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Where are we and where to go?

• Last time: introducing estimators, looking at finite-sample
properties.

• Now: can we say more as sample size grows?
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Political canvassing study

• Can canvassers change minds about topics like transgender rights?
• Experimental setting:

▶ Randomly assign canvassers to have a conversation about
transgender rights or a conversation about recycling.

▶ Trans rights conversations focused on “perspective taking”
• Outcome of interest: support for trans rights policies.
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Translating into math
• Outcome: Yi ∈ {1 (least supportive), 2, 3, 4, 5 (most supportive)}
• Treatment: Di ∈ {0 (recycling script), 1 (trans rights script)}
• Goal is to learn something about the joint distribution of

(Yi,Di).
• Typical estimand would be the difference in conditional

expectations:

τ = E[Yi | Di = 1]− E[Yi | Di = 0]

• Typical plug in estimator would be the difference in sample means:

τ̂n =

∑n
i=1 YiDi∑n

i=1 Di
−

∑n
i=1 Yi(1− Di)∑n

i=1(1− Di)

• Today: what happens to the distribution of τ̂n as n grows?
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Current knowledge

• For i.i.d. r.v.s, X1, . . . ,Xn, with E[Xi] = µ and V[Xi] = σ2 we
know that:
▶ X̄n is unbiased, E[X̄n] = E[Xi] = µ

▶ Sampling variance is V[X̄n] =
σ2

n where σ2 = V[Xi]

▶ None of these rely on a specific distribution for Xi!
• Assuming Xi ∼ N (µ, σ2), we know the exact distribution of X̄n.

▶ What if the data isn’t normal? What is the sampling distribution
of X̄n?

• Asymptotics: approximate the sampling distribution of X̄n as n
gets big.
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Sequence of sample means
• What can we say about the sample mean n gets large?
• Need to think about sequences of sample means with increasing n:

X1 = X1

X2 = (1/2) · (X1 + X2)

X3 = (1/3) · (X1 + X2 + X3)

X4 = (1/4) · (X1 + X2 + X3 + X4)

X5 = (1/5) · (X1 + X2 + X3 + X4 + X5)

...
Xn = (1/n) · (X1 + X2 + X3 + X4 + X5 + · · ·+ Xn)

• Note: this is a sequence of random variables!
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Asymptotics and Limits

• Asymptotic analysis is about making approximations to finite
sample properties.

• Useful to know some properties of deterministic sequences:

Definition
A sequence {an : n = 1, 2, . . .} has the limit a written an → a as
n → ∞ if for all δ > 0 there is some nδ < ∞ such that for all n ≥ nδ,
|an − a| ≤ δ.

• an gets closer and closer to a as n gets larger (an converges to a)
• {an : n = 1, 2, . . .} is bounded if there is b < ∞ such that
|an| < b for all n.
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Limit example: (n−1)/n

Definition
A sequence {an : n = 1, 2, . . . } has the limit a written an → a as
n → ∞ if for all δ > 0 there is some nδ < ∞ such that for all n ≥ nδ,
|an − a| ≤ δ.
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Convergence in Probability

Definition
A sequence of random variables, {Zn : n = 1, 2, . . . }, is said to
converge in probability to a value b if for every ε > 0,

P(|Zn − b| > ε) → 0,

as n → ∞. We write this Zn
p→ b.

• Basically: probability that Zn lies outside any (teeny, tiny)
interval around b approaches 0 as n → ∞.

• Economists write plim(Zn) = b if Zn
p→ b.

• An estimator is consistent if θ̂n
p→ θ.

▶ Distribution of θ̂n collapses on θ as n → ∞.
▶ Inconsistent estimators are bad bad bad: more data gives worse

answers!
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Law of large numbers

Weak Law of Large Numbers
Let X1, . . . ,Xn be a an i.i.d. draws from a distribution with mean
E[|Xi|] < ∞.
Let X̄n = 1

n
∑n

i=1 Xi. Then, X̄n
p−→ E[Xi].

• Note: we don’t assume finite variance, only finite expectation.
• Intuition: The probability of X̄n being “far away” from µ goes to
0 as n gets big.

• Implies general consistency of plug-in estimators
▶ If E[|g(Xi)|] < ∞, then 1

n
∑n

i=1 g(Xi)
p−→ E[g(Xi)]
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LLN by simulation in R

• Draw different sample sizes from Exponential distribution with
rate 0.5

• E[Xi] = 2
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LLN in Simulation
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LLN in Simulation
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LLN in Simulation
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LLN in Simulation
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LLN in Simulation
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LLN in Simulation
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Chebyshev Inequality

• How can we show convergence in probability? Can verify if we
know specific distribution of θ̂.

• But can we say anything for arbitrary distributions?

Chebyshev Inequality
Suppose that X is r.v. for which V[X] < ∞. Then, for every real
number δ > 0,

P(|X − E[X]| ≥ δ) ≤ V[X]

δ2
.

• Variance places limits on how far an observation can be from its
mean.
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Proof of Chebyshev

• Let Z = X − E[X] with density fZ(x). Probability is just integral
over the region:

P(|Z| ≥ δ) =

∫
|x|≥δ

fZ(x) dx

• Note that where |x| ≥ δ, we have 1 ≤ x2/δ2, so

P(|Z| ≥ δ) ≤
∫
|x|≥δ

x2
δ2

fZ(x) dx ≤
∫ ∞

−∞

x2
δ2

fZ(x) dx =
E[Z2]

δ2
=

V[X]

δ2

• Under finite variance, applying this to |Xn − µ| proves the LLN.
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Properties of convergence in probability

1. Continuous mapping theorem: if Xn
p−→ c, then g(Xn)

p−→ g(c)
for any continuous function g.

2. if Xn
p−→ a and Zn

p−→ b, then
▶ Xn + Zn

p−→ a + b
▶ XnZn

p−→ ab
▶ Xn/Zn

p−→ a/b if b > 0

Thus, by LLN and CMT:
▶ (

Xn
)2 p−→ µ2

▶ log(Xn)
p−→ log(µ)
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Difference in means example

τ̂n =

∑n
i=1 YiDi∑n

i=1 Di
−

∑n
i=1 Yi(1− Di)∑n

i=1(1− Di)

• What about our difference in means estimator for the transphobia
example?

• Let’s take the sample mean for the treated units:

∑n
i=1 YiDi∑n

i=1 Di
=

1
n
∑n

i=1 YiDi
1
n
∑n

i=1 Di

p−→ E[YiDi]

E[Di]
= E[Yi | Di = 1]

Last step uses iterated expectations and the fundamental bridge.
• Same idea for the other sample mean implies,

τ̂n
p−→ E[Yi | Di = 1]− E[Yi | Di = 0] = τ

• Interpretation: Under iid sampling, adding more units gets us
closer and closer to the truth.
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Unbiased versus consistent

• By Chebyshev, unbiased estimators are consistent if V[θ̂n] → 0.
• Unbiased, not consistent: “first observation” estimator,

θ̂f
n = X1.
▶ Unbiased because E[θ̂f

n] = E[X1] = µ

▶ Not consistent: θ̂f
n is constant in n so its distribution never

collapses.
▶ Said differently: the variance of θ̂f

n never shrinks.
• Consistent, but biased: sample mean with n replaced by n − 1:

1

n − 1

n∑
i=1

Xi =
n

n − 1
Xn

p−→ 1× µ

Consistent because n/(n − 1) → 1 as n → ∞.
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Multivariate LLN

• Let Xi = (Xi1, . . . ,Xik) be a random vectors of length k.
• Random (iid) sample of n of these k vectors, X1, . . . ,Xn.
• Vector sample mean:

Xn =
1

n

n∑
i=1

xi =


Xn,1
Xn,2

...
Xn,k


• Vector WLLN: if E[∥X∥] < ∞, then as n → ∞, Xn

p−→ E[X].
▶ Converge in probability of a vector is just convergence of each

element.
▶ E[∥X∥] < ∞ is equivalent to E[|Xij|] < ∞ for each j = 1, . . . , k
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