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Where are we? Where are we going?

• Distributions of one variable: how to describe and summarize
uncertainty about one variable.

• Today: distributions of multiple variables to describe
relationships between variables.

• Later: use data to learn about probability distributions.
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Why multiple random variables?

• How to measure the relationship between two variables X and Y?
• What if we have many observations of the same variable,

X1,X2, . . . ,Xn?
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Joint distributions
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• The joint distribution of two r.v.s, X and Y, describes what
pairs of observations, (x, y), are more likely than others.

• Shape of the joint distribution ⇝ the relationship between X and
Y.
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Discrete r.v.s

Definition
The joint probability mass function (p.m.f.) of a pair of discrete
r.v.s, (X,Y), describes the probability of any pair of values:

pX,Y(x, y) = P(X = x,Y = y)

• Properties of a joint p.m.f.:
▶ pX,Y(x, y) ≥ 0 (probabilities can’t be negative)
▶ ∑

x
∑

y pX,Y(x, y) = 1 (something must happen)
▶ ∑

x is shorthand for sum over all possible values of X.

Gov 2001 Distribution of multiple RV 5 / 40



Example: Gay marriage and gender

Support (Y = 1) Oppose (Y = 0)
Female X = 1 0.32 0.19
Male X = 0 0.29 0.20

• Joint p.m.f. can be summarized in a cross-tab:
• Each entry is the probability of that combination, pX,Y(x, y).
• What is the probability that we randomly select a woman who

supports gay marriage?

pX,Y(1, 1) = P(X = 1,Y = 1) = 0.32
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Marginal distributions

• Can we get the distribution of just one of the r.v.s alone?
▶ Called the marginal distribution in this context.

• Computing marginal p.m.f. from the joint p.m.f.:

P(Y = y) =
∑

x
P(X = x,Y = y)

• Intuition: sum over the probability that Y = y and X = x for all
possible values of x.
▶ Called marginalizing out X.
▶ Works because values of X are disjoint.
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Example: marginals for gay marriage

Support (Y = 1) Oppose (Y = 0) Marginal
Female X = 1 0.32 0.19 0.51
Male X = 0 0.29 0.20 0.49
Marginal 0.61 0.39

• Joint p.m.f. can be summarized in a cross-tab
• What’s P(Y = 1)?
▶ Probability that a man supports gay marriage plus the probability

that a woman supports gay marriage.

P(Y = 1) = P(X = 1,Y = 1)+P(X = 0,Y = 1) = 0.32+0.29 = 0.61

• Works for all marginals.
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Conditional p.m.f.

• Definition:
The conditional probability mass function or conditional p.m.f.
of Y conditional on X is:

P(Y = y | X = x) = P(X = x,Y = y)
P(X = x)

for all values x such that P(X = x) > 0.
• This is a valid univariate probability distribution!
▶ P(Y = y | X = x) ≥ 0 and

∑
y P(Y = y | X = x) = 1.

• Can define the conditional expectation of this p.m.f.:

E[Y | X = x] =
∑

y
yP(Y = y | X = x)
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Example: conditionals for gay marriage

• Joint p.m.f. can be summarized in a cross-tab:

Support (Y = 1) Oppose (Y = 0) Marginal
Female X = 1 0.32 0.19 0.51
Male X = 0 0.29 0.20 0.49
Marginal 0.61 0.39

• Probability of favoring gay marriage conditional on male?

P(Y = 1 | X = 0) =
P(X = 0,Y = 1)

P(X = 0)
=

0.29

0.29 + 0.20
= 0.592
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Example: conditionals for gay marriage
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• Two values of X⇝ univariate conditional distributions of Y

Gov 2001 Distribution of multiple RV 11 / 40



Bayes and LTP

• Bayes’ rule for r.v.s:

P(Y = y | X = x) = P(X = x | Y = y)P(Y = y)
P(X = x)

• Law of total probability for r.v.s:

P(X = x) =
∑

y
P(X = x | Y = y)P(Y = y)
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Joint c.d.f.s

Definition
For two r.v.s X and Y, the joint cumulative distribution function
(joint c.d.f.) FX,Y(x, y) is defined as:

FX,Y(x, y) = P(X ≤ x,Y ≤ y)

• Well-defined for discrete and continuous X and Y.
• For discrete, we have:

FX,Y(x, y) =
∑
i≤x

∑
j≤y

P(X = i,Y = j)
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Continuous r.v.s

• One continuous r.v.: probability of being in a subset of the real
line.

X

• Two continuous r.v.s: probability of being in some subset of the
2-dimensional plane.

X

Y

A
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Continuous joint p.d.f.

• Definition:
If two continuous r.v.s X and Y have a joint c.d.f. FX,Y, their
joint p.d.f. fX,Y(x, y) is the derivative of FX,Y with respect to x
and y:

fX,Y(x, y) =
∂2

∂x∂yFX,Y(x, y)

• Integrate over both dimensions to get the probability of a region:

P((X,Y) ∈ A) =

∫∫
(x,y)∈A

fX,Y(x, y) dx dy

• {(x, y) : fX,Y(x, y) > 0} is called the support of the distribution.
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Properties of the joint p.d.f.

• Joint p.d.f. must meet the following conditions:
1. fX,Y(x, y) ≥ 0 for all values of (x, y) (nonnegative).
2.
∫∞
−∞

∫∞
−∞ fX,Y(x, y) dx dy = 1 (probabilities “sum” to 1).

• P(X = x,Y = y) = 0 for similar reasons as with single r.v.s.
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Joint densities are 3D
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• X and Y axes are on the “floor,” height is the value of fX,Y(x, y).
• Remember fX,Y(x, y) ≠ P(X = x,Y = y).
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Probability = volume
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• P((X,Y) ∈ A) =
∫∫

(x,y)∈A
fX,Y(x, y) dx dy.

• Probability = volume above a specific region.
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Continuous marginal distributions

• We can recover the marginal PDF of one variable by integrating
over the distribution of the other variable:

fY(y) =
∫ ∞

−∞
fX,Y(x, y) dx

• Works for either variable:

fX(x) =
∫ ∞

−∞
fX,Y(x, y) dy
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Visualizing continuous marginals

X

Y

Z

• Marginal integrates (sums, basically) over the other r.v.:

fY(y) =
∫ ∞

−∞
fX,Y(x, y) dx

• Pile up/flatten all of the joint density onto a single dimension.
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Continuous conditional distributions
• Definition:

The conditional p.d.f. of a continuous random variable is:

fY|X(y | x) = fX,Y(x, y)
fX(x)

for all values x such that fX(x) > 0.
• Implies:

P(a < Y < b | X = x) =
∫ b

a
fY|X(y | x) dy

• Based on the definition of the conditional p.m.f./p.d.f., we have
the following factorization:

fX,Y(x, y) = fY|X(y | x)fX(x)
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Conditional distributions as slices

• fY|X(y | x0) is the conditional p.d.f. of Y when X = x0.
• fY|X(y | x0) is proportional to the joint p.d.f. along x0: fX,Y(y, x0).
• Normalize by dividing by fX(x0) to ensure a proper p.d.f.
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Independence
Definition
Two r.v.s Y and X are independent (which we write X ⊥ Y) if for all
sets A and B:

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B)

• Knowing the value of X gives us no information about the value
of Y.

• If X and Y are independent, then:
▶ fX,Y(x, y) = fX(x)fY(y) and pX,Y(x, y) = pX(x)pY(y) (joint is the

product of marginals).
▶ FX,Y(x, y) = FX(x)FY(y).
▶ fY|X(y | x) = fY(y) (conditional is the marginal).

• Conditional independence implies a similar relationship for
conditional distributions:

P(X ∈ A,Y ∈ B | Z) = P(X ∈ A | Z)P(Y ∈ B | Z)
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Properties of joint distributions

• Single r.v.: summarized fX(x) with E[X] and V[X].
• With 2 r.v.s: how strong is the dependence between X and Y?
• First: expectations over joint distributions.

Gov 2001 Expectations of joint distributions 24 / 40



Expectations over multiple r.v.s

• 2-d LOTUS: take expectations over the joint distribution.
• With discrete X and Y:

E[g(X,Y)] =
∑

x

∑
y

g(x, y)pX,Y(x, y)

• With continuous X and Y:

E[g(X,Y)] =

∫
x

∫
y

g(x, y)fX,Y(x, y) dx dy

• Marginal expectations:

E[Y] =
∑

x

∑
y

y pX,Y(x, y)
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Applying 2D LOTUS
Theorem
If X and Y are independent r.v.s, then:

E[XY] = E[X]E[Y].

Proof for discrete X and Y:

E[XY] =
∑

x

∑
y

xy fX,Y(x, y)

=
∑

x

∑
y

xy fX(x)fY(y)

=

(∑
x

xfX(x)
)(∑

y
yfY(y)

)

= E[X]E[Y].
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Why (in)dependence?

• Independence assumptions are everywhere in statistics.
▶ Each response in a poll is considered independent of all other

responses.
▶ In a randomized control trial, treatment assignment is

independent of background characteristics.
• Lack of independence is a blessing or a curse:
▶ Two variables not independent ⇝ potentially interesting

relationship.
▶ In observational studies, treatment assignment is usually not

independent of background characteristics.
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Defining covariance

• How do we measure the strength of the dependence between two
r.v.s?

Definition
The covariance between two r.v.s, X and Y, is defined as:

Cov[X,Y] = E [(X − E[X])(Y − E[Y])]

• How often do high values of X occur with high values of Y?
• Properties of covariances:
▶ Cov[X,Y] = E[XY]− E[X]E[Y].
▶ If X ⊥ Y, then Cov[X,Y] = 0.
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Covariance Intuition
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Covariance Intuition
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• Large values of X tend to occur with large values of Y:
▶ (X − E[X])(Y − E[Y]) = (pos. num.)× (pos. num.) = +

• Small values of X tend to occur with small values of Y:
▶ (X − E[X])(Y − E[Y]) = (neg. num.)× (neg. num.) = +

• If these dominate ⇝ positive covariance.
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Covariance Intuition
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Properties of variances and covariances

• Cov[X,Y] = E[(X − E[X])(Y − E[Y])] = E[XY]− E[X]E[Y]

• Properties of covariances:
1. Cov[X,X] = V[X]

2. Cov[X,Y] = Cov[Y,X]

3. Cov[X, c] = 0 for any constant c
4. Cov[aX,Y] = a Cov[X,Y]

5. Cov[X + Y,Z] = Cov[X,Z] + Cov[Y,Z]
6. Cov[X+Y,Z+W] = Cov[X,Z]+Cov[Y,Z]+Cov[X,W]+Cov[Y,W]
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Covariances and variances

• Can now state a few more properties of variances.
• Variance of a sum:

V[X + Y] = V[X] + V[Y] + 2Cov[X,Y]

• More generally for n r.v.s X1, . . . ,Xn:

V[X1 + · · ·+ Xn] = V[X1] + · · ·+ V[Xn] + 2
∑
i<j

Cov(Xi,Xj)

• If X and Y independent, V[X + Y] = V[X] + V[Y].
• Beware: V[X − Y] = V[X] + V[Y] as well.
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Zero covariance doesn’t imply independence

• We saw that X ⊥⊥ Y ⇒ Cov[X,Y] = 0.
• Does Cov[X,Y] = 0 imply that X ⊥⊥ Y? No!
• Counterexample: X ∈ {−1, 0, 1} with equal probability and

Y = X2.
• Covariance is a measure of linear dependence, so it can miss

non-linear dependence.
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Correlation

• Correlation is a scale-free measure of linear dependence.

Definition
The correlation between two r.v.s X and Y is defined as:

ρ = ρ(X,Y) =
Cov[X,Y]√
V[X]V[Y]

= Cov
(

X − E[X]

SD[X]
,
Y − E[Y]

SD[Y]

)
• Covariance after dividing out the scales of the respective variables.
• Correlation properties:
▶ −1 ≤ ρ ≤ 1
▶ |ρ(X,Y)| = 1 if and only if X and Y are perfectly correlated with a

deterministic linear relationship: Y = a + bX.
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Multivariate random vectors
• Can group r.v.s into random vectors X = (X1, . . . ,Xk)

′.
▶ X is a function from the sample space to Rk.
▶ x is now a length-k vector and potential value of X.
▶ Generalizes all ideas from 2 variables to k.

• Joint distribution function:
F(x) = P(X ≤ x) = P(X1 ≤ x1, . . . ,Xk ≤ xk).
▶ Discrete: joint p.m.f. P(X = x).
▶ Continuous: joint p.d.f.

f(x) = ∂k

∂x1 . . . ∂xk
F(x)

• Expectation of a random vector is just the vector of expectations:

E[X] = (E[X1],E[X2], . . . ,E[Xk])
′
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Covariance matrices

• Covariance matrix generalizes (co)variance to this setting:

V[X] = E
[
(X − E[X])(X − E[X])′

]
• We usually write V[X] = Σ and it is a k × k symmetric matrix:

Σ =


σ2
1 σ12 · · · σ1k

σ21 σ2
2 · · · σ2k

... ... . . . ...
σk1 σk2 · · · σ2

k


• where, σ2

j = V[Xj] and σij = Cov(Xi,Xj).
• Symmetric (Σ = Σ′) because Cov(Xi,Xj) = Cov(Xj,Xi).
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Multivariate standard normal distribution

• Let Z = (Z1,Z2, . . . ,Zk) be i.i.d. N (0, 1). What is their joint
distribution?

• For vector of values z = (z1, z2, . . . , zk)
T

f(z) = 1

(2π)k/2 exp
(
−z′z

2

)
• Easy to see the mean/variance: E[Z] = 0 and V[Z] = Ik.
• Ik is the k × k identity matrix because V[Zj] = 1 and

Cov(Zi,Zj) = 0.
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Linear transformations of random vectors

Theorem
If X ∈ Rk with k × 1 expectation µ and k × k covariance matrix Σ,
and A is a q × k matrix, then AX is a random vector with mean Aµ
and covariance matrix AΣA′.

• Let Z ∼ N (0, Ik) and X = µ+ BZ, where B is q × k, then
X ∼ N (µ,BB′).
▶ µ: q × 1 mean vector, E[X] = µ.
▶ V[X] = BB′: q × q covariance matrix.

• More generally, if X ∼ N (µ,Σ) then
Y = a + BX ∼ N (a + Bµ,BΣB′).
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Properties of the multivariate normal

• If (X1,X2,X3) are MVN, then (X1,X2) is also MVN.
• If (X,Y) are multivariate normal with Cov(X,Y) = 0, then X and

Y are independent.
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