9: Asymptotics

Naijia Liu

Spring 2025

Where are we and where to go?

- Last time: introducing estimators, looking at finite-sample properties.
- Now: can we say more as sample size grows?

Political canvassing study

- Can canvassers change minds about topics like transgender rights?
- Experimental setting:
 - Randomly assign canvassers to have a conversation about transgender rights or a conversation about recycling.
 - Trans rights conversations focused on "perspective taking"
- Outcome of interest: support for trans rights policies.

Translating into math

- Outcome: $Y_i \in \{1 \text{ (least supportive)}, 2, 3, 4, 5 \text{ (most supportive)}\}$
- Treatment: $D_i \in \{0 \text{ (recycling script)}, 1 \text{ (trans rights script)}\}$
- Goal is to learn **something** about the joint distribution of (Y_i, D_i) .
- Typical estimand would be the difference in conditional expectations:

$$\tau = \mathbb{E}[Y_i \mid D_i = 1] - \mathbb{E}[Y_i \mid D_i = 0]$$

• Typical plug in estimator would be the difference in sample means:

$$\hat{\tau}_n = \frac{\sum_{i=1}^n Y_i D_i}{\sum_{i=1}^n D_i} - \frac{\sum_{i=1}^n Y_i (1 - D_i)}{\sum_{i=1}^n (1 - D_i)}$$

• Today: what happens to the distribution of $\hat{\tau}_n$ as n grows?

Gov 2001

Current knowledge

- For i.i.d. r.v.s, X_1, \ldots, X_n , with $\mathbb{E}[X_i] = \mu$ and $\mathbb{V}[X_i] = \sigma^2$ we know that:
 - \bar{X}_n is unbiased, $\mathbb{E}[\bar{X}_n] = \mathbb{E}[X_i] = \mu$
 - Sampling variance is $\mathbb{V}[\bar{X}_n] = \frac{\sigma^2}{n}$ where $\sigma^2 = \mathbb{V}[X_i]$
 - ▶ None of these rely on a **specific distribution** for *X_i*!
- Assuming $X_i \sim \mathcal{N}(\mu, \sigma^2)$, we know the exact distribution of \bar{X}_n .
 - What if the data isn't normal? What is the sampling distribution of \bar{X}_n ?
- Asymptotics: approximate the sampling distribution of \bar{X}_n as n gets big.

Sequence of sample means

- What can we say about the sample mean n gets large?
- Need to think about sequences of sample means with increasing n:

$$\overline{X}_{1} = X_{1}$$

$$\overline{X}_{2} = (1/2) \cdot (X_{1} + X_{2})$$

$$\overline{X}_{3} = (1/3) \cdot (X_{1} + X_{2} + X_{3})$$

$$\overline{X}_{4} = (1/4) \cdot (X_{1} + X_{2} + X_{3} + X_{4})$$

$$\overline{X}_{5} = (1/5) \cdot (X_{1} + X_{2} + X_{3} + X_{4} + X_{5})$$

$$\vdots$$

$$\overline{X}_{n} = (1/n) \cdot (X_{1} + X_{2} + X_{3} + X_{4} + X_{5} + \dots + X_{n})$$

• Note: this is a sequence of random variables!

Asymptotics and Limits

- Asymptotic analysis is about making **approximations** to finite sample properties.
- Useful to know some properties of deterministic sequences:

Definition

A sequence $\{a_n : n = 1, 2, ...\}$ has the **limit** a written $a_n \to a$ as $n \to \infty$ if for all $\delta > 0$ there is some $n_{\delta} < \infty$ such that for all $n \ge n_{\delta}$, $|a_n - a| \le \delta$.

- a_n gets closer and closer to a as n gets larger (a_n converges to a)
- $\{a_n : n = 1, 2, ...\}$ is **bounded** if there is $b < \infty$ such that $|a_n| < b$ for all n.

Limit example: (n-1)/n

Definition

A sequence $\{a_n : n = 1, 2, ...\}$ has the **limit** a written $a_n \to a$ as $n \to \infty$ if for all $\delta > 0$ there is some $n_{\delta} < \infty$ such that for all $n \ge n_{\delta}$, $|a_n - a| \le \delta$.

Convergence in Probability

Definition

A sequence of random variables, $\{Z_n : n = 1, 2, ...\}$, is said to **converge in probability** to a value *b* if for every $\varepsilon > 0$,

$$\mathbb{P}(|Z_n - b| > \varepsilon) \to 0,$$

as $n \to \infty$. We write this $Z_n \stackrel{p}{\to} b$.

- Basically: probability that Z_n lies outside any (teeny, tiny) interval around b approaches 0 as n→∞.
- Economists write $plim(Z_n) = b$ if $Z_n \xrightarrow{p} b$.
- An estimator is **consistent** if $\hat{\theta}_n \xrightarrow{p} \theta$.
 - Distribution of $\hat{\theta}_n$ collapses on θ as $n \to \infty$.
 - Inconsistent estimators are bad bad bad: more data gives worse answers!

Law of large numbers

Weak Law of Large Numbers

Let X_1, \ldots, X_n be a an i.i.d. draws from a distribution with mean $\mathbb{E}[|X_i|] < \infty$. Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then, $\bar{X}_n \xrightarrow{p} \mathbb{E}[X_i]$.

- Note: we don't assume finite variance, only finite expectation.
- Intuition: The probability of \bar{X}_n being "far away" from μ goes to 0 as n gets big.
- Implies general consistency of **plug-in estimators**

• If
$$\mathbb{E}[|g(X_i)|] < \infty$$
, then $\frac{1}{n} \sum_{i=1}^n g(X_i) \xrightarrow{p} \mathbb{E}[g(X_i)]$

LLN by simulation in R

• Draw different sample sizes from Exponential distribution with rate 0.5

•
$$\mathbb{E}[X_i] = 2$$

```
set.seed(02140)
nsims <- 10000
holder <- matrix(NA, nrow = nsims, ncol = 6)
names_holder <- c("s5", "s15", "s30", "s100", "s1000", "s10000")</pre>
 s5 <- rexp(n = 5, rate = 0.5)
 s30 <- rexp(n = 30, rate = 0.5)
  s100 < -rexp(n = 100, rate = 0.5)
  s1000 < -rexp(n = 1000, rate = 0.5)
  s10000 <- rexp(n = 10000, rate = 0.5)
 holder[i,1] <- mean(s5)</pre>
 holder[i,2] <- mean(s15)</pre>
 holder[i.3] <- mean(s30)
 holder[i,5] <- mean(s1000)</pre>
  holder[i,6] <- mean(s10000)
```


Chebyshev Inequality

- How can we show convergence in probability? Can verify if we know specific distribution of $\hat{\theta}$.
- But can we say anything for arbitrary distributions?

Chebyshev Inequality

Suppose that X is r.v. for which $\mathbb{V}[X]<\infty.$ Then, for every real number $\delta>0,$

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge \delta) \le \frac{\mathbb{V}[X]}{\delta^2}.$$

• Variance places limits on how far an observation can be from its mean.

Proof of Chebyshev

 Let Z = X − 𝔼[X] with density f_Z(x). Probability is just integral over the region:

$$\mathbb{P}(|Z| \ge \delta) = \int_{|x| \ge \delta} f_Z(x) \, dx$$

- Note that where $|x|\geq \delta,$ we have $1\leq x^2/\delta^2,$ so

$$\mathbb{P}(|Z| \ge \delta) \le \int_{|x|\ge \delta} \frac{x^2}{\delta^2} f_Z(x) \, dx \le \int_{-\infty}^{\infty} \frac{x^2}{\delta^2} f_Z(x) \, dx = \frac{\mathbb{E}[Z^2]}{\delta^2} = \frac{\mathbb{V}[X]}{\delta^2}$$

• Under finite variance, applying this to $|\overline{X}_n - \mu|$ proves the LLN.

Properties of convergence in probability

- 1. Continuous mapping theorem: if $X_n \xrightarrow{p} c$, then $g(X_n) \xrightarrow{p} g(c)$ for any continuous function g.
- 2. if $X_n \xrightarrow{p} a$ and $Z_n \xrightarrow{p} b$, then $\blacktriangleright X_n + Z_n \xrightarrow{p} a + b$

$$\blacktriangleright X_n Z_n \xrightarrow{p} ab$$

•
$$X_n/Z_n \xrightarrow{p} a/b$$
 if $b > 0$

Thus, by LLN and CMT:

$$\blacktriangleright (\overline{X}_n)^2 \xrightarrow{p} \mu^2$$

 $\blacktriangleright \log(\overline{X}_n) \xrightarrow{p} \log(\mu)$

Difference in means example

$$\hat{\tau}_n = \frac{\sum_{i=1}^n Y_i D_i}{\sum_{i=1}^n D_i} - \frac{\sum_{i=1}^n Y_i (1 - D_i)}{\sum_{i=1}^n (1 - D_i)}$$

- What about our difference in means estimator for the transphobia example?
- Let's take the sample mean for the treated units:

$$\frac{\sum_{i=1}^{n} Y_i D_i}{\sum_{i=1}^{n} D_i} = \frac{\frac{1}{n} \sum_{i=1}^{n} Y_i D_i}{\frac{1}{n} \sum_{i=1}^{n} D_i} \xrightarrow{p} \frac{\mathbb{E}[Y_i D_i]}{\mathbb{E}[D_i]} = \mathbb{E}[Y_i \mid D_i = 1]$$

Last step uses iterated expectations and the fundamental bridge.

• Same idea for the other sample mean implies,

$$\hat{\tau}_n \xrightarrow{p} \mathbb{E}[Y_i \mid D_i = 1] - \mathbb{E}[Y_i \mid D_i = 0] = \tau$$

• Interpretation: Under iid sampling, adding more units gets us closer and closer to the truth.

Gov 2001

Asymptotics

Unbiased versus consistent

- By Chebyshev, unbiased estimators are consistent if $\mathbb{V}[\hat{\theta}_n] \to 0$.
- Unbiased, not consistent: "first observation" estimator, $\hat{\theta}_n^f = X_1$.
 - Unbiased because $\mathbb{E}[\hat{\theta}_n^f] = \mathbb{E}[X_1] = \mu$
 - Not consistent: θ^f_n is constant in n so its distribution never collapses.
 - Said differently: the variance of $\hat{\theta}_n^f$ never shrinks.
- Consistent, but biased: sample mean with n replaced by n-1:

$$\frac{1}{n-1}\sum_{i=1}^{n} X_i = \frac{n}{n-1}\overline{X}_n \xrightarrow{p} 1 \times \mu$$

Consistent because $n/(n-1) \to 1$ as $n \to \infty$.

Multivariate LLN

- Let $\mathbf{X}_i = (X_{i1}, \dots, X_{ik})$ be a random vectors of length k.
- Random (iid) sample of n of these k vectors, $\mathbf{X}_1, \ldots, \mathbf{X}_n$.
- Vector sample mean:

$$\overline{\mathbf{X}}_{n} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} = \begin{pmatrix} \overline{X}_{n,1} \\ \overline{X}_{n,2} \\ \vdots \\ \overline{X}_{n,k} \end{pmatrix}$$

- Vector WLLN: if $\mathbb{E}[\|\mathbf{X}\|] < \infty$, then as $n \to \infty$, $\overline{\mathbf{X}}_n \xrightarrow{p} \mathbb{E}[\mathbf{X}]$.
 - Converge in probability of a vector is just convergence of each element.
 - ▶ $\mathbb{E}[\|\mathbf{X}\|] < \infty$ is equivalent to $\mathbb{E}[|X_{ij}|] < \infty$ for each $j = 1, \dots, k$