sum_{i=1}^{N} \mathbb{I}(X_i = x)}$$

Gov 2001 4 / 30

Continuous covariates

- What if *X* is continuous? Subclassification fall apart.
 - ► Each *i* has a unique value: $\sum_{i=1}^{N} \mathbb{I}(X_i = x) = 1$
 - ► Very noisy estimates
 - ► What about any *x* not in the sample?
- **Stratification**: bin X_i into categories and treat like as discrete.
 - ightharpoonup Every x in the same bin gets the same conditional expectation.
 - ▶ Depends on arbitrary bin cutoffs/sizes.
- Example:
 - Personal data science: You wear an activity tracker and have a smart scale.
 - ► Relationship between your weight and active minutes in the previous day.

Gov 2001 5 / 30

Continuous covariate example

Gov 2001 6 / 30

Continuous covariate CEF: interpolation

Gov 2001 7 / 30

Continuous covariate CEF: stratification

Gov 2001 8 / 30

Continuous covariate CEF: stratification

Gov 2001 9 / 30

Linear CEFs

- Statification requires lots of choices/hidden assumptions.
 - ► Number of categories, cutoffs for the categories, constant means within strata, etc.
- Alternative: assuming that the CEF is **linear**:

$$\mu(x) = \mathbb{E}[Y_i \mid X_i = x] = \beta_0 + \beta_1 x$$

- Intercept, β_0 : the condition expectation of Y_i when $X_i = 0$
- ullet Slope, eta_1 : change in the CEF of Y_i given a one-unit change in X_i

Gov 2001 10 / 30

Why is linearity an assumption?

- Example: Y_i is income, X_i is years of education.
 - \triangleright β_0 : average income among people with 0 years of education.
 - \blacktriangleright β_1 : expected difference in income between two adults that differ by 1 year of education.
- Why is linearity an assumption?

$$\mathbb{E}[Y_i \mid X_i = 12] - \mathbb{E}[Y_i \mid X_i = 11]$$

$$= \mathbb{E}[Y_i \mid X_i = 16] - \mathbb{E}[Y_i \mid X_i = 15]$$

$$= \beta_1$$

- Effect of HS degree is the same as the effect of college degree.
- ullet Put another way: average partial effects are constant $rac{\partial \mu(x)}{\partial x}=eta_1$

Gov 2001 11 / 30

Linear CEF with nonlinear effects

- What if we think the effect is nonlinear?
- We can include nonlinear transformations:

$$\mu(x) = \beta_0 + x\beta_1 + x^2\beta_2$$

- ▶ Partial effect now varies: $\partial \mu(x)/\partial x = \beta_1 + 2x\beta_2$
- **Linear** means linear in the parameters $\beta = (\beta_1, \dots, \beta_k)$, not **X**.
- We can also include **interactions** between covariates:

$$\mu(x_1, x_2) = \beta_0 + x_1\beta_1 + x_2\beta_2 + x_1x_2\beta_3$$

Average partial effect of X_1 depends on X_2 : $\partial \mu(x_1, x_2)/\partial x_1 = \beta_1 + x_2\beta_3$

Gov 2001 12 / 30

Linear CEF with a binary covariate

- Wait-times (Y_i) and race $(X_i = 1 \text{ for white, } X_i = 0 \text{ for POC})$
 - ▶ Two possible values of the CEF: μ_1 for whites and μ_0 for POC.
- Can write the CEF as follows:

$$\mu(x) = x\mu_1 + (1-x)\mu_0 = \mu_0 + x(\mu_1 - \mu_0) = \beta_0 + x\beta_1$$

- No assumptions, just rewriting! Interpretations:
 - \triangleright $\beta_0 = \mu_0$: expected wait-time for POC
 - $ightharpoonup eta_1 = \mu_1 \mu_0$: diff. in avg. wait times between whites and POC.
- ullet > 2 categories: dummies for all but category and everything is linear.

Gov 2001 13 / 30

Linear CEF with multiple binary covariates

• What if we have two binary covariates, X_1 (race) and X_2 (1 urban/0 rural):

$$\mu(x_1,x_2) = \begin{cases} \mu_{00} & \text{if } x_1 = 0 \text{ and } x_2 = 0 \text{ (POC, rural)} \\ \mu_{10} & \text{if } x_1 = 1 \text{ and } x_2 = 0 \text{ (white, rural)} \\ \mu_{01} & \text{if } x_1 = 0 \text{ and } x_2 = 1 \text{ (POC, urban)} \\ \mu_{11} & \text{if } x_1 = 1 \text{ and } x_2 = 1 \text{ (white, urban)} \end{cases}$$

 Can rewrite this without assumptions as a linear CEF with interaction:

$$\mu(x_1, x_2) = \beta_0 + x_1\beta_1 + x_2\beta_2 + x_1x_2\beta_3$$

- Interpretations:
 - $\beta_0 = \mu_{00}$: average wait times for rural POC.
 - \blacktriangleright $\beta_1 = \mu_{10} \mu_{00}$: diff. in means for rural whites vs rural POC.
 - \blacktriangleright $\beta_2 = \mu_{01} \mu_{00}$: diff. in means for urban POC vs rural POC.
 - $\beta_3 = (\mu_{11} \mu_{01}) (\mu_{10} \mu_{00})$: diff. in urban racial diff. vs rural racial diff.
- Generalizes to p binary variables if all interactions included (saturated)

Gov 2001 14 / 30

- Outside of saturated discrete settings, CEF almost never truly linear.
- Alternative goal: find **best linear predictor** of Y given X.
- Formally, linear function of X that minimizes squared prediction errors:

$$(\beta_0, \beta_1) = \arg\min_{(b_0, b_1)} \mathbb{E}[(Y - (b_0 + b_1 X))^2]$$

- $m(x) = \beta_0 + \beta_1 X$ is called the **linear projection** of Y onto X.

 - lacksquare $eta_0 = \mu_Y \mu_X eta_1$, where $\mu_Y = \mathbb{E}[Y]$ and $\mu_X = \mathbb{E}[X]$
- In general, m(x) distinct from the CEF:
 - \triangleright CEF, $\mu(x)$ is the best predictor of Y_i among all functions.
 - ► Linear projection is best predictor among linear functions.

Gov 2001 15 / 30

Gov 2001 16 / 30

Gov 2001 17 / 30

Gov 2001 18 / 30

Best linear predictor

• We'll almost always condition on a vector $\mathbf{X} = (X_1, \dots, X_k)'$:

$$m(x) = m(x_1, \ldots, x_k) = x_1\beta_1 + \cdots + x_k\beta_k = \mathbf{x}'\boldsymbol{\beta}$$

- ightharpoonup Linear predictor when $\mathbf{X} = \mathbf{x}$
- **X** is now a $k \times 1$ random vector of covariates:
 - May contain nonlinear transformations/interactions of "real" variables.
 - ▶ Typically, $X_1 = 1$ and is the intercept/constant.
- Assumptions ("Regularity conditions"):
 - 1. $\mathbb{E}[Y^2] < \infty$ (outcome has finite mean/variance)
 - 2. $\mathbb{E}[\|\mathbf{X}\|^2] < \infty$ (X has finite means/variances/covariances)
 - 3. $\mathbf{Q}_{XX} = \mathbb{E}[\mathbf{X}\mathbf{X}']$ is positive definite (columns of \mathbf{X} are linearly independent)

Gov 2001 19 / 30

Linear Projection

• How to find β ? Minimize squared prediction error!

$$\boldsymbol{\beta} = \arg\min_{\mathbf{b} \in \mathbb{R}^k} \mathbb{E}\left[(Y - \mathbf{X}'\mathbf{b})^2 \right]$$

After some calculus:

$$\boldsymbol{\beta} = \mathbf{Q}_{XX}^{-1} \mathbf{Q}_{XY} = (\mathbb{E}[\mathbf{X}\mathbf{X}'])^{-1} \mathbb{E}[\mathbf{X}Y]$$

- $ightharpoonup \mathbb{E}[\mathbf{X}\mathbf{X}']$ is $k \times k$ and $\mathbb{E}[\mathbf{X}\ Y]$ is $k \times 1$
- Notes about the $m(x) = \mathbf{x}'\boldsymbol{\beta}$:
 - \triangleright β is a population quantity and possible quantity of interest.
 - ► Well-defined under very mild assumptions!
 - ▶ Not necessarily a conditional mean nor a causal effect!

Gov 2001 20 / 30

Projection errors

- Projection error: $e = Y X'\beta$
- Decomposition of Y into the linear projection and error: $Y = \mathbf{X}'\boldsymbol{\beta} + e$
- Properties of the projection error:
 - $ightharpoonup \mathbb{E}[\mathbf{X}e] = 0$
 - ▶ $\mathbb{E}[e] = 0$ when **X** contains a constant.
 - ▶ Together, implies $Cov(X_i, e) = 0$ for all j = 1, ..., k
- Distinct from CEF errors: $u=Y-\mu(\mathbf{X})$ which had the additional property: $\mathbb{E}[u\mid\mathbf{X}]=0$
 - lacktriangle Zero conditional mean is stronger: CEF errors are 0 at every value of ${f X}$
 - $ightharpoonup \mathbb{E}[\mathbf{X}e] = 0$ just says they are uncorrelated.

Gov 2001 21 / 30

Regression coefficients

• Sometimes useful to separate the constant:

$$Y = \beta_0 + \mathbf{X}'\boldsymbol{\beta} + e$$

- where X doesn't have a constant.
- Solution for β more interpretable here:

$$\boldsymbol{\beta} = \mathbb{V}[\mathbf{X}]^{-1} \mathsf{Cov}(\mathbf{X}, Y), \qquad \beta_0 = \mu_Y - \boldsymbol{\mu}_X' \boldsymbol{\beta}$$

Gov 2001 22 / 30

Interpretation of the coefficients

- Interpretation of β_i depends on what nonlinearities are included.
- Simplest case: no polynomials or interactions.
- β_j is the average change in predicted outcome for a one-unit change in X_i holding other variables fixed.
- Let's compare:

•

$$m(x_1 + 1, x_2) = \beta_0 + \beta_1(x_1 + 1) + \beta_2 x_2$$

$$m(x_1, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2,$$

• Then:

$$m(x_1 + 1, x_2) - m(x_1, x_2) = \beta_1$$

ullet Holds for all values of x_2 and even if we add more variables.

Interpretation with nonlinear terms

What if we include a nonlinear function of one covariate?

$$m(x_1, x_1^2, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \beta_3 x_2,$$

• One-unit change in x_1 is more complicated:

$$m(x_1 + 1, (x_1 + 1)^2, x_2) = \beta_0 + \beta_1(x_1 + 1) + \beta_2(x_1 + 1)^2 + \beta_3 x_2$$

$$m(x_1, x_1^2, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \beta_3 x_2,$$

• Better to think of the **marginal effect** of X_{i1} :

$$\frac{\partial m(x_1, x_1^2, x_2)}{\partial x_1} = \beta_1 + 2\beta_2 x_1$$

- Interpretations:
 - \blacktriangleright β_1 : "effect" of X_{i1} on predicted Y_i when $X_{i1}=0$ (holding X_{i2} fixed)
 - $ightharpoonup eta_2/2$: how that "effect" changes as X_{i1} changes
 - Maybe better to visualize than to interpret

Gov 2001 24 / 30

Interpretation with interactions

• What if we include an interaction between two covariates?

$$m(x_1, x_2, x_1x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

• Two different marginal effects of interest:

$$\frac{\partial m(x_1, x_2, x_1 x_2)}{\partial x_1} = \beta_1 + \beta_3 x_2,
\frac{\partial m(x_1, x_2, x_1 x_2)}{\partial x_2} = \beta_2 + \beta_3 x_1$$

- Interpretations:
 - ▶ β_1 : the marginal effect of X_{i1} on predicted Y_i when $X_{i2} = 0$.
 - \blacktriangleright β_2 : the marginal effect of X_{i2} on predicted Y_i when $X_{i1}=0$.
 - \triangleright β_3 : the change in the marginal effect of X_{i1} due to a one-unit change in X_{i2} or the change in the marginal effect of X_{i2} due to a one-unit change in X_{i1} .

Gov 2001 25 / 30

Partitioned Regression

$$(\alpha, \beta, \gamma) = \arg\min_{(a,b,c) \in \mathbb{R}^3} \mathbb{E}\left[(Y_i - (a + bX_i + cZ_i))^2 \right]$$

- Can we get an expression for just β ? With some tricks, yes!
- Population residuals from projection of X_i on Z_i :

$$\begin{split} \widetilde{X}_i &= X_i - (\delta_0 + \delta_1 Z_i) \\ \text{where} \quad (\delta_0, \delta_1) &= \arg \min_{(d_0, d_1) \in \mathbb{R}^2} \mathbb{E}[(X_i - (d_0 + d_1 Z_i))^2] \end{split}$$

- $lacksymbol{\widetilde{X}}_i$ is now **orthogonal** to Z_i so that $\operatorname{cov}(\widetilde{X}_i,Z_i)=\mathbb{E}[\widetilde{X}_iZ_i]=0$
- Project Y onto these residuals gives β as coefficient:

$$\beta = \frac{\operatorname{cov}(Y_i, \widetilde{X}_i)}{\mathbb{V}[\widetilde{X}_i]}$$

- ► Helps with interpretation: connects multivariate regression coefficients to simple regression coefficients.
- ▶ The relationship captured by β is between the outcome and the variation in X_i not linearly explained by Z_i

Gov 2001 26 / 30

Partition regression more generally

More general linear projection coefficients:

$$\boldsymbol{\beta} = (\mathbb{E}[\mathbf{X}\mathbf{X}'])^{-1}\mathbb{E}[\mathbf{X}Y]$$

- Let $\mathbf{X}_{i,-k}$ be the set of covariates without entry k.
- Now define $\widetilde{X}_{ik} = X_{ik} m_k(\mathbf{X}_{i,-k})$
 - \blacktriangleright $m_k(\mathbf{X}_{i,-k})$ is the BLP of X_{ik} on $\mathbf{X}_{i,-k}$
- Generic coefficient β_k is:

$$\beta_k = \frac{\operatorname{cov}(Y_i, \widetilde{X}_{ik})}{\mathbb{V}[\widetilde{X}_{ik}]}$$

Gov 2001 27 / 30

Omitted variable bias

• Consider two projections/regressions with and without some Z:

$$m(\mathbf{X}_i, Z_i) = \mathbf{X}_i' \boldsymbol{\beta} + Z_i \gamma,$$

$$m_{-Z}(\mathbf{X}_i) = \mathbf{X}_i' \boldsymbol{\delta},$$

• How do β and δ relate? Use law of iterated projections:

$$\begin{split} \boldsymbol{\delta} &= (\mathbb{E}[\mathbf{X}_{i}\mathbf{X}_{i}'])^{-1}\mathbb{E}[\mathbf{X}_{i}Y_{i}] \\ &= (\mathbb{E}[\mathbf{X}_{i}\mathbf{X}_{i}'])^{-1}\mathbb{E}[\mathbf{X}_{i}(\mathbf{X}_{i}'\boldsymbol{\beta} + Z_{i}\gamma + e_{i})] \\ &= (\mathbb{E}[\mathbf{X}_{i}\mathbf{X}_{i}'])^{-1}(\mathbb{E}[\mathbf{X}_{i}\mathbf{X}_{i}']\boldsymbol{\beta} + \mathbb{E}[\mathbf{X}_{i}Z_{i}]\gamma + \mathbb{E}[\mathbf{X}_{i}e_{i}]) \\ &= \boldsymbol{\beta} + (\mathbb{E}[\mathbf{X}_{i}\mathbf{X}_{i}'])^{-1}\mathbb{E}[\mathbf{X}_{i}Z_{i}]\gamma \end{split}$$

• Leads to the "omitted variable bias" formula:

$$\boldsymbol{\delta} = \boldsymbol{\beta} + \boldsymbol{\pi} \gamma, \quad \boldsymbol{\pi} = (\mathbb{E}[\mathbf{X}_i \mathbf{X}_i'])^{-1} \mathbb{E}[\mathbf{X}_i Z_i]$$

• $\delta - \beta = \pi \gamma$ is the "bias" but this is misleading.

 \triangleright β not necessarily "correct," we're just relating two projections

Gov 2001 28 / 30

Best linear approximation

- What is the relationship between $m(\mathbf{X})$ and $\mu(\mathbf{X}) = \mathbb{E}[Y \mid \mathbf{X}]$?
 - If $\mu(\mathbf{X})$ is linear, then $\mu(\mathbf{X}) = m(\mathbf{X}) = \mathbf{X}'\boldsymbol{\beta}$.
 - ▶ But $\mu(\mathbf{X})$ could be nonlinear, what then?
- Linear projection justification: best linear approximation to $\mu(\mathbf{X})$:

$$\boldsymbol{\beta} = \arg\min_{\mathbf{b} \in \mathbb{R}^k} \mathbb{E}\left[(\mu(\mathbf{X}) - \mathbf{X}'\mathbf{b})^2 \right]$$

- Linear projection is best linear approximation to Y and $\mathbb{E}[Y | X]$.
- Limitations:
 - ▶ If nonlinearity of $\mu(\mathbf{X})$ is severe, $m(\mathbf{X})$ can only be so good.
 - \blacktriangleright $m(\mathbf{X})$ can be sensitive to the marginal distribution of \mathbf{X} .

Gov 2001 29 / 30

Recap

$$Y = \mathbf{X}'\boldsymbol{\beta} + e$$

- "The Linear Model": is this an assumption?
- Depends on what we assume about the error, e
 - ▶ If $\mathbb{E}[e \mid \mathbf{X}] = 0$, then we are assuming the CEF is linear, $\mathbb{E}[Y \mid \mathbf{X}] = \mathbf{X}'\boldsymbol{\beta}$
 - ▶ If just $\mathbb{E}[\mathbf{X}e] = 0$, then this is just a linear projection.
 - First is very strong, second is very mild.
- Why do we care? Affects the properties of OLS.
 - Some finite-sample properties of OLS (unbiasedness) require linear CFF
 - Asymptotic results (consistency, asymptotic normality) apply to both.
 - OLS will consistently estimate something, but maybe not what you want.

Gov 2001 30 / 30