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Current knowledge

e Foriid. rvs, Xi,..., X, with E[X;] = 1 and V[X;] = 02 we
know that:
> E[X,] =p and V[X,] = "—:
> X, converges to ju as n gets big
» Chebyshev provides some bounds on probabilities.

» Still no distributional assumptions about X!
e Can we say more?
» Can we approximate Pr(a < X,, < b)?
» What family of distributions (Binomial, Uniform, Gamma, etc)?

e Again, need to analyze when n is large.
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Convergence in Distribution

Definition

Let Zy, Zs, ..., be a sequence of r.v.s, and for n =1,2,... let F,(u)
be the c.d.f. of Z,. Then it is said that Z;, Z5, ... converges in
distribution to r.v. W with c.d.f. Fy(u) if

lim F,(u) = Fy(u),

n—00

which we write as Z, i> w.

e Basically: when n is big, the distribution of Z,, is very similar to
the distribution of W

» Also known as the asymptotic distribution or large-sample
distribution

e We use c.d.f.s here to avoid messy details with discrete vs
continuous.
d
o If X, % X, then X, & X
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Central Limit Theorem

Central Limit Theorem

Let Xi,..., X, bei.i.d. r.v.s from a distribution with mean p = E[Xj]
and variance 0 = V[X;]. Then if E[X?] < 0o, we have

Vi (X — 1) 5 N(0,07).
e Subtle point: why center and scale by \/n?

> The LLN implied that X, 2 1 so X, % p, which isn’t very
helpful!

> /n (Xn — u) is more “stable” since its variance doesn’t depend on
n

e But we can use the result to get an approximation:
X, ~ N(u,0?/n), ~ is “approximately distributed as’.

e No assumptions about the distribution of X; except finite
variance.
e ~ approximations to probability statements about X,, when 7 is
big!
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CLT in Simulation
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CLT in Simulation
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CLT in Simulation

[Te)
@
o |
b —
B
c
(]
QO n
9
o |
e T T T T T T 1
-3 -2 -1 0 1 2 3
s30

Distribution of j‘“

Gov 2001 Central Limit Theorem 7/29

B



CLT in Simulation
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CLT in Simulation
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CLT in Simulation
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CLT for plug-in estimators

e Setting: Xi,..., X, i.i.d. with quantity of interest § = E[g(X;)]
> Let Vp = V]g(X)] = E[(9(X:) — 0)?]

Analogy /plug-in estimator: 6, = %Z?Zl 9(X;)

By the CLT, if E[g(X;)?] < oo then

NG (én — 9) 4 A0, V)

Any estimator that has this property is called asymptotically
normal

Vp is the variance of this centered/scaled version of the estimator.

> The approximate variance of the estimator itself will be
Vib,] ~ Vo/n

> The approximate standard error will be se[d,,] = \/Vy/n
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Why is asymptotic normality important?

e An estimator 6,, for 0 is asymptotically normal when
Jn (én . 9) 9 N(0, V)

e Allows us to approximate the probability of 0, being far away
from 6 in large samples.

» Warning: you do not know if your sample is big enough for this to
be a good approximation.
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Transformations

Continuous mapping theorem: for continuous g, we have

Zn S 7 = gZ)% 92

Let X3, Xo,... converge in distribution to some r.v. X

Let Y1, Y5, ... converge in probability to some number ¢

Slutsky's Theorem gives the following result:
1. X, Y, converges in distribution to cX
2. X, + Y, converges in distribution to X+ ¢
3. X,/ Y, converges in distribution to X/cif ¢ #0

Extremely useful when trying to figure out what the large-sample
distribution of an estimator is.
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Variance estimation with plug-in estimators

e Plug-in CLT:

Vi (0n—0) SN, V), Vo =El(s(X) ~0)’

e But we don't know V7! Estimate it!

=1

e We can show that Vp % Vj and so by Slutsky:

\/ﬁ(én_a) d. N(0, Vo

- )NN(O,l)

Vg \ VB
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Multivariate CLT

e Convergence in distribution is the same vector Z,: convergence of
c.d.fs

e Allow us to generalize the CLT to random vectors:

Multivariate Central Limit Theorem
If X; € R are i.i.d. and E[||X;]|?] < oo, then as n — oo,

\/E(Xn - “) i/\/(ovz:%
where p = E[X,;] and ¥ =V[X;] = E[(X; — p)(X; — p)'].

o E[||X;]|?] < oo is equivalent to E[X7,] < oo forall j=1,... k.

» Basically: multivariate CLT holds if each r.v. in the vector has
finite variance.

e Very common for when we're estimating multiple parameters 6
with @,
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Interval estimation — what and why?

0., is our best guess about 6

But P(d,, = 6) = 0!

Alternative: produce a range of plausible values instead of one
number.

» Hopefully will increase the chance that we've captured the truth.

e We can use the distribution of estimators (CLT!!) to derive these
intervals.
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What is a confidence interval?

Definition
A 1 — « confidence interval for a population parameter 6 is a pair of
statistics L = L(Xj,...,X,) and U= U(Xy,...,X,) such that L < U
and such that

PL<O<U)=1—-a, Vb

e Random interval (L, U) will contain the truth 1 — « of the time.

> P(L <0 < U) is the coverage probability of the Cl
e Extremely useful way to represent our uncertainty about our
estimate.
» Shows a range of plausible values given the data.

e A sequence of Cls, [L,, U,] are asymptotically valid if the
coverage probability converges to correct level:

lim P(L, <0< U, =1—-«

n—oo
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Asymptotic confidence intervals
e A sequence of Cls, [L,, U,] are asymptotically valid if the

coverage probability converges to correct level:

lim P(L, <0< U, =1—-«
n—oo
e We can derive such Cls when our estimators are asymptotically

normal:

e Then as n —

Gov 2001 Confidence Interval
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Deriving the 95% CI

n

se(f,)

D>
e

i (—1.96 < < 1.96> 5 0.95
P (—1.96 ~se(fn) <, —0 < 1.96- se(én)> 5 0.95
P (—én —1.96-se(f,) < —0 < —f, +1.96 - se(én)) 5 0.95

P (én —1.96-se(f,) < 0 < 6, +1.96 - se(én)) 5 0.95

e Lower bound: 6, — 1.96 - se(f,)
e Upper bound: 6, + 1.96 - se(f,,)
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Finding the critical values

02 03 04

34.1% | 34.1%

0.0 0.1

P <_Zl—a/2 < en(eji < 21 a/2> — 11—« — (1—06) Cl: énizl_a/g'se(én)
se(Up

e How do we figure out what z;_, /5 will be?
e Intuitively, we want the z values that put a/2 in each of the tails.

» Because normal is symmetric, we have Zaj2 = —2—a)2

> Use the quantile function: z_, /5 = ®'(1 — «/2) (gqnorm in R)
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Cl for Social Pressure Effect

TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary
Election
Experimental Group
Control Civic Duty Hawthorne Self Neighbors
Percentage Voting 29.7% 31.5% 32.2% 34.5% 37.8%
N of Individuals 191,243 38,218 38,204 38,218 38,201

neigh_var <- var(social$voted[social$treatment == "Neighbors"])
neigh_n <- 38201
civic_var <- var(social$voted[social$treatment == "Civic Duty"])
civic_n <- 38218

se_diff <- sqrt(neigh_var/neigh_n + civic_var/civic_n)

c((0.378 - 0.315) - 1.96 * se_diff, (0.378 - 0.315) + 1.96 * se_diff)

This will return 0.0563, 0.0697.
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Interpreting the confidence interval

Caution: a common incorrect interpretation of a confidence
interval:

> “| calculated a 95% confidence interval of [0.05, 0.13], which
means that there is a 95% chance that the true difference in
means is in that interval.”

» This is WRONG.

The true value of the population mean, p, is fixed.

» It is either in the interval or it isn't—there's no room for
probability at all.

The randomness is in the interval: X,, 4+ 1.96 - Sn/\/n.

Correct interpretation: across 95% of random samples, the
constructed confidence interval will contain the true value.
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Confidence interval simulation

e Draw samples of size 500 (pretty big) from A/(1,10)

e Calculate confidence intervals for the sample mean:

X 1.96 x S[X,] ~ Ko+ 1.96 x
\/ﬁ

Fold code
cover rep(@, times = sims
low.bound up . bound rep , times = sims
i sims
draws rnorm , mean , sd sqrt
Llow.bound[i mean(draws sd(draws sqgrt

up .bound[i mean(draws sd(draws sqrt
low.bound[i up.bound[i
cover[i

mean( cover

This will return 0.9493.
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Plot the Cls
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Question

e Question What happens to the size of the confidence interval
when we increase our confidence, from say 95% to 99%? Do
confidence intervals get wider or shorter?

e Answer Wider!

e Decreases o ~ increases 1 — /2 ~ increases z, /o
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Delta method

Delta method
If \/n(6, —0) N N(0, V) and h(u) is continuously differentiable in a
neighborhood around 6, then as n — oo,

Vi (W) = h(8)) % N (0, (H(8))* Vi)

e Why A() continuously differentiable?
» Near 0 we can approximate A() with a line where /' is the slope.
> So h(6,) — h(d) = K (0)(6, —6)
e Examples:
> Va(X, - 1%) 5 N0, (20)%0%)
> /(log(X,) — log(n)) % N(0,0%/1s2)
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Multivariate Delta Method

e What if we want to know the asymptotic distribution of a
function of 6,,?

e Let h(@) map from R* — R™ and be continuously differentiable.
> Ex: h(01,92,93) = (92/91,03/91), from R3 — RZ

» Like univariate case, we need the derivatives arranged in m x k
Jacobian matrix:

O O . Ol
901 00y 00,
Ohy  Ohy . Ohy
0 90 o0
H(B) =Veh(e)= | 7+ ™ %
Ohy Ol . Ohm
891 892 89k

o Multivariate delta method: if \/n(0, — 6) % A/(0,X), then

Va(h(8,) —h(6)) % N(0,H(6)SH(6)')
2720



Stochastic order notation

e When working with asymptotics, it's often useful to have some
shorthand.

e Order notation for deterministic sequences:
» If a, — 0, then we write a,, = o(1) ("little-oh-one")
> If n=*a, — 0, we write a,, = o(n?)
» If a, is bounded, we write a,, = O(1) ("big-oh-one”)
» If n~*a, is bounded, we write a,, = O(n*)

e Stochastic order notation for random sequence, 7,
> If Z, 5 0, we write Z,, = 0,(1) ("“little-oh-p-one”)
> For any consistent estimator, we have f,, = 6 + op(1)

> If a3 Z, 2 0, we write Z, = 0,(a,)
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Bounded in probability

Definition
A random sequence Z, is bounded in probability, written
Zn = Op(1) ("big-oh-p-one”) for all 6 > 0 there exists a M; and n;,
such that for n > ns,
P(|Z,| > Ms) < o

e Z, = 0y(1) implies Z, = Op,(1) but not the reverse.

e If Z, converges in distribution, it is Op,(1), so if the CLT applies
we have:

V(0 = 0) = Oy(1)
e If a1 Z, = 0,(1), we write Z, = Op(ay), so we have:
9n == 0 + Op(nfl/z)
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