6: Multivariate Distribution

Naijia Liu

Spring 2025

Where are we? Where are we going?

- Distributions of one variable: how to describe and summarize uncertainty about one variable.
- Today: **distributions of multiple variables** to describe relationships between variables.
- Later: use data to learn about probability distributions.

Why multiple random variables?

- How to measure the relationship between two variables X and Y?
- What if we have many observations of the same variable, X_1, X_2, \ldots, X_n ?

Joint distributions

- The joint distribution of two r.v.s, X and Y, describes what pairs of observations, (x, y), are more likely than others.
- Shape of the joint distribution \rightsquigarrow the relationship between X and Y.

Discrete r.v.s

Definition

The joint probability mass function (p.m.f.) of a pair of discrete r.v.s, (X, Y), describes the probability of any pair of values:

$$p_{X,Y}(x,y) = \mathbb{P}(X=x, Y=y)$$

- Properties of a joint p.m.f.:
 - ▶ $p_{X,Y}(x,y) \ge 0$ (probabilities can't be negative)
 - $\sum_{x} \sum_{y} p_{X,Y}(x,y) = 1$ (something must happen)
 - \sum_x is shorthand for sum over all possible values of X.

Example: Gay marriage and gender

	Support $(Y=1)$	Oppose $(Y=0)$
Female $X = 1$	0.32	0.19
$Male\ X = 0$	0.29	0.20

- Joint p.m.f. can be summarized in a cross-tab:
- Each entry is the probability of that combination, $p_{X,Y}(x, y)$.
- What is the probability that we randomly select a woman who supports gay marriage?

$$p_{X,Y}(1,1) = \mathbb{P}(X=1, Y=1) = 0.32$$

Marginal distributions

• Can we get the distribution of just one of the r.v.s alone?

Called the marginal distribution in this context.

• Computing marginal p.m.f. from the joint p.m.f.:

$$\mathbb{P}(Y=y) = \sum_{x} \mathbb{P}(X=x, Y=y)$$

- Intuition: sum over the probability that Y = y and X = x for all possible values of x.
 - Called marginalizing out X.
 - ▶ Works because values of *X* are disjoint.

Example: marginals for gay marriage

	Support $(Y=1)$	Oppose ($Y = 0$)	Marginal
Female $X = 1$	0.32	0.19	0.51
Male $X = 0$	0.29	0.20	0.49
Marginal	0.61	0.39	

- Joint p.m.f. can be summarized in a cross-tab
- What's $\mathbb{P}(Y=1)$?
 - Probability that a man supports gay marriage plus the probability that a woman supports gay marriage.

$$\mathbb{P}(Y=1) = \mathbb{P}(X=1, Y=1) + \mathbb{P}(X=0, Y=1) = 0.32 + 0.29 = 0.61$$

• Works for all marginals.

Conditional p.m.f.

• Definition:

The **conditional probability mass function** or conditional p.m.f. of Y conditional on X is:

$$\mathbb{P}(Y = y \mid X = x) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(X = x)}$$

for all values x such that $\mathbb{P}(X = x) > 0$.

• This is a valid univariate probability distribution!

$$\blacktriangleright \ \mathbb{P}(Y = y \mid X = x) \ge 0 \text{ and } \sum_{y} \mathbb{P}(Y = y \mid X = x) = 1.$$

• Can define the conditional expectation of this p.m.f.:

$$E[Y \mid X = x] = \sum_{y} y \mathbb{P}(Y = y \mid X = x)$$

Example: conditionals for gay marriage

• Joint p.m.f. can be summarized in a cross-tab:

	Support $(Y=1)$	Oppose $(Y=0)$	Marginal
Female $X = 1$	0.32	0.19	0.51
$Male\ X = 0$	0.29	0.20	0.49
Marginal	0.61	0.39	

• Probability of favoring gay marriage conditional on male?

$$\mathbb{P}(Y=1 \mid X=0) = \frac{\mathbb{P}(X=0, Y=1)}{\mathbb{P}(X=0)} = \frac{0.29}{0.29 + 0.20} = 0.592$$

Example: conditionals for gay marriage

• Two values of $X \rightsquigarrow$ univariate conditional distributions of Y

Bayes and LTP

• Bayes' rule for r.v.s:

$$\mathbb{P}(Y = y \mid X = x) = \frac{\mathbb{P}(X = x \mid Y = y)\mathbb{P}(Y = y)}{\mathbb{P}(X = x)}$$

• Law of total probability for r.v.s:

$$\mathbb{P}(X=x) = \sum_{y} \mathbb{P}(X=x \mid Y=y) \mathbb{P}(Y=y)$$

Joint c.d.f.s

Definition

For two r.v.s X and Y, the joint cumulative distribution function (joint c.d.f.) $F_{X,Y}(x, y)$ is defined as:

$$F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y)$$

- Well-defined for discrete and continuous X and Y.
- For discrete, we have:

$$F_{X,Y}(x,y) = \sum_{i \le x} \sum_{j \le y} \mathbb{P}(X=i, Y=j)$$

Continuous r.v.s

• One continuous r.v.: probability of being in a subset of the real line.

• Two continuous r.v.s: probability of being in some subset of the 2-dimensional plane.

Continuous joint p.d.f.

• Definition:

If two continuous r.v.s X and Y have a joint c.d.f. $F_{X,Y}$, their **joint p.d.f.** $f_{X,Y}(x, y)$ is the derivative of $F_{X,Y}$ with respect to x and y:

$$f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y)$$

• Integrate over both dimensions to get the probability of a region:

$$\mathbb{P}((X, Y) \in A) = \iint_{(x,y) \in A} f_{X,Y}(x,y) \, dx \, dy$$

• $\{(x, y) : f_{X, Y}(x, y) > 0\}$ is called the **support** of the distribution.

Properties of the joint p.d.f.

• Joint p.d.f. must meet the following conditions:

1. $f_{X,Y}(x,y) \ge 0$ for all values of (x,y) (nonnegative).

2.
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx \, dy = 1$$
 (probabilities "sum" to 1).

Joint densities are 3D

- X and Y axes are on the "floor," height is the value of $f_{X,Y}(x,y)$.
- Remember $f_{X,Y}(x,y) \neq \mathbb{P}(X=x, Y=y)$.

Gov 2001

Probability = volume

•
$$\mathbb{P}((X, Y) \in A) = \iint_{(x,y)\in A} f_{X,Y}(x,y) \, dx \, dy.$$

• Probability = volume above a specific region.

Gov 2001

Continuous marginal distributions

• We can recover the marginal PDF of one variable by integrating over the distribution of the other variable:

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx$$

• Works for either variable:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$$

Visualizing continuous marginals

• Marginal integrates (sums, basically) over the other r.v.:

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \ dx$$

• Pile up/flatten all of the joint density onto a single dimension.

Gov 2001

Continuous conditional distributions

• Definition:

The conditional p.d.f. of a continuous random variable is:

$$f_{Y|X}(y \mid x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

for all values x such that $f_X(x) > 0$.

• Implies:

$$\mathbb{P}(a < Y < b \mid X = x) = \int_a^b f_{Y|X}(y \mid x) \, dy$$

• Based on the definition of the conditional p.m.f./p.d.f., we have the following factorization:

$$f_{X,Y}(x,y) = f_{Y|X}(y \mid x)f_X(x)$$

Conditional distributions as slices

- $f_{Y|X}(y \mid x_0)$ is the conditional p.d.f. of Y when $X = x_0$.
- $f_{Y|X}(y \mid x_0)$ is proportional to the joint p.d.f. along $x_0: f_{X,Y}(y, x_0)$.
- Normalize by dividing by $f_X(x_0)$ to ensure a proper p.d.f.

Independence

Definition

Two r.v.s Y and X are **independent** (which we write $X \perp Y$) if for all sets A and B:

 $\mathbb{P}(X \in A, \, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$

- Knowing the value of X gives us no information about the value of Y.
- If X and Y are independent, then:
 - ▶ $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ and $p_{X,Y}(x,y) = p_X(x)p_Y(y)$ (joint is the product of marginals).

•
$$F_{X,Y}(x,y) = F_X(x)F_Y(y).$$

- $f_{Y|X}(y \mid x) = f_Y(y)$ (conditional is the marginal).
- **Conditional independence** implies a similar relationship for conditional distributions:

$$\mathbb{P}(X \in A, \, Y \in B \mid Z) = \mathbb{P}(X \in A \mid Z)\mathbb{P}(\, Y \in B \mid Z)$$

Properties of joint distributions

- Single r.v.: summarized $f_X(x)$ with $\mathbb{E}[X]$ and $\mathbb{V}[X]$.
- With 2 r.v.s: how strong is the dependence between X and Y?
- First: expectations over joint distributions.

Expectations over multiple r.v.s

- 2-d LOTUS: take expectations over the joint distribution.
- With discrete X and Y:

$$\mathbb{E}[g(X, Y)] = \sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)$$

• With continuous X and Y:

$$\mathbb{E}[g(X, Y)] = \int_x \int_y g(x, y) f_{X, Y}(x, y) \, dx \, dy$$

• Marginal expectations:

$$\mathbb{E}[Y] = \sum_{x} \sum_{y} y \, p_{X, Y}(x, y)$$

Applying 2D LOTUS

Theorem

If X and Y are independent r.v.s, then:

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y].$$

Proof for discrete *X* and *Y*:

 \mathbb{E}

$$\begin{split} [XY] &= \sum_{x} \sum_{y} xy f_{X,Y}(x,y) \\ &= \sum_{x} \sum_{y} xy f_{X}(x) f_{Y}(y) \\ &= \left(\sum_{x} x f_{X}(x)\right) \left(\sum_{y} y f_{Y}(y)\right) \\ &= \mathbb{E}[X] \mathbb{E}[Y]. \end{split}$$

Gov 2001

Why (in)dependence?

• Independence assumptions are everywhere in statistics.

- Each response in a poll is considered independent of all other responses.
- In a randomized control trial, treatment assignment is independent of background characteristics.
- Lack of independence is a blessing or a curse:
 - ► Two variables not independent ~→ potentially interesting relationship.
 - In observational studies, treatment assignment is usually not independent of background characteristics.

Defining covariance

• How do we measure the strength of the dependence between two r.v.s?

Definition

The **covariance** between two r.v.s, X and Y, is defined as:

$$\mathsf{Cov}[X, Y] = \mathbb{E}\left[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) \right]$$

- How often do high values of X occur with high values of Y?
- Properties of covariances:
 - $\operatorname{Cov}[X, Y] = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y].$
 - If $X \perp Y$, then Cov[X, Y] = 0.

Covariance Intuition

Covariance Intuition

• Large values of X tend to occur with large values of Y:

▶ $(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) = (\text{pos. num.}) \times (\text{pos. num.}) = +$

• Small values of X tend to occur with small values of Y:

▶ $(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) = (\mathsf{neg. num.}) \times (\mathsf{neg. num.}) = +$

• If these dominate \rightsquigarrow positive covariance.

Covariance Intuition

• Large values of X tend to occur with small values of Y:

▶ $(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) = (\text{pos. num.}) \times (\text{neg. num.}) = -$

• Small values of X tend to occur with large values of Y:

• $(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) = (\text{neg. num.}) \times (\text{pos. num.}) = -$

• If these dominate \rightsquigarrow negative covariance.

Properties of variances and covariances

- $\operatorname{Cov}[X, Y] = \mathbb{E}[(X \mathbb{E}[X])(Y \mathbb{E}[Y])] = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- Properties of covariances:
 - 1. $\operatorname{Cov}[X, X] = \mathbb{V}[X]$
 - 2. $\operatorname{Cov}[X, Y] = \operatorname{Cov}[Y, X]$
 - 3. Cov[X, c] = 0 for any constant c
 - 4. $\operatorname{Cov}[aX, Y] = a \operatorname{Cov}[X, Y]$
 - 5. $\operatorname{Cov}[X + Y, Z] = \operatorname{Cov}[X, Z] + \operatorname{Cov}[Y, Z]$
 - 6. $\mathsf{Cov}[X+Y,Z+W] = \mathsf{Cov}[X,Z] + \mathsf{Cov}[Y,Z] + \mathsf{Cov}[X,W] + \mathsf{Cov}[Y,W]$

Covariances and variances

- Can now state a few more properties of variances.
- Variance of a sum:

$$\mathbb{V}[X+Y] = \mathbb{V}[X] + \mathbb{V}[Y] + 2\mathsf{Cov}[X,Y]$$

• More generally for $n \text{ r.v.s } X_1, \ldots, X_n$:

$$\mathbb{V}[X_1 + \dots + X_n] = \mathbb{V}[X_1] + \dots + \mathbb{V}[X_n] + 2\sum_{i < j} \mathsf{Cov}(X_i, X_j)$$

- If X and Y independent, $\mathbb{V}[X + Y] = \mathbb{V}[X] + \mathbb{V}[Y]$.
- Beware: $\mathbb{V}[X Y] = \mathbb{V}[X] + \mathbb{V}[Y]$ as well.

Zero covariance doesn't imply independence

- We saw that $X \perp Y \Rightarrow \mathsf{Cov}[X, Y] = 0.$
- Does Cov[X, Y] = 0 imply that $X \perp Y$? **No!**
- Counterexample: $X \in \{-1, 0, 1\}$ with equal probability and $Y = X^2$.
- Covariance is a measure of **linear dependence**, so it can miss non-linear dependence.

Correlation

• Correlation is a scale-free measure of linear dependence.

Definition

The **correlation** between two r.v.s X and Y is defined as:

$$\rho = \rho(X, Y) = \frac{\mathsf{Cov}[X, Y]}{\sqrt{\mathbb{V}[X]\mathbb{V}[Y]}} = \mathsf{Cov}\left(\frac{X - \mathbb{E}[X]}{\mathsf{SD}[X]}, \frac{Y - \mathbb{E}[Y]}{\mathsf{SD}[Y]}\right)$$

- Covariance after dividing out the scales of the respective variables.
- Correlation properties:

•
$$-1 \le \rho \le 1$$

► $|\rho(X, Y)| = 1$ if and only if X and Y are perfectly correlated with a deterministic linear relationship: Y = a + bX.

Multivariate random vectors

• Can group r.v.s into random vectors $\mathbf{X} = (X_1, \dots, X_k)'$.

• X is a function from the sample space to \mathbb{R}^k .

- **x** is now a length-k vector and potential value of **X**.
- Generalizes all ideas from 2 variables to k.
- Joint distribution function: $F(\mathbf{x}) = \mathbb{P}(\mathbf{X} \le \mathbf{x}) = \mathbb{P}(X_1 \le x_1, \dots, X_k \le x_k).$
 - Discrete: joint p.m.f. $\mathbb{P}(\mathbf{X} = \mathbf{x})$.
 - Continuous: joint p.d.f.

$$f(\mathbf{x}) = \frac{\partial^k}{\partial x_1 \dots \partial x_k} F(\mathbf{x})$$

• Expectation of a random vector is just the vector of expectations:

$$\mathbb{E}[\mathbf{X}] = (\mathbb{E}[X_1], \mathbb{E}[X_2], \dots, \mathbb{E}[X_k])'$$

Covariance matrices

• Covariance matrix generalizes (co)variance to this setting:

$$\mathbb{V}[\mathbf{X}] = \mathbb{E}\left[(\mathbf{X} - \mathbb{E}[\mathbf{X}])(\mathbf{X} - \mathbb{E}[\mathbf{X}])'
ight]$$

• We usually write $\mathbb{V}[\mathbf{X}] = \Sigma$ and it is a $k \times k$ symmetric matrix:

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1k} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{k1} & \sigma_{k2} & \cdots & \sigma_k^2 \end{pmatrix}$$

- where, $\sigma_j^2 = \mathbb{V}[X_j]$ and $\sigma_{ij} = \mathsf{Cov}(X_i, X_j)$.
- Symmetric $(\Sigma = \Sigma')$ because $Cov(X_i, X_j) = Cov(X_j, X_i)$.

Multivariate standard normal distribution

- Let $\mathbf{Z} = (Z_1, Z_2, \dots, Z_k)$ be i.i.d. $\mathcal{N}(0, 1)$. What is their joint distribution?
- For vector of values $\mathbf{z} = (z_1, z_2, \dots, z_k)^T$

$$f(\mathbf{z}) = \frac{1}{(2\pi)^{k/2}} \exp\left(-\frac{\mathbf{z}'\mathbf{z}}{2}\right)$$

- Easy to see the mean/variance: $\mathbb{E}[\mathbf{Z}] = 0$ and $\mathbb{V}[\mathbf{Z}] = I_k$.
- I_k is the $k \times k$ identity matrix because $\mathbb{V}[Z_j] = 1$ and $\text{Cov}(Z_i, Z_j) = 0$.

Linear transformations of random vectors

Theorem

If $\mathbf{X} \in \mathbb{R}^k$ with $k \times 1$ expectation $\boldsymbol{\mu}$ and $k \times k$ covariance matrix Σ , and \mathbf{A} is a $q \times k$ matrix, then $\mathbf{A}\mathbf{X}$ is a random vector with mean $\mathbf{A}\boldsymbol{\mu}$ and covariance matrix $\mathbf{A}\Sigma\mathbf{A}'$.

• Let $\mathbf{Z} \sim \mathcal{N}(0, I_k)$ and $\mathbf{X} = \boldsymbol{\mu} + \mathbf{B}\mathbf{Z}$, where \mathbf{B} is $q \times k$, then $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{B}\mathbf{B'})$.

•
$$oldsymbol{\mu}$$
: $q imes 1$ mean vector, $\mathbb{E}[\mathbf{X}]=oldsymbol{\mu}.$

- $\mathbb{V}[\mathbf{X}] = \mathbf{B}\mathbf{B}'$: $q \times q$ covariance matrix.
- More generally, if $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ then $\mathbf{Y} = \mathbf{a} + \mathbf{B}\mathbf{X} \sim \mathcal{N}(\mathbf{a} + \mathbf{B}\boldsymbol{\mu}, \mathbf{B}\Sigma\mathbf{B}').$

Properties of the multivariate normal

- If (X_1, X_2, X_3) are MVN, then (X_1, X_2) is also MVN.
- If (X, Y) are multivariate normal with Cov(X, Y) = 0, then X and Y are independent.