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Current knowledge

• For i.i.d. r.v.s, X1, . . . ,Xn, with E[Xi] = µ and V[Xi] = σ2 we
know that:
▶ E[Xn] = µ and V[Xn] =

σ2

n

▶ Xn converges to µ as n gets big
▶ Chebyshev provides some bounds on probabilities.
▶ Still no distributional assumptions about Xi!

• Can we say more?
▶ Can we approximate Pr(a < Xn < b)?
▶ What family of distributions (Binomial, Uniform, Gamma, etc)?

• Again, need to analyze when n is large.
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Convergence in Distribution
Definition
Let Z1,Z2, . . ., be a sequence of r.v.s, and for n = 1, 2, . . . let Fn(u)
be the c.d.f. of Zn. Then it is said that Z1,Z2, . . . converges in
distribution to r.v. W with c.d.f. FW(u) if

lim
n→∞

Fn(u) = FW(u),

which we write as Zn
d−→ W.

• Basically: when n is big, the distribution of Zn is very similar to
the distribution of W
▶ Also known as the asymptotic distribution or large-sample

distribution
• We use c.d.f.s here to avoid messy details with discrete vs

continuous.
• If Xn

p−→ X, then Xn
d−→ X
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Central Limit Theorem
Central Limit Theorem
Let X1, . . . ,Xn be i.i.d. r.v.s from a distribution with mean µ = E[Xi]
and variance σ2 = V[Xi]. Then if E[X2

i ] < ∞, we have
√

n
(
Xn − µ

) d−→ N (0, σ2).

• Subtle point: why center and scale by √
n?

▶ The LLN implied that Xn
p−→ µ so Xn

d−→ µ, which isn’t very
helpful!

▶ √
n
(
Xn − µ

)
is more “stable” since its variance doesn’t depend on

n
• But we can use the result to get an approximation:

Xn
a∼ N(µ, σ2/n), a∼ is “approximately distributed as”.

• No assumptions about the distribution of Xi except finite
variance.

• ⇝ approximations to probability statements about Xn when n is
big!
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CLT in Simulation
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CLT in Simulation
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CLT in Simulation
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CLT in Simulation
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CLT in Simulation
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CLT in Simulation
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CLT for plug-in estimators

• Setting: X1, . . . ,Xn i.i.d. with quantity of interest θ = E[g(Xi)]

▶ Let Vθ = V[g(Xi)] = E[(g(Xi)− θ)2]

• Analogy/plug-in estimator: θ̂n = 1
n
∑n

i=1 g(Xi)

• By the CLT, if E[g(Xi)2] < ∞ then

√
n
(
θ̂n − θ

)
d−→ N (0,Vθ)

• Any estimator that has this property is called asymptotically
normal

• Vθ is the variance of this centered/scaled version of the estimator.
▶ The approximate variance of the estimator itself will be

V[θ̂n]
a∼ Vθ/n

▶ The approximate standard error will be se[θ̂n] =
√

Vθ/n
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Why is asymptotic normality important?

• An estimator θ̂n for θ is asymptotically normal when
√

n
(
θ̂n − θ

)
d−→ N (0,Vθ)

• Allows us to approximate the probability of θ̂n being far away
from θ in large samples.
▶ Warning: you do not know if your sample is big enough for this to

be a good approximation.
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Transformations

• Continuous mapping theorem: for continuous g, we have

Zn
d−→ Z =⇒ g(Zn)

d−→ g(Z)

• Let X1,X2, . . . converge in distribution to some r.v. X
• Let Y1,Y2, . . . converge in probability to some number c
• Slutsky’s Theorem gives the following result:

1. XnYn converges in distribution to cX
2. Xn + Yn converges in distribution to X + c
3. Xn/Yn converges in distribution to X/c if c ̸= 0

• Extremely useful when trying to figure out what the large-sample
distribution of an estimator is.

Gov 2001 Central Limit Theorem 13 / 29



Variance estimation with plug-in estimators

• Plug-in CLT:

√
n
(
θ̂n − θ

)
d−→ N (0,Vθ), Vθ = E[(g(Xi)− θ)2]

• But we don’t know Vθ?! Estimate it!

V̂θ =
1

n

n∑
i=1

(
g(Xi)− θ̂n

)2
• We can show that V̂θ

p−→ Vθ and so by Slutsky:

√
n
(
θ̂n − θ

)
√

V̂θ

d−→ N (0,Vθ)√
Vθ

∼ N (0, 1)
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Multivariate CLT
• Convergence in distribution is the same vector Zn: convergence of

c.d.f.s
• Allow us to generalize the CLT to random vectors:

Multivariate Central Limit Theorem
If Xi ∈ Rk are i.i.d. and E[∥Xi∥2] < ∞, then as n → ∞,

√
n
(
Xn − µ

) d−→ N (0,Σ),

where µ = E[Xi] and Σ = V[Xi] = E[(Xi − µ)(Xi − µ)′].

• E[∥Xi∥2] < ∞ is equivalent to E[X2
i,j] < ∞ for all j = 1, . . . , k.

▶ Basically: multivariate CLT holds if each r.v. in the vector has
finite variance.

• Very common for when we’re estimating multiple parameters θ
with θ̂n
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Interval estimation – what and why?

• θ̂n is our best guess about θ
• But P(θ̂n = θ) = 0!
• Alternative: produce a range of plausible values instead of one

number.
▶ Hopefully will increase the chance that we’ve captured the truth.

• We can use the distribution of estimators (CLT!!) to derive these
intervals.
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What is a confidence interval?
Definition
A 1− α confidence interval for a population parameter θ is a pair of
statistics L = L(X1, . . . ,Xn) and U = U(X1, . . . ,Xn) such that L < U
and such that

P(L ≤ θ ≤ U) = 1− α, ∀θ

• Random interval (L,U) will contain the truth 1− α of the time.
▶ P(L ≤ θ ≤ U) is the coverage probability of the CI

• Extremely useful way to represent our uncertainty about our
estimate.
▶ Shows a range of plausible values given the data.

• A sequence of CIs, [Ln,Un] are asymptotically valid if the
coverage probability converges to correct level:

lim
n→∞

P(Ln ≤ θ ≤ Un) = 1− α
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Asymptotic confidence intervals
• A sequence of CIs, [Ln,Un] are asymptotically valid if the

coverage probability converges to correct level:

lim
n→∞

P(Ln ≤ θ ≤ Un) = 1− α

• We can derive such CIs when our estimators are asymptotically
normal:

θ̂n − θ

se(θ̂n)

d−→ N (0, 1)

• Then as n → ∞

P

(
−1.96 ≤ θ̂n − θ

se(θ̂)
≤ 1.96

)
→ 0.95
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Deriving the 95% CI

P

(
−1.96 ≤ θ̂n − θ

se(θ̂n)
≤ 1.96

)
→ 0.95

P
(
−1.96 · se(θ̂n) ≤ θ̂n − θ ≤ 1.96 · se(θ̂n)

)
→ 0.95

P
(
−θ̂n − 1.96 · se(θ̂n) ≤ −θ ≤ −θ̂n + 1.96 · se(θ̂n)

)
→ 0.95

P
(
θ̂n − 1.96 · se(θ̂n) ≤ θ ≤ θ̂n + 1.96 · se(θ̂n)

)
→ 0.95

• Lower bound: θ̂n − 1.96 · se(θ̂n)

• Upper bound: θ̂n + 1.96 · se(θ̂n)
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Finding the critical values

P

(
−z1−α/2 ≤ θ̂n − θ

se(θ̂n)
≤ z1−α/2

)
→ 1−α =⇒ (1−α) CI : θ̂n±z1−α/2·se(θ̂n)

• How do we figure out what z1−α/2 will be?
• Intuitively, we want the z values that put α/2 in each of the tails.
▶ Because normal is symmetric, we have zα/2 = −z1−α/2

▶ Use the quantile function: z1−α/2 = Φ−1(1− α/2) (qnorm in R)
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CI for Social Pressure Effect

This will return 0.0563, 0.0697.
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Interpreting the confidence interval

• Caution: a common incorrect interpretation of a confidence
interval:
▶ “I calculated a 95% confidence interval of [0.05, 0.13], which

means that there is a 95% chance that the true difference in
means is in that interval.”

▶ This is WRONG.
• The true value of the population mean, µ, is fixed.
▶ It is either in the interval or it isn’t—there’s no room for

probability at all.
• The randomness is in the interval: Xn ± 1.96 · Sn/

√
n.

• Correct interpretation: across 95% of random samples, the
constructed confidence interval will contain the true value.
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Confidence interval simulation
• Draw samples of size 500 (pretty big) from N (1, 10)

• Calculate confidence intervals for the sample mean:

Xn ± 1.96× ŝe[Xn]⇝ Xn ± 1.96× Sn√
n

This will return 0.9493.
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Plot the CIs
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Question

• Question What happens to the size of the confidence interval
when we increase our confidence, from say 95% to 99%? Do
confidence intervals get wider or shorter?

• Answer Wider!
• Decreases α⇝ increases 1− α/2⇝ increases zα/2
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Delta method

Delta method
If √n(θ̂n − θ)

d−→ N (0,Vθ) and h(u) is continuously differentiable in a
neighborhood around θ, then as n → ∞,

√
n
(

h(θ̂n)− h(θ)
)

d−→ N (0, (h′(θ))2Vθ)

• Why h() continuously differentiable?
▶ Near θ we can approximate h() with a line where h′ is the slope.
▶ So h(θ̂n)− h(θ) ≈ h′(θ)(θ̂n − θ)

• Examples:
▶ √

n(X2

n − µ2)
d−→ N (0, (2µ)2σ2)

▶ √
n(log(Xn)− log(µ)) d−→ N (0, σ2/µ2)
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Multivariate Delta Method
• What if we want to know the asymptotic distribution of a

function of θ̂n?
• Let h(θ) map from Rk → Rm and be continuously differentiable.
▶ Ex: h(θ1, θ2, θ3) = (θ2/θ1, θ3/θ1), from R3 → R2

▶ Like univariate case, we need the derivatives arranged in m × k
Jacobian matrix:

H(θ) = ∇θh(θ) =


∂h1
∂θ1

∂h1
∂θ2

· · · ∂h1
∂θk

∂h2
∂θ1

∂h2
∂θ2

· · · ∂h2
∂θk... ... . . . ...

∂hm
∂θ1

∂hm
∂θ2

· · · ∂hm
∂θk


• Multivariate delta method: if √n(θ̂n − θ)

d−→ N (0,Σ), then

√
n(h(θ̂n)− h(θ)) d−→ N (0,H(θ)ΣH(θ)′)
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Stochastic order notation

• When working with asymptotics, it’s often useful to have some
shorthand.

• Order notation for deterministic sequences:
▶ If an → 0, then we write an = o(1) (“little-oh-one”)
▶ If n−λan → 0, we write an = o(nλ)

▶ If an is bounded, we write an = O(1) (“big-oh-one”)
▶ If n−λan is bounded, we write an = O(nλ)

• Stochastic order notation for random sequence, Zn

▶ If Zn
p−→ 0, we write Zn = op(1) (“little-oh-p-one”)

▶ For any consistent estimator, we have θ̂n = θ + op(1)

▶ If a−1
n Zn

p−→ 0, we write Zn = op(an)
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Bounded in probability

Definition
A random sequence Zn is bounded in probability, written
Zn = Op(1) (“big-oh-p-one”) for all δ > 0 there exists a Mδ and nδ,
such that for n ≥ nδ,

P(|Zn| > Mδ) < δ

• Zn = op(1) implies Zn = Op(1) but not the reverse.
• If Zn converges in distribution, it is Op(1), so if the CLT applies

we have:

√
n(θ̂n − θ) = Op(1)

• If a−1
n Zn = Op(1), we write Zn = Op(an), so we have:

θ̂n = θ + Op(n−1/2)
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