
8: Sampling and Estimation

Naijia Liu

Spring 2025

Gov 2001 1 / 25



Motivating Example

• Get out to vote studies (Gerber, Green, and Larimer (APSR,
2008)).
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Motivating Example

• How do we make a fair comparison for effect sizes?
• For “neighbor” message group - control group, the ATE is 0.378
• For “civic duty” message group - control group, the ATE is 0.315
• The difference between the two treatments is 0.0634
• Is this a “real difference”? Is it big?
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Why study estimators?

Goal 1: Inference

• What is our best guess about some quantity of interest?
• What are a set of plausible values of the quantity of interest?

Goal 2: Compare estimators

• In an experiment, use simple difference in sample means (Y− X)?
• Or the post-stratification estimator, where we estimate the

difference among two subsets of the data (male and female, for
instance) and then take the weighted average of the two (Z is the
share of women):

(Yf − Xf)Z + (Ym − Xm)(1− Z)

• Which (if either) is better? How would we know?
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Samples from the population
Model-based inference: random vectors X1, . . . ,Xn are i.i.d. draws
from c.d.f. F

• e.g.: Xi = 1 if citizen i votes, Xi = 0 otherwise.
• n is the sample size
• i.i.d. can be justified through random sampling from an infinite

population.
• F is often called the population distribution or just population
• Model-based because we are assuming the probability model F

Two metaphors:

• Actual/potential population of size N ≫ n and we randomly
sample n.

• F represents the data generating process, we repeat n times
Statistical inference or learning is using data to infer F.
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Point estimation

• Goal of inference: learn about the features of the population.
• Parameter: θ is any function of the population distribution F
▶ Also called: quantities of interest, estimands.

• Examples of parameters:
▶ µ = E[Xi]: the mean (turnout rate in the population).
▶ σ2 = V[Xi]: the variance.
▶ µy − µx = E[Yi]− E[Xi]: the difference in mean turnout between

two groups.
• Point estimation: providing a single “best guess” about these

parameters.
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Estimators
• A statistic is any function of the sample {X1, . . . ,Xn}.
▶ Before we see the data, statistics are random and have

distributions, etc.
▶ After we see the data, statistic is realized and we see the specific

value.

Definition
An estimator θ̂n for some parameter θ, is a statistic intended as a
guess about θ.

• θ̂n is a r.v. because it is a function of r.v.s.
▶ ⇝ θ̂n has a distribution.

• An estimate is one particular realization of the estimator
▶ Why is the following statement wrong: “My estimate was the

sample mean and my estimator was 0.38”?
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Examples of Estimators

• For the population expectation, E[Xi], many possible estimators:
▶ θ̂n = Xn, the sample mean
▶ θ̂n = X1, just use the first observation
▶ θ̂n = max(X1, . . . ,Xn)

▶ θ̂n = 3, always guess 3
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The three distributions

• Population Distribution: the data-generating process
▶ Bernoulli in the case of the social pressure/voter turnout example

• Empirical distribution: X1, . . . ,Xn

▶ series of 1s and 0s in the sample
• Sampling distribution: distribution of the estimator over

repeated samples from the population distribution
▶ the 0.38 sample mean in the “Neighbors” group is one draw from

this distribution
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Sampling Distribution Diagram
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Sampling distribution

• Say we take the mean of one sample, which is one draw from the
sampling distribution.

• Let’s take another draw from the population distribution.
• Let’s feed this sample to the sample mean estimator to get

another estimate, which is another draw from the sampling
distribution.
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Sampling distribution by simulation

Let’s generate 10,000 draws from the sampling distribution of the
sample mean here when n = 100.
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Where do estimators come from?
• Parametric modeling: assume X1, . . . ,Xn

i.i.d.∼ F and specify
what family F is from.
▶ Example: F is Pois(λ).
▶ Construct estimator λ̂ using maximum likelihood.
▶ Downside: inferences are model dependent.

• Nonparametric inference: make minimal assumptions on F.
• Plug-in/analogy principle: replace F with the empirical

distribution.
▶ Empirical distribution: probability 1/n at each observed value of Xi

F̂n(x) =
∑n

i=1 I(Xi ≤ x)
n

▶ ⇝ if θ = E[g(X)] replace E with sample means:

θ̂ =
1

n

n∑
i=1

g(Xi)
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Plug-in estimators, examples
• Expectation:

µ = E[Xi] ⇝ µ̂ =
1

n

n∑
i=1

Xi = Xn

• Variance:

σ2 = E[(Xi − E[Xi])
2] ⇝ σ̂2 =

1

n

n∑
i=1

(Xi − Xn)
2

• Covariance:

σxy = Cov[Xi,Yi] =E[(Xi − E[Xi])(Yi − E[Yi])] ⇝

σ̂xy =
1

n

n∑
i=1

(Xi − X)(Yi − Y)
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Properties of estimators

• We only get one draw from the sampling distribution, θ̂n.
• Want to use estimators whose distribution is “close” to the true

value.
• There are two ways we evaluate estimators:
▶ Finite sample: the properties of its sampling distribution for a

fixed sample size n.
▶ Large sample: the properties of the sampling distribution as we

let n → ∞.
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Bias

• The bias of estimator θ̂ for parameter θ is

bias[θ̂] = E[θ̂]− θ.

• An estimator is unbiased if bias[θ̂] = 0.
• Sample mean of i.i.d. X1, . . . ,Xn with E[Xi] = µ

E
[
Xn

]
=

1

n

n∑
i=1

E[Xi] =
1

n

n∑
i=1

µ = µ

• Thus, Xn is unbiased for µ if E[|X|] < ∞
▶ What about a weighted average?

• Unbiasedness is preserved under linear transformations.
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Estimation variance

• Sampling variance: the variance of an estimator V[θ̂].
▶ Measure of how spread the estimator is around its mean.

• Sampling variance of the sample mean:

V
[
Xn

]
=

1

n2

n∑
i=1

V[Xi] =
1

n2

n∑
i=1

σ2 =
σ2

n

• Standard error: standard deviation of the estimator
se(θ̂) =

√
V[θ̂]

▶ Like all SDs, nice that it’s on the same scale.
• Standard error of the sample mean: σ/

√
n
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Mean squared error

• Mean squared error or MSE is

MSE = E[(θ̂n − θ)2]

• The MSE assesses the quality of an estimator.
▶ How big are (squared) deviations from the true parameter?
▶ Ideally, this would be as low as possible!

• Useful decomposition result:

MSE = bias[θ̂n]
2 + V[θ̂n]

• ⇝ for unbiased estimators, MSE is the sampling variance.
• Might accept some bias for large reductions in variance for lower

overall MSE.
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Survey sampling
• Up to now: focus on model-based inference.
▶ X1, . . . ,Xn are iid draws from an infinite population modeled by

cdf F.
• Alternative: a large, but finite sample of size N indexed

i = 1, . . . ,N.
• Population characteristics: x1, x2, . . . , xN (list of fixed numbers)
▶ We’ll think of the population and everything about it as fixed.

• Assumption: simple random sample (e.g., with replacement) of
size n from this population
▶ Number of possible samples:

(N
n
)

▶ Sampling inclusion indicators: I1, I2, . . . , IN

▶ These are random because of the random sampling (uppercase!)
▶ Total sample size is fixed:

∑N
j=1 Ij = n

▶ Inclusion probabilities: π = P(Ij = 1) = n/N
• Different sampling designs lead to different inclusion

probabilities and difference inferences.
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Estimands and estimators
• Estimand: population mean x = 1

N
∑N

i=1 xi

▶ Fixed quantity because the population is fixed and finite.
▶ But we don’t observe all xi, so we cannot calculate it.

• Estimator: sample mean Xn = 1
n
∑N

i=1 Iixi

▶ This estimator is random because the sample is random.
• Design-based inference: randomness comes from sampling

alone and depends on sampling design.
• Unbiasedness proof is illustrative:

E[Xn] = E

[
1

n

N∑
i=1

Iixi

]
=

1

n

N∑
i=1

E[Ii]xi =
1

n

N∑
i=1

n
Nxi =

1

N

N∑
i=1

xi = x

• Remember: unbiased across repeated samples from the sampling
design.
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Variance of the sample mean
• Variance of Xn across repeated samples:

V[Xn] =
(
1− n

N

) s2
n (finite pop. correction)

• s2 is the population variance of xi (a fixed quantity!!):

s2 = 1

N − 1

N∑
i=1

(xi − x)2

• We can still apply the plug-in principle and use the sample
variance S2

V̂[Xn] =
(
1− n

N

) S2

n , S2 =
1

n − 1

N∑
i=1

Ii(xi − Xn)
2

• We can show that this is unbiased so that E[V̂[Xn]] = V[Xn]
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Inverse probability weighting

• More often, we have unequal sampling probabilities:
πi = P(Ii = 1) for each i
▶ Typically to oversample groups that are difficult to reach▶ Or to ensure sufficient sample sizes for smaller minority groups
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IPW

• Horvitz-Thompson estimator:

X̃HT =
1

N

N∑
i=1

Iixi
πi

▶ The HT estimator is unbiased: E[X̃HT] = x
▶ But be very unstable and high variance if a low πi actually gets

sampled
• Alternative: Hajek estimator (also known as the IPW

estimator)

X̃ipw =

∑N
i=1 Iixi/πi∑N
i=1 Ii/πi

• Normalizes by the sum of weights.
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