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Where are we? Where are we going?

Learned about estimation and inference in general.

e Now: building to a specific estimator, least squares regression.

First we need to understand what a “linear model” is and
when /why we need it.

» No estimators quite yet. First, let's understand what we are
estimating.
Linear model is ubiquitous but poorly understood. Lots of
subtlety here.
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Regression derivatives and partial effects

Goal of regression: how mean of Y changes with X.
p(z) = E[Y| X = o

e For continuous regressors, we can use the partial derivative:
a,u(flfl, ceey Ik)
oxy

For binary Xj, we can use the difference in conditional
expectations:

:U’(17x27" .,Ik) _#(071‘23--'7‘7’76)

“Partial effect” of X; holding other included variables constant

Exact form will depend on the functional form of p(x).

» How do we decide what form p(z) should take?
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Estimating the CEF for discrete covariates

e To motivate function form, useful to think about estimation.
e How do we estimate u(z) = E[Y| X = 1] for binary X?

e Subclassification: calculate sample averages with levels of X;:
1 n
(1) = " RO
i=1

> n = Z;;l X; is the number of units with X; = 1 in the sample.

e More generally for any discrete X;:

_ XY, V(X = a)
Zé\il H(Xi = )

fi(z)
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Continuous covariates

e What if X is continuous? Subclassification fall apart.
» Each ¢ has a unique value: Zf; I(X;=2) =1
» Very noisy estimates
» What about any z not in the sample?

e Stratification: bin X; into categories and treat like as discrete.
» Every z in the same bin gets the same conditional expectation.
» Depends on arbitrary bin cutoffs/sizes.

e Example:

» Personal data science: You wear an activity tracker and have a
smart scale.

» Relationship between your weight and active minutes in the
previous day.
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Continuous covariate example
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Continuous covariate CEF: interpolation
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Continuous covariate CEF: stratification
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Linear CEFs

Statification requires lots of choices/hidden assumptions.

» Number of categories, cutoffs for the categories, constant means
within strata, etc.

Alternative: assuming that the CEF is linear:

w(z) =E[Y;| X; =1 = By + fix

Intercept, 5y: the condition expectation of Y; when X; =0

Slope, 51: change in the CEF of Y; given a one-unit change in X;
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Why is linearity an assumption?

Example: Y; is income, X; is years of education.

» [(y: average income among people with O years of education.

» (31 expected difference in income between two adults that differ
by 1 year of education.

Why is linearity an assumption?
E[Y; | X;=12] - E[Y; | X; = 11]
=E[Y;| X;=16] — E[Y; | X; = 15]
=b

Effect of HS degree is the same as the effect of college degree.

Put another way: average partial effects are constant 6’5—(;) =/
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Linear CEF with nonlinear effects

What if we think the effect is nonlinear?

e We can include nonlinear transformations:

w(z) = Bo + 261 + 7°Bs

> Partial effect now varies: du(x)/0z = 1 + 206

Linear means linear in the parameters 8 = (f1, ..., k), not X.

We can also include interactions between covariates:

p(xr, 22) = Bo + 2181 + 202 + 212253

» Average partial effect of X; depends on Xs:
Op(mr, 12) /0 = P1 + 7233
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Linear CEF with a binary covariate

Wait-times (Y;) and race (X; = 1 for white, X; = 0 for POC)
» Two possible values of the CEF: uy for whites and o for POC.

Can write the CEF as follows:

p(x) = 1 + (1 = )po = pro + 2(p1 — po) = Po + 261

No assumptions, just rewriting! Interpretations:

» [Bo = po: expected wait-time for POC
> 51 = p1 — po: diff. in avg. wait times between whites and POC.

> 2 categories: dummies for all but category and everything is
linear.
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Linear CEF with multiple binary covariates
e What if we have two binary covariates, X; (race) and X; (1
urban/0 rural):
too if 21 =0 and 25 = 0 (POC, rural)
1o if 21 =1 and 22 = 0 (white, rural)
to1 if 21 =0 and 22 =1 (POC, urban)
w11 if 21 =1 and 2 = 1 (white, urban)

oz, 72) =

e Can rewrite this without assumptions as a linear CEF with
interaction:
p(z1, 22) = Bo + 2181 + 2202 + 217233
e Interpretations:
» (B9 = poo: average wait times for rural POC.
» 1 = p1o — poo: diff. in means for rural whites vs rural POC.
» By = pop1 — poo: diff. in means for urban POC vs rural POC.
» B3 = (11 — po1) — (10 — too): diff. in urban racial diff. vs rural
racial diff.
e Generalizes to p binary variables if all interactions included
(saturated)
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Linear approximation

e Qutside of saturated discrete settings, CEF almost never truly
linear.

Alternative goal: find best linear predictor of Y given X.

Formally, linear function of X that minimizes squared
prediction errors:

(Bo, 1) = arg min E[(Y— (b + b1 X))’]

m(z) = Po + B1 X is called the linear projection of Y onto X.
> 51 = Cov(X, V)/V[X
> Bo=py — pxBi, where py = E[Y] and pux = E[X]

In general, m(z) distinct from the CEF:

» CEF, u(z) is the best predictor of Y; among all functions.

» Linear projection is best predictor among linear functions.
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Linear approximation
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Linear approximation
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Linear approximation
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Best linear predictor
e We'll almost always condition on a vector X = (Xq,..., Xi)"

m(z) = m(z1, ..., a5) = 01f1+ -+ 5l =x'3

» Linear predictor when X = x
e X is now a k£ x 1 random vector of covariates:
» May contain nonlinear transformations/interactions of “real”
variables.
» Typically, X3 =1 and is the intercept/constant.
e Assumptions (“Regularity conditions”):
1. E[Y?] < oo (outcome has finite mean/variance)
2. E[||X||*] < oo (X has finite means/variances/covariances)

3. Qxx = E[XX/] is positive definite (columns of X are linearly
independent)
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Linear Projection

e How to find 37 Minimize squared prediction error!
=argmin E [(Y — X'b)?
B =argminE ( )’]
e After some calculus:

B =QxQxy = (EXX'])'E[XY]

> E[XX']is kx kand E[XY]is kx 1
e Notes about the m(z) = x'3:

» (3 is a population quantity and possible quantity of interest.
» Well-defined under very mild assumptions!

» Not necessarily a conditional mean nor a causal effect!
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Projection errors

Projection error: e= Y —-X'3

e Decomposition of Y into the linear projection and error:

Y=X'B+e
e Properties of the projection error:
> E[X¢ =0
> Ele] = 0 when X contains a constant.
» Together, implies Cov(Xj, e) =0 forall j=1,...,k
e Distinct from CEF errors: u = Y — p(X) which had the additional

property: E[u | X] =0

» Zero conditional mean is stronger: CEF errors are 0 at every value
of X

» E[Xe| =0 just says they are uncorrelated.
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Regression coefficients

e Sometimes useful to separate the constant:
Y=03+XB+e

e where X doesn't have a constant.

e Solution for 3 more interpretable here:

B=V[X]"'Cov(X,Y), Bo=py—pxB
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Interpretation of the coefficients

Interpretation of 3; depends on what nonlinearities are included.

Simplest case: no polynomials or interactions.

Bj is the average change in predicted outcome for a one-unit
change in X; holding other variables fixed.

e Let's compare:
[ ]
m(z1 + 1, 22) = fo + Bi(z1 + 1) + forn
m(zy, 12) = Po + P11 + Poa,
e Then:

m(z1 + 1, 12) — m(71, 12) = B

e Holds for all values of 23 and even if we add more variables.
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Interpretation with nonlinear terms

e What if we include a nonlinear function of one covariate?

m(zy, l%, 1) = Po + Pra1 + Bot} + B,

e One-unit change in z; is more complicated:

m(zy + 1, (21 +1)%, 22) = Bo + Bi(z1 4+ 1) + Bo(z1 + 1)% + Bam
m(zy, 7%, 12) = Bo + Bray + Borb + P31,
e Better to think of the marginal effect of X;;:

am(x(“l)’ 1,22 = P14+ 2062m
71

e Interpretations:

> f;: “effect” of X;; on predicted Y; when X;; = 0 (holding Xy,
fixed)

> [5/2: how that “effect” changes as X;; changes

» Maybe better to visualize than to interpret
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Interpretation with interactions
e What if we include an interaction between two covariates?
m(x1, x2, T122) = Po + Sra1 + Poxe + Pz
e Two different marginal effects of interest:

om(z1, x2, 122)

5 = 31 + P32,
il
om(zy, 1, 1172)

92, = P9 + fsm

e Interpretations:
» [(3,: the marginal effect of X;; on predicted Y; when X, = 0.
» [(5: the marginal effect of X;» on predicted Y; when X;; = 0.

» [(3: the change in the marginal effect of X;; due to a one-unit
change in X2 or the change in the marginal effect of X;» due to a
one-unit change in X;;.
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Partitioned Regression

,B,) = in E[(Yi— (a+bX;+ cZ))”
(0., 7) =arg min [(Yi— (a+ X + cZ;))?]

e Can we get an expression for just 57 With some tricks, yes!
e Population residuals from projection of X; on Z;:

X; = X; — (80 + 617;)
where (50, 51) =arg min E[(XZ — (d() + d; Z@))Q]

(do,d1)€ER?
» X, is now orthogonal to Z; so that cov(X;, Z;) = E[X;Z;] =0
e Project Y onto these residuals gives 5 as coefficient:
cov( Vs, X;)
VX
» Helps with interpretation: connects multivariate regression
coefficients to simple regression coefficients.

» The relationship captured by 3 is between the outcome and the
variation in X; not linearly explained by Z;
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Partition regression more generally

More general linear projection coefficients:

B = (EXX'])'E[XY]

Let X; _j be the set of covariates without entry £.
Now define Xy, = Xi — mp(Xi_)

> my(X;_) is the BLP of X on X; _p
e Generic coefficient Sy is:
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Omitted variable bias
e Consider two projections/regressions with and without some Z:
m(Xy, Zi) = XiB + Ziy,
m_z(X;) = X4,
e How do 3 and § relate? Use law of iterated projections:
= (EXX])'E[X; Y]
= (EXX)) TEX(Xi8 + Zry + e:)]
= (EXX]) " (EXX]]B + E[XZ]y + E[X;e/])
=B+ (EX:X])EXZ]y
e Leads to the “omitted variable bias” formula:
§=pB+my, m=(EXX]) EX;Z]

e § — 3 = m is the "bias” but this is misleading.
» 3 not necessarily “correct,” we're just relating two projections

Gov 2001 28 / 30



Best linear approximation

e What is the relationship between m(X) and u(X) = E[Y | X]?
> If u(X) is linear, then u(X) = m(X) = X'8.
» But u(X) could be nonlinear, what then?

e Linear projection justification: best linear approximation to p(X):
=argmin E X) — X'b)?
B = argmin B [(u(X) - X'b)’
e Linear projection is best linear approximation to Y and E[Y'| X].
e Limitations:

» If nonlinearity of u(X) is severe, m(X) can only be so good.

» m(X) can be sensitive to the marginal distribution of X.
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Recap
Y=XB+e

e “The Linear Model”: is this an assumption?
e Depends on what we assume about the error, e

> If E[e| X] =0, then we are assuming the CEF is linear,
E[Y|X] = X'

> If just E[Xe] = 0, then this is just a linear projection.
» First is very strong, second is very mild.

e Why do we care? Affects the properties of OLS.

» Some finite-sample properties of OLS (unbiasedness) require linear

CEF

> Asymptotic results (consistency, asymptotic normality) apply to
both.

» OLS will consistently estimate something, but maybe not what you
want.
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