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Where are we? Where are we going?

e Distributions of one variable: how to describe and summarize
uncertainty about one variable.

e Today: distributions of multiple variables to describe
relationships between variables.

e Later: use data to learn about probability distributions.
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Why multiple random variables?

e How to measure the relationship between two variables X and Y?

e What if we have many observations of the same variable,
X1, Xo,..., X7
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Joint distributions

e The joint distribution of two r.v.s, X and Y, describes what
pairs of observations, (z,y), are more likely than others.

e Shape of the joint distribution ~~ the relationship between X and
Y.

Gov 2001 Distribution of multiple RV

4/ 40



Discrete r.v.s

Definition
The joint probability mass function (p.m.f.) of a pair of discrete
r.v.s, (X, Y), describes the probability of any pair of values:

DX, Y(I’ y) = ]P)(X: z, Y= y)

e Properties of a joint p.m.f.:
> px y(z,y) >0 (probabilities can't be negative)

> > .2, px,v(z,y) =1 (something must happen)
» > is shorthand for sum over all possible values of X.
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Example: Gay marriage and gender

Support (Y=1) Oppose (Y =0)
Female X =1 0.32 0.19
Male X =0 0.29 0.20

e Joint p.m.f. can be summarized in a cross-tab:
e Each entry is the probability of that combination, px, y(z, y).

e What is the probability that we randomly select a woman who
supports gay marriage?

pxy(L1) =P(X=1,Y=1)=0.32
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Marginal distributions

e Can we get the distribution of just one of the r.v.s alone?
» Called the marginal distribution in this context.

e Computing marginal p.m.f. from the joint p.m.f.:

P(Y=y) =) P(X=2Y=y)

e Intuition: sum over the probability that Y= y and X = z for all
possible values of .

» Called marginalizing out X.

» Works because values of X are disjoint.
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Example: marginals for gay marriage

Support (Y=1) Oppose (Y =0) | Marginal
Female X =1 0.32 0.19 0.51
Male X =0 0.29 0.20 0.49
Marginal 0.61 0.39

e Joint p.m.f. can be summarized in a cross-tab
e What's P(Y=1)7?

» Probability that a man supports gay marriage plus the probability
that a woman supports gay marriage.

P(Y=1)=P(X=1,YV=1)+4P(X=0,Y=1) = 0.3240.29 = 0.61

e Works for all marginals.
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Conditional p.m.f.

e Definition:

The conditional probability mass function or conditional p.m.f.
of Y conditional on X is:

P(Y=y|X=1)=

for all values z such that P(X = z) > 0.
e This is a valid univariate probability distribution!
> P(Y=y[X=2)>0and ) P(Y=y|X=12)=1

e Can define the conditional expectation of this p.m.f.:

EY|X=a=) yP(Y=y|X=2)
Y
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Example: conditionals for gay marriage

e Joint p.m.f. can be summarized in a cross-tab:

Support (Y=1) Oppose (Y =0) | Marginal
Female X =1 0.32 0.19 0.51
Male X =10 0.29 0.20 0.49
Marginal 0.61 0.39

e Probability of favoring gay marriage conditional on male?

P(Y=1]|X=0)=

P(X=0,V=1) 0.29

P(X=0)

T 0.29+0.20
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Example: conditionals for gay marriage
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e Two values of X ~~ univariate conditional distributions of Y
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Bayes and LTP

e Bayes’ rule for r.v.s:

P(X=z| Y=yP(Y=y)
P(X = x)

P(Y=y| X=1)=
e Law of total probability for r.v.s:

PX=1)=)» P(X=z|Y=yP(Y=y
Y
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Joint c.d.f.s

Definition
For two r.v.s X and Y, the joint cumulative distribution function
(joint c.d.f.) Fx y(z,y) is defined as:

Fxy(z,y) =P(X <z, Y<y)

o Well-defined for discrete and continuous X and Y.

e For discrete, we have:

Fx y(z,y) = ZZ]P’ =)

i<z j<y
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Continuous r.v.s

e One continuous r.v.: probability of being in a subset of the real
line.

| ] X

e Two continuous r.v.s: probability of being in some subset of the
2-dimensional plane.

Y
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Continuous joint p.d.f.

e Definition:

If two continuous r.v.s X and Y have a joint c.d.f. Fx y, their

joint p.d.f. fx y(z,y) is the derivative of F'x y with respect to z
and ¥

2

0x0y

fX, Y(mv y) = FX, y(il], y)

e Integrate over both dimensions to get the probability of a region:

PV ed) = [[ forto dody

(z,y)EA

e {(z,y): fx,v(z,y) > 0} is called the support of the distribution.
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Properties of the joint p.d.f.

e Joint p.d.f. must meet the following conditions:

1. fx,v(z, y) > 0 for all values of (z,y) (nonnegative).
2. [ 7 fx,v(z,y) dedy =1 (probabilities “sum” to 1).

o P(X == Y=y) =0 for similar reasons as with single r.v.s.
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Joint densities are 3D

e X and Y axes are on the “floor,” height is the value of fx y(z,y).
e Remember fy y(z,y) #P(X =2, YV =1y).
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Probability = volume

P(X,Y)e A) = [[ fxv(zy) dcdy.
(z,y)€A

e Probability = volume above a specific region.
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Continuous marginal distributions

e We can recover the marginal PDF of one variable by integrating
over the distribution of the other variable:

fr(y) = /_OO fx,v(z,y) dv

e Works for either variable:

Jx(z) = /_ " fev(ey) dy
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Visualizing continuous marginals

e Marginal integrates (sums, basically) over the other r.v.:

fr(y) = / " fev(ay) do

e Pile up/flatten all of the joint density onto a single dimension.
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Continuous conditional distributions
o Definition:

The conditional p.d.f. of a continuous random variable is:

o fX, Y(xa y)

for all values z such that fx(z) > 0.

e Implies:
b
P(a < Y<b|X:x)=/ frix(y | o) dy

e Based on the definition of the conditional p.m.f./p.d.f., we have
the following factorization:

fxv(z,y) = fyx(y | 2)fx(x)
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Conditional distributions as slices

* fyix(y | 20) is the conditional p.d.f. of Y when X = 1.

* fyix(y | 20) is proportional to the joint p.d.f. along z0: fx,y(¥, 70)-
e Normalize by dividing by fx(xp) to ensure a proper p.d.f.
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Independence
Definition
Two r.v.s Y and X are independent (which we write X L Y) if for all
sets A and B:

P(Xe A, Ye B)=P(Xec A)P(Ye B)
e Knowing the value of X gives us no information about the value
of Y.

e If X and Y are independent, then:

> fx,v(z,y) = fx(2)fy(y) and px, y(z,y) = px(2)py(y) (joint is the
product of marginals).

> Fxy(z,y) = Fx(z)Fy(y).
> fyix(y| ) = fy(y) (conditional is the marginal).
e Conditional independence implies a similar relationship for
conditional distributions:

P(Xe A,YeB|Z2)=P(Xe A| 2)P(Ye B| 2
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Properties of joint distributions

e Single r.v.: summarized fx(z) with E[X] and V[X].
e With 2 r.v.s: how strong is the dependence between X and Y?

e First: expectations over joint distributions.

Gov 2001 Expectations of joint distributions 24 / 40



Expectations over multiple r.v.s

e 2-d LOTUS: take expectations over the joint distribution.
e With discrete X and Y-

Elg(X, V)] => > gz 9)px v(z )

e With continuous X and Y-

E[g(X, Y)] = / / 9(z, y)fx, y(z, y) drdy

vy

e Marginal expectations:

E[Y =Y ypxv(zy)
Ty
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Applying 2D LOTUS
‘Theorem

If X and Y are independent r.v.s, then:

E[XY] = E[X]E[ Y]

Proof for discrete X and Y:

EXY) =) ayfxv(zy)

=> > ayfx(@)fv(y)

= (Z xfx(x>> (Z yfy(y)>

T Y

— E[XJE[Y].

Expectations of joint distributions



Why (in)dependence?

e Independence assumptions are everywhere in statistics.

» Each response in a poll is considered independent of all other
responses.

» In a randomized control trial, treatment assignment is
independent of background characteristics.

e Lack of independence is a blessing or a curse:

» Two variables not independent ~~ potentially interesting
relationship.

» In observational studies, treatment assignment is usually not
independent of background characteristics.

Gov 2001 Covariance and correlation
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Defining covariance

e How do we measure the strength of the dependence between two
r.v.s?

Definition
The covariance between two r.v.s, X and Y, is defined as:
Cov[X, V] = E[(X - E[X])(Y - E[Y])]

e How often do high values of X occur with high values of Y?
e Properties of covariances:

» Cov[X, Y] =E[XY] — E[X]E[Y].

> If X L Y, then Cov[X, Y] =0.
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Covariance Intuition
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Covariance Intuition

< 4

Y > E[Y]
X < E[X]

e large values of X tend to occur with large values of Y:

2oed
[ ]
... . *
v eV
X < E[X]

EIX]

Y <E[Y]
X > E[X]

> (X—-E[X])(Y—E[Y]) = (pos. num.) X (pos. num.) = +

o Small values of X tend to occur with small values of Y-

> (X—E[X])(Y—E[Y]) = (neg. num.) x (neg. num.) = +

e If these dominate ~~ positive covariance.
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Covariance Intuition

< 4

Y > E[Y]
X <E[X]

e Large values of X tend to occur with small values of Y-

A J
L]
Je e
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X < E[X]

E[X]

Y > E[Y]
X > E[X]

Y < E[Y]
X > E[X]

> (X—E[X])(Y—E[Y]) = (pos. num.) x (neg. num.) = —

e Small values of X tend to occur with large values of Y:

> (X—E[X])(Y—E[Y]) = (neg. num.) x (pos. num.) = —

e If these dominate ~~ negative covariance.
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Properties of variances and covariances

e Cov[X, ¥] = E[(X — E[X])(Y — E[Y])]

e Properties of covariances:

1. C
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2
3. C
4,
5
6

X] = V[X]
Y] = Cov[Y, X]

¢] = 0 for any constant ¢

Cov| X,
ov|X,
ov

ov[X,

[

[

[aX, Y] = aCov[X, Y]

v[X+ Y, Z] = Cov|[X, Z] + Cov|Y, Z]
ov|

= E[XY] - E[X]E[Y]

X+, Z+ W] = Cov[X, Z]4+Cov|Y, Z]+Cov|X, W]+Cov[Y,
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Covariances and variances

e Can now state a few more properties of variances.

Variance of a sum:

V[X + Y] = V[X] 4+ V[Y] 4 2Cov[X, V]
e More generally for nr.v.s Xi,..., Xy:

V[Xy 4+ X = VX ]+ + V] + 2 Cov(X;, X))

1<j

If X and Y independent, V[ X+ Y] = V[X] + V[Y].
Beware: V[X — Y] = V[X] 4+ V[Y] as well.
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Zero covariance doesn’t imply independence

We saw that X Il Y = Cov[X, Y] = 0.
Does Cov[X, Y] = 0 imply that X 1L ¥? No!

Counterexample: X € {—1,0,1} with equal probability and
Y= X2

Covariance is a measure of linear dependence, so it can miss
non-linear dependence.
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Correlation

e Correlation is a scale-free measure of linear dependence.

Definition
The correlation between two r.v.s X and Y is defined as:

Cov[X, V] _ . (X-E[X Y-E[Y
V[X]V[Y] co ( SD[X] ' SD[Y] )

p=pX,Y)=

e Covariance after dividing out the scales of the respective variables.
e Correlation properties:
> —1<p<l1
> |p(X, Y)| =1if and only if X and Y are perfectly correlated with a
deterministic linear relationship: Y= a+ bX.

Gov 2001 Covariance and correlation 35/ 40



Multivariate random vectors
e Can group r.v.s into random vectors X = (X3,..., Xy)".

» X is a function from the sample space to R*.
» x is now a length-k vector and potential value of X.

» Generalizes all ideas from 2 variables to k.

e Joint distribution function:
Fx)=PX <x)=P(X1 <m,..., X < xp).

> Discrete: joint p.m.f. P(X = x).
» Continuous: joint p.d.f.

(9331 .. 8Z'k

e Expectation of a random vector is just the vector of expectations:

E[X] = (E[X1], E[Xs], ..., E[X4])
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Covariance matrices

e Covariance matrix generalizes (co)variance to this setting:

VIX] =E [(X - E[X])(X - E[X])’]

e We usually write V[X] = 3 and it is a k x k symmetric matrix:

2
of o112 - O
2
021 05 -+ 09
Z:
2
Okl Ok2 -+ O

e where, 07 = V[X)] and o;; = Cov(X;, X;).
e Symmetric (X = X') because Cov(Xj;, X;) = Cov(Xj, Xj).
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Multivariate standard normal distribution

Let Z = (Z1, Zo, ..., Z) be i.i.d. N(0,1). What is their joint
distribution?

For vector of values z = (21, 22, ..., 2) "

Easy to see the mean/variance: E[Z] = 0 and V[Z] = I;.

I}, is the k x k identity matrix because V[Z;] =1 and
COV(Zi7 Z]) =0.
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Linear transformations of random vectors

Theorem

If X € RF with k x 1 expectation p and k x k covariance matrix %,
and A is a ¢ X k matrix, then AX is a random vector with mean A
and covariance matrix AXA’.

e Let Z ~ N(0, ;) and X = p + BZ, where B is ¢ x k, then
X ~ N(p,BB).
> u: g x 1 mean vector, E[X] = p.
> V[X] = BB’: ¢ x g covariance matrix.
e More generally, if X ~ A (u, ) then
Y =a+BX ~ N(a+Bpu,BXB).
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Properties of the multivariate normal

o If (X1, X, X3) are MVN, then (X7, X3) is also MVN.

o If (X, Y) are multivariate normal with Cov(X, Y¥) =0, then X and
Y are independent.
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