8: Sampling and Estimation

Naijia Liu

Spring 2025

Motivating Example

• Get out to vote studies (Gerber, Green, and Larimer (APSR, 2008)).

Dear Registered Voter:

WHAT IF YOUR NEIGHBORS KNEW WHETHER YOU VOTED?

Why do so many people fail to vote? We've been talking about the problem for years, but it only seems to get worse. This year, we're taking a new approach. We're sending this mailing to you and your neighbors to publicize who does and does not vote.

The chart shows the names of some of your neighbors, showing which have voted in the past. After the August 8 election, we intend to mail an updated chart. You and your neighbors will all know who voted and who did not.

Motivating Example

• Get out to vote studies (Gerber, Green, and Larimer (APSR, 2008)).

Dear Registered Voter:

DO YOUR CIVIC DUTY AND VOTE!

Why do so many people fail to vote? We've been talking about this problem for years, but it only seems to get worse.

The whole point of democracy is that citizens are active participants in government; that we have a voice in government. Your voice starts with your vote. On August 8, remember your rights and responsibilities as a citizen. Remember to vote.

DO YOUR CIVIC DUTY - VOTE!

Motivating Example

- How do we make a fair comparison for effect sizes?
- For "neighbor" message group control group, the ATE is 0.378
- For "civic duty" message group control group, the ATE is 0.315
- The difference between the two treatments is 0.0634
- Is this a "real difference"? Is it big?

Why study estimators?

Goal 1: Inference

- What is our best guess about some quantity of interest?
- What are a set of plausible values of the quantity of interest?

Goal 2: Compare estimators

- In an experiment, use simple difference in sample means $(\overline{Y} \overline{X})$?
- Or the **post-stratification estimator**, where we estimate the difference among two subsets of the data (male and female, for instance) and then take the weighted average of the two (\overline{Z} is the share of women):

$$(\overline{Y}_f - \overline{X}_f)\overline{Z} + (\overline{Y}_m - \overline{X}_m)(1 - \overline{Z})$$

• Which (if either) is better? How would we know?

Samples from the population

Model-based inference: random vectors X_1, \ldots, X_n are i.i.d. draws from c.d.f. F

- e.g.: $X_i = 1$ if citizen *i* votes, $X_i = 0$ otherwise.
- *n* is the sample size
- i.i.d. can be justified through random sampling from an infinite population.
- *F* is often called the **population distribution** or just **population**
- $\bullet\,$ Model-based because we are assuming the probability model F

Two metaphors:

- Actual/potential population of size $N \gg n$ and we randomly sample n.
- F represents the **data generating process**, we repeat n times

Statistical inference or learning is using data to infer F.

Point estimation

- Goal of inference: learn about the features of the population.
- **Parameter**: θ is any function of the population distribution F
 - Also called: quantities of interest, estimands.
- Examples of parameters:
 - $\mu = \mathbb{E}[X_i]$: the mean (turnout rate in the population).
 - $\sigma^2 = \mathbb{V}[X_i]$: the variance.
 - ▶ $\mu_y \mu_x = \mathbb{E}[Y_i] \mathbb{E}[X_i]$: the difference in mean turnout between two groups.
- **Point estimation**: providing a single "best guess" about these parameters.

Estimators

- A statistic is any function of the sample $\{X_1, \ldots, X_n\}$.
 - Before we see the data, statistics are random and have distributions, etc.
 - After we see the data, statistic is realized and we see the specific value.

Definition

An estimator $\hat{\theta}_n$ for some parameter $\theta,$ is a statistic intended as a guess about $\theta.$

- $\hat{\theta}_n$ is a r.v. because it is a function of r.v.s.
 - $\rightsquigarrow \hat{\theta}_n$ has a distribution.
- An estimate is one particular realization of the estimator
 - Why is the following statement wrong: "My estimate was the sample mean and my estimator was 0.38"?

Examples of Estimators

• For the population expectation, $\mathbb{E}[X_i]$, many possible estimators:

The three distributions

• Population Distribution: the data-generating process

- Bernoulli in the case of the social pressure/voter turnout example
- Empirical distribution: X_1, \ldots, X_n
 - series of 1s and 0s in the sample
- **Sampling distribution**: distribution of the estimator over repeated samples from the population distribution
 - the 0.38 sample mean in the "Neighbors" group is one draw from this distribution

Sampling Distribution Diagram

Sampling distribution

• Say we take the mean of one sample, which is one draw from the sampling distribution.

- Let's take another draw from the population distribution.
- Let's feed this sample to the sample mean estimator to get another estimate, which is another draw from the sampling distribution.

Sampling distribution by simulation

Let's generate 10,000 draws from the sampling distribution of the sample mean here when n = 100.

Results

Does the sampling distribution refers to the distribution of θ ?

Gov 2001

Point Estimation

14 / 25

Where do estimators come from?

- **Parametric modeling**: assume $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} F$ and specify what family F is from.
 - Example: F is $Pois(\lambda)$.
 - Construct estimator $\hat{\lambda}$ using **maximum likelihood**.
 - Downside: inferences are **model dependent**.
- Nonparametric inference: make minimal assumptions on F.
- **Plug-in/analogy principle**: replace *F* with the empirical distribution.
 - Empirical distribution: probability 1/n at each observed value of X_i

$$\hat{F}_n(x) = \frac{\sum_{i=1}^n \mathbb{I}(X_i \le x)}{n}$$

• \rightsquigarrow if $\theta = \mathbb{E}[g(X)]$ replace \mathbb{E} with sample means:

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} g(X_i)$$

Plug-in estimators, examples

• Expectation:

$$\mu = \mathbb{E}[X_i] \quad \rightsquigarrow \quad \hat{\mu} = \frac{1}{n} \sum_{i=1}^n X_i = \overline{X}_n$$

• Variance:

$$\sigma^2 = \mathbb{E}[(X_i - \mathbb{E}[X_i])^2] \quad \rightsquigarrow \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

• Covariance:

$$\sigma_{xy} = \operatorname{Cov}[X_i, Y_i] = \mathbb{E}[(X_i - \mathbb{E}[X_i])(Y_i - \mathbb{E}[Y_i])] \quad \rightsquigarrow \\ \hat{\sigma}_{xy} = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})$$

Properties of estimators

- We only get one draw from the sampling distribution, $\hat{\theta}_n$.
- Want to use estimators whose distribution is "close" to the true value.
- There are two ways we evaluate estimators:
 - ► **Finite sample**: the properties of its sampling distribution for a fixed sample size *n*.
 - Large sample: the properties of the sampling distribution as we let $n \to \infty$.

Bias

• The **bias** of estimator $\hat{\theta}$ for parameter θ is

$$\mathsf{bias}[\hat{\theta}] = \mathbb{E}[\hat{\theta}] - \theta.$$

- An estimator is **unbiased** if $bias[\hat{\theta}] = 0$.
- Sample mean of i.i.d. X_1, \ldots, X_n with $\mathbb{E}[X_i] = \mu$

$$\mathbb{E}\left[\overline{X}_n\right] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i] = \frac{1}{n} \sum_{i=1}^n \mu = \mu$$

• Thus, \overline{X}_n is unbiased for μ if $\mathbb{E}[|X|] < \infty$

What about a weighted average?

• Unbiasedness is preserved under linear transformations.

Estimation variance

- Sampling variance: the variance of an estimator $\mathbb{V}[\hat{\theta}]$.
 - Measure of how spread the estimator is around its mean.
- Sampling variance of the sample mean:

$$\mathbb{V}\left[\overline{X}_n\right] = \frac{1}{n^2} \sum_{i=1}^n \mathbb{V}[X_i] = \frac{1}{n^2} \sum_{i=1}^n \sigma^2 = \frac{\sigma^2}{n}$$

- Standard error: standard deviation of the estimator $\mathrm{se}(\hat{\theta}) = \sqrt{\mathbb{V}[\hat{\theta}]}$

Like all SDs, nice that it's on the same scale.

• Standard error of the sample mean: σ/\sqrt{n}

Mean squared error

• Mean squared error or MSE is

$$\mathsf{MSE} = \mathbb{E}[(\hat{\theta}_n - \theta)^2]$$

- The MSE assesses the quality of an estimator.
 - How big are (squared) deviations from the true parameter?
 - Ideally, this would be as low as possible!
- Useful decomposition result:

$$\mathsf{MSE} = \mathsf{bias}[\hat{\theta}_n]^2 + \mathbb{V}[\hat{\theta}_n]$$

- $\bullet \ \rightsquigarrow$ for unbiased estimators, MSE is the sampling variance.
- Might accept some bias for large reductions in variance for lower overall MSE.

Survey sampling

- Up to now: focus on model-based inference.
 - ► X₁,..., X_n are iid draws from an infinite population modeled by cdf *F*.
- Alternative: a large, but **finite sample** of size N indexed $i = 1, \ldots, N$.
- Population characteristics: x_1, x_2, \ldots, x_N (list of fixed numbers)
 - ► We'll think of the population and everything about it as **fixed**.
- **Assumption**: simple random sample (e.g., with replacement) of size *n* from this population
 - Number of possible samples: $\binom{N}{n}$
 - Sampling inclusion indicators: I_1, I_2, \ldots, I_N
 - These are random because of the random sampling (uppercase!)
 - Total sample size is fixed: $\sum_{j=1}^{N} I_j = n$
 - Inclusion probabilities: $\pi = P(I_j = 1) = n/N$
- Different **sampling designs** lead to different inclusion probabilities and difference inferences.

Estimands and estimators

• Estimand: population mean $\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$

Fixed quantity because the population is fixed and finite.

- But we don't observe all x_i , so we cannot calculate it.
- Estimator: sample mean $\overline{X}_n = \frac{1}{n} \sum_{i=1}^N I_i x_i$

This estimator is random because the sample is random.

- **Design-based inference**: randomness comes from sampling alone and depends on sampling design.
- Unbiasedness proof is illustrative:

$$\mathbb{E}[\overline{X}_n] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^N I_i x_i\right] = \frac{1}{n}\sum_{i=1}^N \mathbb{E}[I_i]x_i = \frac{1}{n}\sum_{i=1}^N \frac{n}{N}x_i = \frac{1}{N}\sum_{i=1}^N x_i = \overline{x}$$

Remember: unbiased across repeated samples from the sampling design.

Gov 2001

Variance of the sample mean

• Variance of \overline{X}_n across repeated samples:

$$\mathbb{V}[\overline{X}_n] = \left(1 - rac{n}{N}
ight) rac{s^2}{n}$$
 (finite pop. correction)

• s^2 is the **population variance** of x_i (a fixed quantity!!):

$$s^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2}$$

• We can still apply the plug-in principle and use the sample variance S²

$$\widehat{\mathbb{V}}[\overline{X}_n] = \left(1 - \frac{n}{N}\right) \frac{S^2}{n}, \quad S^2 = \frac{1}{n-1} \sum_{i=1}^N I_i (x_i - \overline{X}_n)^2$$

• We can show that this is unbiased so that $\mathbb{E}[\hat{\mathbb{V}}[\overline{X}_n]] = \mathbb{V}[\overline{X}_n]$

Inverse probability weighting

- More often, we have unequal sampling probabilities: $\pi_i = P(I_i = 1)$ for each i
 - ► Expisellystorestandessamester are shifting the orage by the straight of the states of the straight of the s

IPW

• Horvitz-Thompson estimator:

$$\tilde{X}_{HT} = \frac{1}{N} \sum_{i=1}^{N} \frac{I_i x_i}{\pi_i}$$

- The HT estimator is unbiased: $\mathbb{E}[\tilde{X}_{HT}] = \overline{x}$
- But be very unstable and high variance if a low π_i actually gets sampled
- Alternative: Hajek estimator (also known as the IPW estimator)

$$\tilde{X}_{ipw} = \frac{\sum_{i=1}^{N} I_i x_i / \pi_i}{\sum_{i=1}^{N} I_i / \pi_i}$$

• Normalizes by the sum of weights.