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Where are we? Where are we going?

• We saw how the population linear projection works.
• How can we estimate the parameters of the linear projection or

CEF?
• Now: least squares estimator and its algebraic properties.
• After that: the statistical properties of least squares.
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Acemoglu, Johnson and Robinson 2001
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Samples vs population

Assumption
The variables {(Y1,X1), . . . , (Yi,Xi), . . . , (Yn,Xn)} are i.i.d. draws
from a common distribution F.

• F is the population distribution or DGP.
▶ Without i subscripts, (Y,X) are r.v.s and draws from F.

• {(Yi,Xi) : i = 1, . . . , n} is the sample and can be seen in two
ways:
▶ Numbers in your data matrix, fixed to the analyst.
▶ From a statistical POV, they are realizations of a random process.

• Violations include time-series data and clustered sampling.
▶ Weakening i.i.d. usually complicates notation but can be done.
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Quantity of interest

• Population linear projection model:

Y = X′β + e

• Here β minimizes the population expected squared error:

β = arg min
b∈Rk

S(b), S(b) = E
[(

Y − X′b
)2]

• Last time we saw that this can be written:

β =
(
E[XX′]

)−1 E[XY]

• How do we estimate β?
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Plug-in principle returns!

• Plug-in estimator: solve the sample version of the population
goal.

• Replace projection errors with observed errors, or residuals:
Yi − X′

ib
▶ Sum of squared residuals, SSR(b) =

∑n
i=1(Yi − X′

ib)2

▶ Total prediction error using b as our estimated coefficient.
• We can use these residuals to get a sample average prediction

error:
Ŝ(b) = 1

n

n∑
i=1

(Yi − X′
ib)2 =

1

nSSR(b)

• Ŝ(b) is an estimator of the expected squared error, S(b).
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Least squares estimator
• Ordinary least squares estimator minimizes Ŝ in place of S.

β = arg min
b∈Rk

E
[(

Y − X′b
)2]

β̂ = arg min
b∈Rk

1

n

n∑
i=1

(
Yi − X′

ib
)2

• In words: find the coefficients that minimize the sum/average of
the squared residuals.

• After some calculus, we can write this as a plug-in estimator:

β̂ =

(
1

n

n∑
i=1

XiX′
i

)−1(
1

n

n∑
i=1

XiYi

)
• 1

n
∑n

i=1 XiX′
i is the sample version of E[XX′]

• 1
n
∑n

i=1 XiYi is the sample version of E[XY]
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Bivariate regressions

• Bivariate regression is the linear projection model with
X = (1,X):

Y = β0 + Xβ1 + e

• Linear projection slope in the population from last times:

β1 =
Cov(X,Y)

V[X]

• We can show the OLS estimator of the slope is:

β̂1 =

∑n
i=1(Yi − Ȳ)(Xi − X̄)∑n

i=1(Xi − X̄)2
=

Ĉov(X,Y)

V̂[X]
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Visualizing Regression
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Residuals
• Fitted value Ŷi = X′

iβ̂ is what the model predicts at Xi

▶ Not really a prediction for Yi since that was used to generate β̂

• Residuals are the difference between observed and fitted values:

êi = Yi − Ŷi = Yi − X′
iβ̂

▶ We can write Yi = X′
iβ̂ + êi

▶ êi are not the true errors ei

• Key mechanical properties of OLS residuals:
n∑

i=1

Xiêi = 0

• Sample covariance between Xi and êi is 0.
• If Xi has a constant, then n−1

∑n
i=1 êi = 0
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Prediction error
• How do we judge how well a regression fits the data?
• How much does Xi help us predict Yi?
• Prediction errors without Xi:

▶ Best prediction is the mean, Ȳ
▶ Prediction error is called the total sum of squares (TSS) and would

be:
TSS =

n∑
i=1

(Yi − Ȳ)2

• Prediction errors with Xi:
▶ Best predictions are the fitted values, Ŷi

▶ Prediction error is the sum of the squared residuals or SSR:

SSR =

n∑
i=1

(Yi − Ŷi)
2
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TSS and SSR
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R-squared

• Regression will always improve in-sample fit: TSS > SSR
• How much better does using Xi do? Coefficient of

determination or R2:

R2 =
TSS − SSR

TSS = 1− SSR
TSS

• R2 = fraction of the total prediction error eliminated by using Xi

• Common interpretation: R2 is the fraction of the variation in
Yi ”explained by” Xi:
▶ R2 = 0 means no relationship
▶ R2 = 1 implies perfect linear fit

• Mechanically increases with additional covariates (better fit
measures exist)
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Linear model in matrix form
• Linear model is a system of n linear equations:

Y1 = X′
1β + e1

Y2 = X′
2β + e2

...
Yn = X′

nβ + en

• We can write this more compactly using matrices and vectors:

Y =


Y1

Y2

...
Yn

 , X =


X′

1

X′
2

...
X′

n

 =


1 X11 X12 · · · X1k
1 X21 X22 · · · X2k
...

...
... . . . ...

1 Xn1 Xn2 · · · Xnk

 , e =


e1
e2
...

en


• Model is now just:

Y = Xβ + e
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OLS estimator in matrix form
• Key relationship: sample sums can be written in matrix notation:

n∑
i=1

XiX′
i = X′X,

n∑
i=1

XiYi = X′Y

• Implies we can write the OLS estimator as:

β̂ = (X′X)−1X′Y

• Residuals:

ê = Y − Xβ̂ =


Y1

Y2
...

Yn

−


1β̂0 + X11β̂1 + X12β̂2 + · · ·+ X1kβ̂k
1β̂0 + X21β̂1 + X22β̂2 + · · ·+ X2kβ̂k

...
1β̂0 + Xn1β̂1 + Xn2β̂2 + · · ·+ Xnkβ̂k


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Least squares in matrix form

• OLS still minimizes sum of the squared residuals

arg min
b∈Rk+1

ê′ê = arg min
b∈Rk+1

(Y − Xb)′(Y − Xb)

• We can write the covariate-residual orthogonality as X′ê = 0.
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Projection

• OLS can be seen as a projection of Y onto the column space of
X, S(X).
▶ Picture with n = 3 and k = 2: points in 3D space,
▶ Column space of X is a plane in this space.

• Intuition: β̂ defines the projection that gets is shortest distance
between Y and prediction.
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Projection/hat matrix

• We can define the transformation of Y that does the projection:

Xβ̂ = X(X′X)−1X′Y

• Projection matrix
P = X(X′X)−1X′

• Also called the hat matrix; it puts the “hat” on Y:

PY = X(X′X)−1X′Y = Xβ̂ = Ŷ

• Key properties:
▶ P is an n × n symmetric matrix
▶ P is idempotent: PP = P
▶ Projecting X onto itself returns itself: PX = X
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Annihilator matrix
• Annihilator matrix projects onto the space spanned by the

residual:
M = In − P = In − X(X′X)−1X′

• Also called the residual maker:

MY = (In − P)Y = Y − PY = Y − Ŷ = ê

• “Annihilates” any function in the column space of X, C(X):

MX = (In − P)X = X − PX = X − X = 0

• Properties:
▶ M is a symmetric n × n matrix and is idempotent: MM = M
▶ Admits a nice expression for the residual vector: ê = Me

• Allows the following orthogonal partition:

Y = PY + MY = projection + residual
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Geometric view of OLS
• Recall the length of a vector: ∥â∥ =

√
â21 + · · ·+ â2n

• Distance between two vectors:
∥a − b∥ =

√
(a1 − b1)2 + · · ·+ (an − bn)2

• We can rewrite the OLS estimator as:

β̂ = arg min
b∈Rk+1

∥Y − Xb∥2 = arg min
b∈Rk+1

n∑
i=1

(Yi − X′
ib)2

• Let C(X) = {Xb : b ∈ Rk+1} be the column space of X:
▶ All n-vectors formed as a linear combination of the columns of X
▶ k + 1-dimensional subspace of Rn

▶ This is the space that OLS is searching over!
• Geometrically OLS is:

▶ Find coefficients that minimize distance between the Y and Xb
▶ Find the point in C(X) that is closest to Y
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Projection

• Finding closest point in C(X) to Y is called projection
• Example: n = 3 and k = 2: points in 3D space.

▶ Column space of X is a plane in this space.
• Residual vector ê = Y − Xβ̂ is orthogonal to C(X)

▶ Shortest distance from Y to C(X) is a straight line to the plane,
which will be perpendicular to C(X).

▶ Implies that X′ê = 0
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Multicollinearity

• Hidden assumption: X′X =
∑n

i=1 XiX′
i is invertible.

▶ Equivalent to X being full column rank.
▶ Equivalent to columns of X being linearly independent.

• Full column rank if Xb = 0 if and only if b = 0.

b1X1+b2X2+· · ·+bk+1Xk+1 = 0 ⇐⇒ b1 = b2 = · · · = bk+1 = 0

• Typically reasonable but can be violated by user error:
▶ Accidentally adding the same variable twice.
▶ Including all dummies for a categorical variable.
▶ Including fixed effects for group and variables that do not vary

within groups.
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