9: Asymptotics

Naijia Liu

Spring 2025

Current knowledge

• For i.i.d. r.v.s, X_1, \ldots, X_n , with $\mathbb{E}[X_i] = \mu$ and $\mathbb{V}[X_i] = \sigma^2$ we know that:

•
$$\mathbb{E}[\overline{X}_n] = \mu$$
 and $\mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n}$

- \overline{X}_n converges to μ as n gets big
- Chebyshev provides some bounds on probabilities.
- ▶ Still no distributional assumptions about *X_i*!
- Can we say more?
 - Can we approximate $Pr(a < \overline{X}_n < b)$?
 - What family of distributions (Binomial, Uniform, Gamma, etc)?
- Again, need to analyze when n is large.

Convergence in Distribution

Definition

Let Z_1, Z_2, \ldots , be a sequence of r.v.s, and for $n = 1, 2, \ldots$ let $F_n(u)$ be the c.d.f. of Z_n . Then it is said that Z_1, Z_2, \ldots converges in distribution to r.v. W with c.d.f. $F_W(u)$ if

$$\lim_{n \to \infty} F_n(u) = F_W(u),$$

which we write as $Z_n \xrightarrow{d} W$.

- Basically: when n is big, the distribution of \mathbb{Z}_n is very similar to the distribution of W
 - Also known as the asymptotic distribution or large-sample distribution
- We use c.d.f.s here to avoid messy details with discrete vs continuous.

• If
$$X_n \xrightarrow{p} X$$
, then $X_n \xrightarrow{d} X$

Central Limit Theorem

Central Limit Theorem

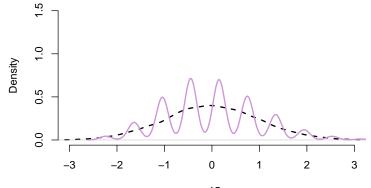
Let X_1, \ldots, X_n be i.i.d. r.v.s from a distribution with mean $\mu = \mathbb{E}[X_i]$ and variance $\sigma^2 = \mathbb{V}[X_i]$. Then if $\mathbb{E}[X_i^2] < \infty$, we have

$$\sqrt{n}\left(\overline{X}_n-\mu\right)\xrightarrow{d}\mathcal{N}(0,\sigma^2).$$

- Subtle point: why center and scale by \sqrt{n} ?
 - ► The LLN implied that $\overline{X}_n \xrightarrow{p} \mu$ so $\overline{X}_n \xrightarrow{d} \mu$, which isn't very helpful!
 - $\sqrt{n} \left(\overline{X}_n \mu \right)$ is more "stable" since its variance doesn't depend on n
- But we can use the result to get an approximation: $\overline{X}_n \stackrel{a}{\sim} N(\mu, \sigma^2/n)$, $\stackrel{a}{\sim}$ is "approximately distributed as".
- No assumptions about the distribution of X_i except finite variance.
- \rightsquigarrow approximations to probability statements about \overline{X}_n when n is big!

Gov 2001

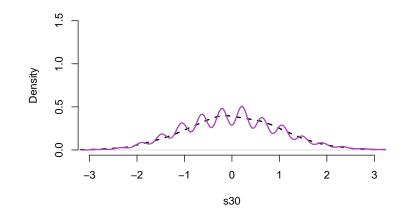
set.seed(02138) nsims <= 100000 holder2 <- matrix(NA, nrow = nsims, ncol = 6) for (i in 1:nsims) { s5 <- rbinom(n = 5, size = 1, prob = 0.25) s136 <- rbinom(n = 16, size = 1, prob = 0.25) s100 <- rbinom(n = 100, size = 1, prob = 0.25) s1000 <- rbinom(n = 1000, size = 1, prob = 0.25) s10000 <- rbinom(n = 10000, size = 1, prob = 0.25) holder2[i,1] <- mean(s1) holder2[i,2] <- mean(s1) holder2[i,3] <- mean(s1) holder2[i,3] <- mean(s10) holder2[i,5] <- mean(s1000) holder2[i,5] <- mean(s1000) holder2[i,6] <- mean(s1000)</pre>



s15

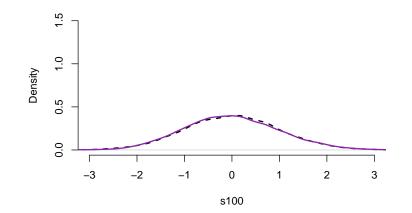
Distribution of $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$

Gov 2001

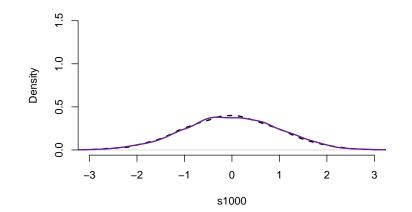


Distribution of $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$

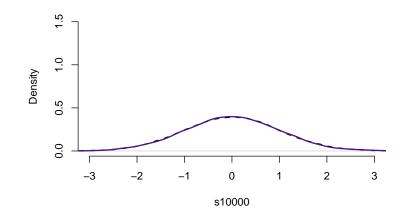
Gov 2001



Distribution of $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$



Distribution of $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$



Distribution of $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$

CLT for plug-in estimators

• Setting: X_1, \ldots, X_n i.i.d. with quantity of interest $\theta = \mathbb{E}[g(X_i)]$

• Let
$$V_{\theta} = \mathbb{V}[g(X_i)] = \mathbb{E}[(g(X_i) - \theta)^2]$$

- Analogy/plug-in estimator: $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n g(X_i)$
- By the CLT, if $\mathbb{E}[g(X_i)^2] < \infty$ then

$$\sqrt{n}\left(\hat{\theta}_n - \theta\right) \xrightarrow{d} \mathcal{N}(0, V_{\theta})$$

- Any estimator that has this property is called **asymptotically normal**
- V_{θ} is the variance of this centered/scaled version of the estimator.
 - The approximate variance of the estimator itself will be $\mathbb{V}[\hat{\theta}_n] \stackrel{a}{\sim} V_\theta/n$
 - The approximate standard error will be $se[\hat{\theta}_n] = \sqrt{V_{\theta}/n}$

Why is asymptotic normality important?

• An estimator $\hat{\theta}_n$ for θ is **asymptotically normal** when

$$\sqrt{n}\left(\hat{\theta}_n - \theta\right) \xrightarrow{d} \mathcal{N}(0, V_{\theta})$$

- Allows us to approximate the probability of $\hat{\theta}_n$ being far away from θ in large samples.
 - Warning: you do not know if your sample is big enough for this to be a good approximation.

Transformations

• Continuous mapping theorem: for continuous g, we have

$$Z_n \xrightarrow{d} Z \implies g(Z_n) \xrightarrow{d} g(Z)$$

- Let X_1, X_2, \ldots converge in distribution to some r.v. X
- Let Y_1, Y_2, \ldots converge in probability to some number c
- Slutsky's Theorem gives the following result:
 - 1. $X_n Y_n$ converges in distribution to cX
 - 2. $X_n + Y_n$ converges in distribution to X + c
 - 3. X_n/Y_n converges in distribution to X/c if $c \neq 0$
- Extremely useful when trying to figure out what the large-sample distribution of an estimator is.

Variance estimation with plug-in estimators

• Plug-in CLT:

$$\sqrt{n}\left(\hat{\theta}_n - \theta\right) \xrightarrow{d} \mathcal{N}(0, V_{\theta}), \qquad V_{\theta} = \mathbb{E}[(g(X_i) - \theta)^2]$$

• But we don't know V_{θ} ?! Estimate it!

$$\hat{V}_{\theta} = \frac{1}{n} \sum_{i=1}^{n} \left(g(X_i) - \hat{\theta}_n \right)^2$$

• We can show that $\hat{V}_{\theta} \xrightarrow{p} V_{\theta}$ and so by Slutsky:

$$\frac{\sqrt{n}\left(\hat{\theta}_n - \theta\right)}{\sqrt{\hat{V}_{\theta}}} \xrightarrow{d} \frac{\mathcal{N}(0, V_{\theta})}{\sqrt{V_{\theta}}} \sim \mathcal{N}(0, 1)$$

Multivariate CLT

- Convergence in distribution is the same vector Z_n : convergence of c.d.f.s
- Allow us to generalize the CLT to random vectors:

Multivariate Central Limit Theorem

If $\mathbf{X}_i \in \mathbb{R}^k$ are i.i.d. and $\mathbb{E}[\|\mathbf{X}_i\|^2] < \infty$, then as $n \to \infty$,

$$\sqrt{n} \left(\overline{\mathbf{X}}_n - \boldsymbol{\mu} \right) \xrightarrow{d} \mathcal{N}(0, \boldsymbol{\Sigma}),$$

where $\boldsymbol{\mu} = \mathbb{E}[\mathbf{X}_i]$ and $\boldsymbol{\Sigma} = \mathbb{V}[\mathbf{X}_i] = \mathbb{E}[(\mathbf{X}_i - \boldsymbol{\mu})(\mathbf{X}_i - \boldsymbol{\mu})'].$

- $\mathbb{E}[\|\mathbf{X}_i\|^2] < \infty$ is equivalent to $\mathbb{E}[X_{i,j}^2] < \infty$ for all $j = 1, \dots, k$.
 - Basically: multivariate CLT holds if each r.v. in the vector has finite variance.
- Very common for when we're estimating multiple parameters $\pmb{\theta}$ with $\hat{\pmb{\theta}}_n$

Gov 2001

Interval estimation – what and why?

- $\hat{\theta}_n$ is our best guess about θ
- But $\mathbb{P}(\hat{\theta}_n = \theta) = 0!$
- Alternative: produce a range of plausible values instead of one number.
 - ► Hopefully will increase the chance that we've captured the truth.
- We can use the distribution of estimators (CLT!!) to derive these intervals.

What is a confidence interval?

Definition

A $1 - \alpha$ confidence interval for a population parameter θ is a pair of statistics $L = L(X_1, \ldots, X_n)$ and $U = U(X_1, \ldots, X_n)$ such that L < U and such that

$$\mathbb{P}(L \le \theta \le U) = 1 - \alpha, \quad \forall \theta$$

• Random interval (L, U) will contain the truth $1 - \alpha$ of the time.

• $\mathbb{P}(L \leq \theta \leq U)$ is the **coverage probability** of the Cl

• Extremely useful way to represent our uncertainty about our estimate.

Shows a range of plausible values given the data.

• A sequence of Cls, $[L_n, U_n]$ are **asymptotically valid** if the coverage probability converges to correct level:

$$\lim_{n \to \infty} \mathbb{P}(L_n \le \theta \le U_n) = 1 - \alpha$$

Asymptotic confidence intervals

• A sequence of Cls, $[L_n, U_n]$ are **asymptotically valid** if the coverage probability converges to correct level:

$$\lim_{n \to \infty} \mathbb{P}(L_n \le \theta \le U_n) = 1 - \alpha$$

 We can derive such CIs when our estimators are asymptotically normal:

$$\frac{\hat{\theta}_n - \theta}{\mathsf{se}(\hat{\theta}_n)} \xrightarrow{d} \mathcal{N}(0, 1)$$

• Then as $n \to \infty$

$$\mathbb{P}\left(-1.96 \le \frac{\hat{\theta}_n - \theta}{\mathsf{se}(\hat{\theta})} \le 1.96\right) \to 0.95$$

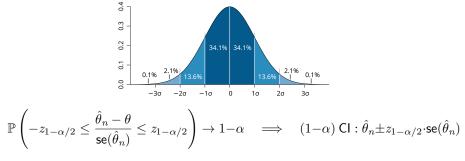
Deriving the 95% CI

$$\mathbb{P}\left(-1.96 \leq \frac{\hat{\theta}_n - \theta}{\operatorname{se}(\hat{\theta}_n)} \leq 1.96\right) \to 0.95$$
$$\mathbb{P}\left(-1.96 \cdot \operatorname{se}(\hat{\theta}_n) \leq \hat{\theta}_n - \theta \leq 1.96 \cdot \operatorname{se}(\hat{\theta}_n)\right) \to 0.95$$
$$\mathbb{P}\left(-\hat{\theta}_n - 1.96 \cdot \operatorname{se}(\hat{\theta}_n) \leq -\theta \leq -\hat{\theta}_n + 1.96 \cdot \operatorname{se}(\hat{\theta}_n)\right) \to 0.95$$
$$\mathbb{P}\left(\hat{\theta}_n - 1.96 \cdot \operatorname{se}(\hat{\theta}_n) \leq \theta \leq \hat{\theta}_n + 1.96 \cdot \operatorname{se}(\hat{\theta}_n)\right) \to 0.95$$

• Lower bound:
$$\hat{\theta}_n - 1.96 \cdot \operatorname{se}(\hat{\theta}_n)$$

• Upper bound:
$$\hat{\theta}_n + 1.96 \cdot \operatorname{se}(\hat{\theta}_n)$$

Finding the critical values



- How do we figure out what $z_{1-\alpha/2}$ will be?
- Intuitively, we want the z values that put $\alpha/2$ in each of the tails.
 - Because normal is symmetric, we have $z_{\alpha/2} = -z_{1-\alpha/2}$
 - Use the quantile function: $z_{1-\alpha/2} = \Phi^{-1}(1-\alpha/2)$ (qnorm in R)

CI for Social Pressure Effect

TABLE 2.	Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary
Election	

	Experimental Group				
	Control	Civic Duty	Hawthorne	Self	Neighbors
Percentage Voting N of Individuals	29.7% 191,243	31.5% 38,218	32.2% 38,204	34.5% 38,218	37.8% 38,201

```
neigh_var <- var(social$voted[social$treatment == "Neighbors"])
neigh_n <- 38201
civic_var <- var(social$voted[social$treatment == "Civic Duty"])
civic_n <- 38218
se_diff <- sqrt(neigh_var/neigh_n + civic_var/civic_n)
## c(lower, upper)
c((0.378 - 0.315) - 1.96 * se_diff, (0.378 - 0.315) + 1.96 * se_diff)</pre>
```

This will return 0.0563, 0.0697.

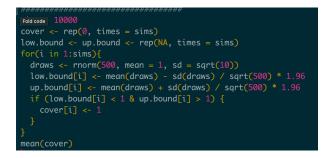
Interpreting the confidence interval

- **Caution**: a common **incorrect** interpretation of a confidence interval:
 - "I calculated a 95% confidence interval of [0.05, 0.13], which means that there is a 95% chance that the true difference in means is in that interval."
 - This is WRONG.
- The true value of the population mean, μ , is **fixed**.
 - It is either in the interval or it isn't—there's no room for probability at all.
- The randomness is in the interval: $\overline{X}_n \pm 1.96 \cdot S_n / \sqrt{n}$.
- Correct interpretation: across 95% of random samples, the constructed confidence interval will contain the true value.

Confidence interval simulation

- Draw samples of size 500 (pretty big) from $\mathcal{N}(1,10)$
- Calculate confidence intervals for the sample mean:

$$\overline{X}_n \pm 1.96 \times \widehat{\mathsf{se}}[\overline{X}_n] \rightsquigarrow \overline{X}_n \pm 1.96 \times \frac{S_n}{\sqrt{n}}$$



This will return 0.9493.

Plot the Cls

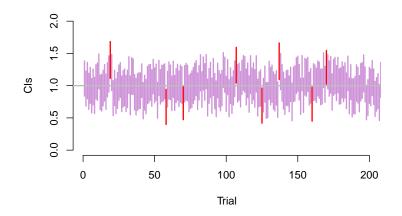


Figure: Randomly subset 200 Cls

C	2001
LIOV	2001

Question

- **Question** What happens to the size of the confidence interval when we increase our confidence, from say 95% to 99%? Do confidence intervals get wider or shorter?
- Answer Wider!
- Decreases $\alpha \rightsquigarrow$ increases $1 \alpha/2 \rightsquigarrow$ increases $z_{\alpha/2}$

Delta method

Delta method

If $\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{d} \mathcal{N}(0, V_{\theta})$ and h(u) is continuously differentiable in a neighborhood around θ , then as $n \to \infty$,

$$\sqrt{n}\left(h(\hat{\theta}_n) - h(\theta)\right) \xrightarrow{d} \mathcal{N}(0, (h'(\theta))^2 V_{\theta})$$

- Why *h*() continuously differentiable?
 - Near θ we can approximate h() with a line where h' is the slope.
 - So $h(\hat{\theta}_n) h(\theta) \approx h'(\theta)(\hat{\theta}_n \theta)$
- Examples:

•
$$\sqrt{n}(\overline{X}_n^2 - \mu^2) \xrightarrow{d} \mathcal{N}(0, (2\mu)^2 \sigma^2)$$

• $\sqrt{n}(\log(\overline{X}_n) - \log(\mu)) \xrightarrow{d} \mathcal{N}(0, \sigma^2/\mu^2)$

Multivariate Delta Method

- What if we want to know the asymptotic distribution of a function of $\hat{\theta}_n$?
- Let $\mathbf{h}(\boldsymbol{\theta})$ map from $\mathbb{R}^k \to \mathbb{R}^m$ and be continuously differentiable.
 - $\blacktriangleright \ \mathsf{Ex:} \ \mathbf{h}(\theta_1,\theta_2,\theta_3) = (\theta_2/\theta_1,\theta_3/\theta_1) \text{, from } \mathbb{R}^3 \to \mathbb{R}^2$
 - Like univariate case, we need the derivatives arranged in m × k Jacobian matrix:

$$\mathbf{H}(\boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \mathbf{h}(\boldsymbol{\theta}) = \begin{pmatrix} \frac{\partial h_1}{\partial \theta_1} & \frac{\partial h_1}{\partial \theta_2} & \dots & \frac{\partial h_1}{\partial \theta_k} \\ \frac{\partial h_2}{\partial \theta_1} & \frac{\partial h_2}{\partial \theta_2} & \dots & \frac{\partial h_2}{\partial \theta_k} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial h_m}{\partial \theta_1} & \frac{\partial h_m}{\partial \theta_2} & \dots & \frac{\partial h_m}{\partial \theta_k} \end{pmatrix}$$

• Multivariate delta method: if $\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{d} \mathcal{N}(0, \Sigma)$, then

$$\sqrt{n}(\mathbf{h}(\hat{\boldsymbol{\theta}}_n) - \mathbf{h}(\boldsymbol{\theta})) \xrightarrow{d} \mathcal{N}(0, \mathbf{H}(\boldsymbol{\theta})\boldsymbol{\Sigma}\mathbf{H}(\boldsymbol{\theta})')$$

Stochastic order notation

- When working with asymptotics, it's often useful to have some shorthand.
- Order notation for deterministic sequences:
 - If $a_n \to 0$, then we write $a_n = o(1)$ ("little-oh-one")
 - If $n^{-\lambda}a_n \to 0$, we write $a_n = o(n^{\lambda})$
 - If a_n is bounded, we write $a_n = O(1)$ ("big-oh-one")

• If
$$n^{-\lambda}a_n$$
 is bounded, we write $a_n = O(n^{\lambda})$

- Stochastic order notation for random sequence, Z_n
 - If $Z_n \xrightarrow{p} 0$, we write $Z_n = o_p(1)$ ("little-oh-p-one")
 - For any consistent estimator, we have $\hat{\theta}_n = \theta + o_p(1)$

• If
$$a_n^{-1}Z_n \xrightarrow{p} 0$$
, we write $Z_n = o_p(a_n)$

Bounded in probability

Definition

A random sequence Z_n is **bounded in probability**, written $Z_n = O_p(1)$ ("big-oh-p-one") for all $\delta > 0$ there exists a M_{δ} and n_{δ} , such that for $n \ge n_{\delta}$,

$$\mathbb{P}(|Z_n| > M_{\delta}) < \delta$$

- $Z_n = o_p(1)$ implies $Z_n = O_p(1)$ but not the reverse.
- If Z_n converges in distribution, it is $O_p(1)$, so if the CLT applies we have:

$$\sqrt{n}(\hat{\theta}_n - \theta) = O_p(1)$$

• If
$$a_n^{-1}Z_n = O_p(1)$$
, we write $Z_n = O_p(a_n)$, so we have:
 $\hat{\theta}_n = \theta + O_p(n^{-1/2})$