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Recap

• Linear regression models play an important role in social science
• However, OLS is known to have some weaknesses

1. Performs poorly on out-of-sample prediction when there are many
features

2. Difficulty in interpretation as the number of features grow
3. Assumed linearity in parameters

• Goal
▶ Supervised learning with continuous outcome categories
▶ Bias-variance tradeoffs
▶ Regularization
▶ Flexible models to capture non-linearity
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Linear Regression
The linear regression model assumes that the regression function
E(Y|X) is linear in the sense that

f(X) = β0 +

K∑
k=1

Xkβk

It minimizes the residual sum of squares.

RSS(β) =

N∑
i=1

(Yi − f(xi)︸ ︷︷ ︸
cost

)2

=

N∑
i=1

(
Yi − β0 −

K∑
k=1

xikβk

)2

That is,
β̂ = arg min

β

[
(y − Xβ)T(y − Xβ)

]
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Bias Variance Trade off

Let’s consider fitting a higher order (linear) model on a given set of
data:

y =

M∑
m=0

βmxm

For example, if M = 4 we have:

Y = β1X + β2X2 + β3X3 + β4X4 + ϵ
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The Bias-Variance Trade-off : y =
∑M

m=0 βmxm
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Problem of Over-fitting

• If you have a large number of variables with a relatively small
training set, you might suffer from over-fittin

• By trying to fit the training set too well, we might be fitting to
noise
→ actually perform worse in the test set.

• Flexible models are very good at “explaining” outliers

• We want to penalize models that are too flexible (preference for
simpler theories) while allowing for model flexibility if the data
demands it
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In-sample MSE vs. Out-of-sample MSE?
By construction, OLS will do well for in-sample MSE

• When n >> k, it will probably do well in a stable environment
(i.e., observations all from the same data-generating process and
effects are strong)

• When n << k, out-of-sample MSE might be really bad, because
nothing prevents flexible models from chasing outliers (finding
spurious effects)

Two reasons why we might not be satisfied with the least squares
estimates

1. Bias-variance tradeoff: The least squares estimates often have
lower bias with larger variance → poor prediction

2. Interpretation: We often include a long list of independent
variables (a kitchen sink regression) → unparsimonious, difficult
to interpret
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Ridge Regression

• The objective:

min
β

[
(y − Xβ)T(y − Xβ) + λ

K∑
k=1

β2
k

]

• Re-expressing the problem

PRSS(λ) = (y − Xβ)T(y − Xβ) + λβTβ

∂

∂β
PRSS(λ) = ∂

∂β

{
(y − Xβ)T(y − Xβ) + λβTβ

}

To minimize the above equation, we solve for zero .
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Continued

∂

∂β

{
(y − Xβ)T(y − Xβ) + λβTβ

}
= 0

∂

∂β

{
yTy + XβTXβ − 2(XβT)y + λβTβ

}
= 0

2(XTX)β − 2(XTy) + 2λβ = 0

(XTX + λI)β = (XTy)

β̂ridge = (XTX + λI)−1XTy
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Intuition on Ridge

β̂ridge = (XTX + λI)−1XTy

• When λ = 0, it is OLS.
• We can invert even when (XTX) is singular!
• When X is orthonormal (i.e., XTX = I), the ridge estimates

uniformly shrink all OLS coefficients by a factor of 1
1+λ

• The objective function or Ridge regression minimizes both RSS
and

∑
β2, at the same time.
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How does RSS look for OLS?

Let’s take an example of two dimensions, with no constant.

Y = β1X1 + β2X2 + ϵ

Here we treat β as the changing variables, become we want to
compare RSS with different OLS models.

PRSSOLS =
N∑
1

(yi − β1x1i − β2x2i)
2

=

N∑
1

aβ2
1 + bβ2

2 + cβ1β2 + constant

This is how ellipse looks like on a 2 dimension coordinates!
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Ridge Plot
• The ellipses correspond to the contours of

residual sum of squares (RSS): the inner
ellipse has smaller RSS, and RSS is
minimized at ordinal least square (OLS)
estimates.

• For k = 2, the constraint in ridge regression
corresponds to a circle, with radius as C

p∑
j=1

= β2
j < C

• We are trying to minimize the ellipse size
and circle simultanously in the ridge
regression.

• The ridge estimate is given by the point at
which the ellipse and the circle touch.
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Continued

• There is a trade-off between
the penalty term and RSS.

• Maybe a large β would give
you a better residual sum of
squares but then it will push
the penalty term higher.
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Continued

• There is a correspondence
between 1

λ and C.
• The larger the λ is, the more

you prefer the βj’s close to
zero.

• In the extreme case when
λ = 0, then you would simply
be doing a normal linear
regression.

• And the other extreme as λ
approaches infinity, you set all
the β’s to zero.
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LASSO : Least Absolute Shrinkage and Selection
Operator

• Limitations of OLS
1. Prediction Accuracy: large variance (with low bias)
2. Interpretation: Large number of predictors (ridge regression

shrinks, but does not set any coefficients to zero)

• Lasso
▶ The objective:

min
β

[
1

2
(y − Xβ)T(y − Xβ) + λ

K∑
k=1

| βk |

]
(1)

• The first term in this objective function is the residual sum of a
squares.

• The second term has two components: the tuning parameter λ,
indexed by sample size, and the penalty term |β̃|.
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Lasso with a single covariate

• Take as observed data an outcome Yi for i ∈ {1, 2, . . . ,N}, and a
single observed covariate, Xi with associated parameter βo. We
assume the data are generated as

Yi = Xiβ
o + ϵi

• For simplicity: we scale 1
N
∑N

i=1 Xi =
1
N
∑N

i=1 Yi = 0 and∑N
i=1 X2

i = N − 1, so Xi has sample standard deviation one.
• We assume the error is mean-zero, equivariant, and that all fourth

moments of [Yi,Xi] exist.
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Continued

• Under the setup, we will denote the least squares estimate as

β̂LS =

∑N
i=1 YiXi∑N

i=1 X2
i

=

∑N
i=1 YiXi
N − 1
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Lasso with a single covariate

• Let’s consider LASSO in the case with a single covariate.

β̂L = arg min
β̃

1

2

N∑
i=1

(Yi − Xiβ̃)
2 + λ|β̃|

• We take the partial with regard to β, because we are looking for
the best β.

∂

∂β
= (Y − Xβ)(−X)+??? = 0

• For simplicity, we will say λ ≥ 0.
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Continued

• Let’s now consider a certain two scenarios:
▶ If β > 0:

(Y − Xβ)(−X) + λ = 0

−XY + X2β + λ = 0

β =
XY − λ

X2

=
XY − λ

N − 1
because we scaledX2

= βLS − λ

N − 1

• Since we assumed β > 0, and we know λ
N−1 > 0, it would be

weird if βLS < λ
N−1

• When that happens, we will shrink β to zero instead.
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Continued

• Similarly if β ≤ 0:

(Y − Xβ)(−X)− λ = 0

−XY + X2β − λ = 0

β =
XY + λ

X2

=
XY + λ

N − 1
because we scaled X2

= βLS +
λ

N − 1

• Since we assumed β ≤ 0, and we know λ
N−1 > 0, it would be

weird if βLS + λ
N−1 > 0

• When that happens, we will shrink β to zero instead.
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Combine the Two

• Denote the sign of the least squares estimate as
ŝL = sign(β̂) ∈ {−1, 1}.
With one parameter, the LASSO estimate is (Tibshirani 1996, sec
2.2)

β̂L =

(
β̂LS − ŝL λ

N − 1

)
1
(∣∣β̂LS∣∣ > λ

N − 1

)

• For those variables with a relatively small OLS coefficient, we
shrink them to zero.

• Rest of the variables, we shrink the size.
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Lasso Plot

Similarly, Lasso plot consists of a square, because we minimize the
RSS and absolute value of coefficients.
Question: Try drawing in R:

|β1|+ |β2| ≤ C
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When should we use LASSO?

• Advantages
▶ LASSO works well for prediction when the true model is “sparse”

(i.e., only a few variables really matter)
▶ Post-LASSO will give you asymptotically valid confidence interval
▶ LASSO is designed for models that start with many parameters

(“wide” data)
▶ Prediction accuracy
▶ Interpretation with sparsity
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• Disadvantages
▶ LASSO won’t work when there are a lot of variables that actually

matter (ridge works better in that case)
▶ With high collinearity, the LASSO arbitrarily selects only one

among highly correlated variables (fine if goal is prediction)
▶ You will get a completely different coefficient estimate “chosen” by

LASSO with a slightly different sample, but predictions will be
similar

▶ This is why you need to be really careful about interpreting
coefficients (remember that LASSO aims to optimally predict
out-of-sample)
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Statistical Inference with LASSO

We often care about confidence intervals for β̂

1. Post-Lasso (Belloni and Chernozhukov (2013))
▶ Two-step estimation that will give a consistent estimate under

some conditions (“approximate sparsity” assumption: the truth is
simple)

▶ After “hard thresholding” with LASSO, take the surviving features
and run OLS. (Uses LASSO to choose variables, but OLS to get
the right effects instead of shrinking them

2. Covariance test: Lockhart, Taylor, Tibshirani (2014)
▶ p-value for each variable as it is added to lasso model
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Variance and Bias Trade-off
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Variance and Bias Trade-off

• Let’s take a closer look mean squared error, to mathematically
capture the trade off.

MSE = E
(
(β̂ − β)2

)
= E

(β̂ − E(β̂)︸ ︷︷ ︸
A

+E(β̂)− β︸ ︷︷ ︸
B

)2


= E

(
A2 + B2 + 2AB

)
= E

(
(β̂ − E(β̂))2

)
︸ ︷︷ ︸

variance

+E
(

E(β̂)− β)
)2

︸ ︷︷ ︸
bias2

+2E
(
(β̂ − E(β̂))(E(β̂)− β)

)
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Variance and Bias

• Let’s first take a look at the cross term.

E
(
(β̂ − E(β̂))(E(β̂)− β)

)
= E

(
β̂E(β̂)− E(β̂)E(β̂)− β̂β + E(β̂)β

)
= E(β̂)E(β̂)− E(β̂)E(β̂)− βE(β̂) + βE(β̂)
= 0
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Variance and Bias

MSE = E
(
(β̂ − E(β̂))2

)
︸ ︷︷ ︸

variance

+E
(

E(β̂)− β)
)2

︸ ︷︷ ︸
bias2

= E
(
(β̂ − E(β̂))2

)
︸ ︷︷ ︸

variance

+
(

E(β̂)− β
)2

︸ ︷︷ ︸
bias2
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Piecewise Polynomials

• The conditional expectation function E[Y|X = x] is often
(usually?) nonlinear

• One option: LASSO and ridge could be used to capture
nonlinearities with predefined basis functions (e.g.,
Y = β0 + β1X1 + β2X2

2 + β3X1 · X2 + · · ·+ βkXk
1 + ϵ)

• Here, we consider basic splines
• Other options for capturing nonlinearity include weighted moving

average and generalizations (LOESS)
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Piecewise Polynomials
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True DGP: Yi = sin(2πXi) + ε
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Piecewise Polynomials

●

●

●
●

●
●

●

●

● ●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
0.

0
1.

0

x

y

Consider the constant basis function f1(x) = 1
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Piecewise Polynomials
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For observation i, this creates a feature f1(Xi). Prediction
performance is not ideal.
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Piecewise Polynomials
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If one were to run a linear regression with f(x) and y, you will get the
red line. OLS is confused because f(x) = 1 always.
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Piecewise Polynomials
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We could add a second piecewise constant basis function
f2(x) = 1(x > ξ), with a discontinuity at some knot, ξ
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Piecewise Polynomials
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This would produce a second feature in the data matrix, prediction
performance is slightly better.
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Piecewise Polynomials
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With this expanded basis set, a richer set of approximating functions
could be constructed from β1f1(x) + β2f2(x). The one that minimizes

MSE is plotted in red here.
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Piecewise Polynomials
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Higher order basis functions can be added, e.g. the linear function
g1(x) = x...
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Piecewise Polynomials
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... or the continuous and piecewise linear g2(x) = (x − ξ) · 1(x > ξ)
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Piecewise Polynomials
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OLS will predict the points like this.
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Piecewise Polynomials
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Piecewise function will predict the points like this.
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Piecewise Polynomials
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From f(x) = 1, g1(x) = x, and g2(x) = (x − ξ) · 1(x > ξ), many
approximating functions of the form αf(x) + β1g1(x) + β2g2(x) can be

constructed for the true conditional expectation—all of which are
continuous, but have discontinuous first derivatives.

Gov 2001 Splines 42 / 49



Piecewise Polynomials
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Further basis functions h1(x) = x2 and h2(x) = (x − ξ)2 · 1(x > ξ) and
the corresponding features
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Piecewise Polynomials
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Further basis functions h1(x) = x2 and h2(x) = (x − ξ)2 · 1(x > ξ) and
the corresponding features
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Piecewise Polynomials
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Further basis functions h1(x) = x2 and h2(x) = (x − ξ)2 · 1(x > ξ) and
the corresponding features
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Piecewise Polynomials
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Further basis functions h1(x) = x2 and h2(x) = (x − ξ)2 · 1(x > ξ) and
the corresponding features
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Piecewise Polynomials
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An function of the form αf(x) + βg(x) + γ1h1(x) + γ2h2(x). Observe
that it is both continuous and has a continuous first derivative.
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Cubic Splines

• A cubic spline extends this idea to create functions that have
continuous first and second derivatives
▶ The basis set consists of f0(x) = x0, f1(x) = x1, f2(x) = x2, and

piecewise cubic terms f3(x) = x3, fk(x) = (x − ξk)
31(x > ξk), · · ·

▶ Many knots can be used: spaced equally, at quantiles of X, etc.
• Natural cubic splines force the outermost regions to be linear

(reduces overfitting near the boundary, where there are no
additional knots to constrain)
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Cubic Smoothing Splines

• In the extreme, a natural cubic spline can be used with one knot
at every value of X. Call this g(x) =

∑
k βkfk(x).

• To address overfitting when estimating βk, a penalty is applied to
functions with large second derivatives (high curvature)

N∑
i=1

(Yi − g(Xi))
2 + λk

∫
g′′(z)2dz

where z sweeps over all possible values that Xi can take on (what
happens to this integral outside the outermost knots?)
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