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Partitioned regression

• Partition covariates and coefficients X = [X1 X2] and
β = (β1, β2)

′:
Y = X1β1 + X2β2 + e

• Can we find expressions for β̂1 and β̂2?
• Residual regression or Frisch-Waugh-Lovell theorem to obtain
β̂1:
▶ Use OLS to regress Y on X2 and obtain residuals ẽ2
▶ Use OLS to regress each column of X1 on X2 and obtain residuals

X̃1

▶ Use OLS to regress ẽ2 on X̃1
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Focus on simple case
• Focus on single covariate model with no intercept: Yi = Xiβ + ei
• Let X = (X1, . . . ,Xn) and recall inner product:

⟨X,Y⟩ =
n∑

i=1

XiYi

▶ Inner products measure how similar two vectors are.
• Slope in this case:

β̂ =

∑n
i=1 XiYi∑n

i=1 X2
i

=
⟨X,Y⟩
⟨X,X⟩

• Suppose we add an orthogonal covariate Y = Xβ + Zγ + e with
⟨X,Z⟩ = 0:

β̂ =
⟨X,Y⟩
⟨X,X⟩

, γ̂ =
⟨Z,Y⟩
⟨Z,Z⟩

• ▶ With exactly orthogonal covariates, multivariate OLS is the same
as univariate OLS

▶ Only holds in balanced, designed experiments.
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Adding the intercept

• Consider the OLS slope with an intercept:

β̂ =

∑n
i=1(Xi − X̄)(Yi − Ȳ)∑n

i=1(Xi − X̄)2
=

⟨X − X̄1, Y − Ȳ1⟩
⟨X − X̄1, X − X̄1⟩ =

⟨X − X̄1, Y⟩
⟨X − X̄1, X − X̄1⟩

• How can we get this?
1. Regress X on 1 to get coefficient X̄
2. Regress Y on residuals from step 1, X − X̄1

• If we wanted to get the coefficient on added variable Zi, we could
repeat this:

1. Regress Z on X̃ = X − X̄1 and obtain coefficient ⟨Z, X̃⟩/⟨X̃, X̃⟩
2. Regress Y on residual from ...
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Why does residual regression work?
• We can find β̂1 by nested minimization:

β̂1 = arg min
β1

(
min
β2

∥Y − X1β1 − X2β2∥2
)

▶ First find the minimum of the SSR over β2, fixing β1

▶ Then find β1 that minimizes the resulting SSR
• The projection and annihilator matrices are defined only by

covariates.
M2 = In − X2(X′

2X2)
−1X′

2

▶ Creates residuals from a regression on or X2

• Solving the nested minimization gives:

β̂1 = (X′
1M2X1)

−1(X′
1M2Y)

• When will β̂1 be the same regardless of whether X2 is included?
▶ If X1 and X2 are orthogonal, so X′

2X1 = 0 and M2X1 = X1
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Residual regression
• Define two sets of residuals:
▶ X̃2 = M1X2 = residuals from regression of X2 on X1

▶ ẽ1 = M1Y = residuals from regression of Y on X1

• Then remembering that M1 is symmetric and idempotent:

β̂2 = (X′
2M1X2)

−1(X′
2M1Y)

= (X′
2M1M1X2)

−1(X′
2M1M1Y)

= (X̃′
2X̃2)

−1(X̃′
2ẽ1)

• β̂2 can be obtained from a regression of ẽ1 on X̃2.
▶ Same result applies when using Y in place of ẽ1
▶ Intuition: residuals are orthogonal
▶ Called the Frisch-Waugh-Lovell Theorem
▶ Sample version of the results we saw for the linear projection
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Outliers, leverage points, and influential observations

• Least square heavily penalizes large residuals.
• Implies a just a few unusual observations can be extremely

influential.
▶ Dropping them leads to large changes in the estimated β̂.
▶ Not all “unusual” observations have the same effect, though.

• Useful to categorize:
1. Leverage point: extreme in one X direction
2. Outlier: extreme in the Y direction
3. Influence point: extreme in both directions
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Butterfly did it?

Wand et al, 2001 APSR
Example: Buchanan votes in Florida, 2000

• 2000 Presidential election in FL (Wand et al., 2001, APSR)

26/ 39
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Butterfly did it?
Example: Buchanan votes in Florida, 2000
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Leverage point definition
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Leverage Point

Full sample

Without leverage point

• Values that are extreme in the X dimension
• That is, values far from the center of the covariate distribution
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Leverage values

• Let hij be the (i, j) entry of P. Then:

Ŷ = PY =⇒ Ŷi =
n∑

j=1

hijYj

▶ hij = importance of observation j is for the fitted value Ŷi

• Leverage/hat values: hii diagonal entries of the hat matrix
• With a simple linear regression, we have

hii =
1

n +
(Xi − X̄)2∑n
j=1(Xj − X̄)2

▶ ⇝ how far i is from the center of the X distribution
• Rule of thumb: examine hat values greater than 2(k + 1)/n
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Outlier definition

• An outlier is far away from the center of the Y distribution.
• Intuitively: a point that would be poorly predicted by the

regression.
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Detecting outliers
• Want values poorly predicted? Look for big residuals, right?
▶ Problem: we use i to estimate β̂ so Ŷ aren’t valid predictions.
▶ unit might pull the regression line toward itself ⇝ small residual

• Better: leave-one-out prediction errors,
1. Regress Y(−i) on X(−i), where these omit unit i:

β̂(−i) =
(

X′
(−i)X(−i)

)−1

X′
(−i)Y(−i)

2. Calculate predicted value of Yi using that regression: Ỹi = X′
iβ̂(−i)

3. Calculate prediction error: ẽi = Yi − Ỹi

• Simple closed-form expressions:

β̂(−i) = β̂ − (X′X)−1Xiêi, ẽi =
êi

1− hii
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Influence points

• An influence point is one that is both an outlier and a leverage
point.

• Extreme in both the X and Y dimensions
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Overall measures of influence

• Influence of i can be measured by change in predictions:

Ŷi − Ỹi = hiiẽi

▶ How much does excluding i from the regression change its
predicted value?

▶ Equal to “leverage × outlier-ness”
• Lots of diagnostics exist, but are mostly heuristic.
▶ Does removing the point change a coefficient by a lot?
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Limitations of the standard tools
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• What happens when there are two influence points?
• Red line drops the red influence point
• Blue line drops the blue influence point
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What to do about outliers and influential units?

• Is the data corrupted?
▶ Fix the observation (obvious data entry errors)
▶ Remove the observation
▶ Be transparent either way

• Is the outlier part of the data generating process?
▶ Transform the dependent variable (log(y))
▶ Use a method that is robust to outliers (robust regression, least

absolute deviations)
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