Naijia Liu

Spring 2025

Overview

- 1. Conditional Probability
- 2. Bayes's Rule
- 3. Independence

• **Conditional probability:** if we know that *B* has occurred, what is the probability of *A*?

- **Conditional probability:** if we know that *B* has occurred, what is the probability of *A*?
 - Conditioning our analysis on *B* having occurred.

- **Conditional probability:** if we know that *B* has occurred, what is the probability of *A*?
 - Conditioning our analysis on *B* having occurred.
- Examples:

- **Conditional probability:** if we know that *B* has occurred, what is the probability of *A*?
 - Conditioning our analysis on *B* having occurred.
- Examples:
 - What is the probability of two states going to war if they are both democracies?

- **Conditional probability:** if we know that *B* has occurred, what is the probability of *A*?
 - Conditioning our analysis on *B* having occurred.
- Examples:
 - What is the probability of two states going to war if they are both democracies?
 - What is the probability of a judge ruling in a pro-choice direction conditional on having daughters?

- **Conditional probability:** if we know that *B* has occurred, what is the probability of *A*?
 - Conditioning our analysis on *B* having occurred.
- Examples:
 - What is the probability of two states going to war if they are both democracies?
 - What is the probability of a judge ruling in a pro-choice direction conditional on having daughters?
 - What is the probability that there will be a coup in a country conditional on having a presidential system?

- **Conditional probability:** if we know that *B* has occurred, what is the probability of *A*?
 - Conditioning our analysis on *B* having occurred.
- Examples:
 - What is the probability of two states going to war if they are both democracies?
 - What is the probability of a judge ruling in a pro-choice direction conditional on having daughters?
 - What is the probability that there will be a coup in a country conditional on having a presidential system?
- Conditional probability is the cornerstone of quantitative social science.

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

• Definition: If $\mathbb{P}(B)>0$ then the conditional probability of A given B is

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

• How often A and B occur divided by how often B occurs.

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

- How often A and B occur divided by how often B occurs.
- WARNING! $\mathbb{P}(A \mid B)$ does not, in general, equal $\mathbb{P}(B \mid A)$.

• Definition: If $\mathbb{P}(B)>0$ then the conditional probability of A given B is

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

- How often A and B occur divided by how often B occurs.
- WARNING! $\mathbb{P}(A \mid B)$ does **not**, in general, equal $\mathbb{P}(B \mid A)$.

• $\mathbb{P}(\text{smart} \mid \text{in gov } 2001) \text{ is high.}$

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

- How often A and B occur divided by how often B occurs.
- WARNING! $\mathbb{P}(A \mid B)$ does **not**, in general, equal $\mathbb{P}(B \mid A)$.
 - $\mathbb{P}(\text{smart} \mid \text{in gov } 2001) \text{ is high.}$
 - $\mathbb{P}(\text{in gov } 2001 \mid \text{smart}) \text{ is low.}$

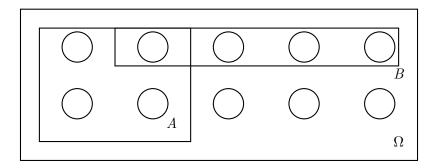
$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

- How often A and B occur divided by how often B occurs.
- WARNING! $\mathbb{P}(A \mid B)$ does **not**, in general, equal $\mathbb{P}(B \mid A)$.
 - $\mathbb{P}(\text{smart} \mid \text{in gov } 2001) \text{ is high.}$
 - $\mathbb{P}(\text{in gov } 2001 \mid \text{smart}) \text{ is low.}$
 - There are many smart people who are not in this class!

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

- How often A and B occur divided by how often B occurs.
- WARNING! $\mathbb{P}(A \mid B)$ does **not**, in general, equal $\mathbb{P}(B \mid A)$.
 - $\mathbb{P}(\text{smart} \mid \text{in gov } 2001) \text{ is high.}$
 - $\mathbb{P}(\text{in gov } 2001 \mid \text{smart}) \text{ is low.}$
 - There are many smart people who are not in this class!
 - Also known as the **prosecutor's fallacy**.

Intuition



$A = \{$ you get an A grade $\}$ $B = \{$ everyone gets an A grade $\}$

 $A = \{ you \text{ get an A grade} \}$ $B = \{ everyone \text{ gets an A grade} \}$

• If B occurs then A must also occur, so $\mathbb{P}(A \mid B) = 1$.

 $A = \{$ you get an A grade $\} B = \{$ everyone gets an A grade $\}$

If B occurs then A must also occur, so P(A | B) = 1.
▶ Does this mean that P(B | A) = 1 as well?

 $A = \{$ you get an A grade $\} B = \{$ everyone gets an A grade $\}$

If B occurs then A must also occur, so P(A | B) = 1.
▶ Does this mean that P(B | A) = 1 as well?

• Now let $A = \{you \text{ get a } B \text{ grade}\}.$

 $A = \{$ you get an A grade $\} B = \{$ everyone gets an A grade $\}$

• If B occurs then A must also occur, so $\mathbb{P}(A \mid B) = 1$.

• Does this mean that $\mathbb{P}(B \mid A) = 1$ as well?

- Now let $A = \{you \text{ get a } B \text{ grade}\}.$
 - The intersection $A \cap B = \emptyset$, so that $\mathbb{P}(A \mid B) = 0$.

 $A = \{$ you get an A grade $\} B = \{$ everyone gets an A grade $\}$

• If B occurs then A must also occur, so $\mathbb{P}(A \mid B) = 1$.

- Does this mean that $\mathbb{P}(B \mid A) = 1$ as well?
- Now let $A = \{you \text{ get a } B \text{ grade}\}.$
 - The intersection $A \cap B = \emptyset$, so that $\mathbb{P}(A \mid B) = 0$.
 - ▶ Intuitively, it's because *B* occurring precludes *A* from occurring.

	Democrats	Republicans	Independents	Total
Men	33	40	2	75
Women	15	9	1	25
Total	48	49	3	100

	Democrats	Republicans	Independents	Total
Men	33	40	2	75
Women	15	9	1	25
Total	48	49	3	100

• Choose one senator at random from this population.

	Democrats	Republicans	Independents	Total
Men	33	40	2	75
Women	15	9	1	25
Total	48	49	3	100

- Choose one senator at random from this population.
- What is the probability that a randomly selected Republican is a woman:

$$\mathbb{P}(\mathsf{Woman} \mid \mathsf{Republican}) = \frac{\mathbb{P}(\mathsf{Woman} \cap \mathsf{Republican})}{\mathbb{P}(\mathsf{Republican})} = \frac{9/100}{49/100} = \frac{9}{49} \approx 0.184.$$

	Democrats	Republicans	Independents	Total
Men	33	40	2	75
Women	15	9	1	25
Total	48	49	3	100

- Choose one senator at random from this population.
- What is the probability that a randomly selected Republican is a woman:

$$\mathbb{P}(\mathsf{Woman} \mid \mathsf{Republican}) = \frac{\mathbb{P}(\mathsf{Woman} \cap \mathsf{Republican})}{\mathbb{P}(\mathsf{Republican})} = \frac{9/100}{49/100} = \frac{9}{49} \approx 0.184.$$

• Choose two senators at random:

	Democrats	Republicans	Independents	Total
Men	33	40	2	75
Women	15	9	1	25
Total	48	49	3	100

- Choose one senator at random from this population.
- What is the probability that a randomly selected Republican is a woman:

$$\mathbb{P}(\mathsf{Woman} \mid \mathsf{Republican}) = \frac{\mathbb{P}(\mathsf{Woman} \cap \mathsf{Republican})}{\mathbb{P}(\mathsf{Republican})} = \frac{9/100}{49/100} = \frac{9}{49} \approx 0.184.$$

- Choose two senators at random:
 - ▶ $\mathbb{P}(2 \text{ women } | \text{ one draw is a woman})?$

	Democrats	Republicans	Independents	Total
Men	33	40	2	75
Women	15	9	1	25
Total	48	49	3	100

- Choose one senator at random from this population.
- What is the probability that a randomly selected Republican is a woman:

$$\mathbb{P}(\mathsf{Woman} \mid \mathsf{Republican}) = \frac{\mathbb{P}(\mathsf{Woman} \cap \mathsf{Republican})}{\mathbb{P}(\mathsf{Republican})} = \frac{9/100}{49/100} = \frac{9}{49} \approx 0.184.$$

- Choose two senators at random:
 - $\mathbb{P}(2 \text{ women } | \text{ one draw is a woman})?$
 - ▶ $\mathbb{P}(2 \text{ women } | \text{ one draw is Liz Warren})?$

• Conditional probabilities $\mathbb{P}(A \mid B)$ are valid probability functions:

• Conditional probabilities $\mathbb{P}(A \mid B)$ are valid probability functions: 1. $\mathbb{P}(A \mid B) \geq 0$

- Conditional probabilities $\mathbb{P}(A \mid B)$ are valid probability functions:
 - 1. $\mathbb{P}(A \mid B) \ge 0$
 - **2**. $\mathbb{P}(\Omega \mid B) = 1$

- Conditional probabilities $\mathbb{P}(A \mid B)$ are valid probability functions:
 - 1. $\mathbb{P}(A \mid B) \ge 0$
 - **2**. $\mathbb{P}(\Omega \mid B) = 1$
 - 3. If A_1 and A_2 are disjoint, then $\mathbb{P}(A_1 \cup A_2 \mid B) = \mathbb{P}(A_1 \mid B) + \mathbb{P}(A_2 \mid B)$

- Conditional probabilities $\mathbb{P}(A \mid B)$ are valid probability functions:
 - 1. $\mathbb{P}(A \mid B) \ge 0$
 - 2. $\mathbb{P}(\Omega \mid B) = 1$
 - 3. If A_1 and A_2 are disjoint, then $\mathbb{P}(A_1 \cup A_2 \mid B) = \mathbb{P}(A_1 \mid B) + \mathbb{P}(A_2 \mid B)$
- \sim Rules of probability apply to the left-hand side of the conditioning bar (A):

- Conditional probabilities $\mathbb{P}(A \mid B)$ are valid probability functions:
 - 1. $\mathbb{P}(A \mid B) \ge 0$
 - 2. $\mathbb{P}(\Omega \mid B) = 1$
 - 3. If A_1 and A_2 are disjoint, then $\mathbb{P}(A_1 \cup A_2 \mid B) = \mathbb{P}(A_1 \mid B) + \mathbb{P}(A_2 \mid B)$
- \sim Rules of probability apply to the left-hand side of the conditioning bar (A):
 - All probabilities **normalized** to event B, $\mathbb{P}(B \mid B) = 1$.

- Conditional probabilities $\mathbb{P}(A \mid B)$ are valid probability functions:
 - 1. $\mathbb{P}(A \mid B) \ge 0$
 - 2. $\mathbb{P}(\Omega \mid B) = 1$
 - 3. If A_1 and A_2 are disjoint, then $\mathbb{P}(A_1 \cup A_2 \mid B) = \mathbb{P}(A_1 \mid B) + \mathbb{P}(A_2 \mid B)$
- \sim Rules of probability apply to the left-hand side of the conditioning bar (A):
 - All probabilities **normalized** to event B, $\mathbb{P}(B \mid B) = 1$.
- Not for the right-hand side, so even if B and C are disjoint,

$$\mathbb{P}(A \mid B \cup C) \neq \mathbb{P}(A \mid B) + \mathbb{P}(A \mid C).$$

• Joint probabilities: probability of two events occurring (intersections)

• Joint probabilities: probability of two events occurring (intersections)

• Often replace \cap with commas: $\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A, B, C)$

• Joint probabilities: probability of two events occurring (intersections)

• Often replace \cap with commas: $\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A, B, C)$

• Definition of conditional probability implies:

 $\mathbb{P}(A \cap B) \equiv \mathbb{P}(A, B) = \mathbb{P}(B)\mathbb{P}(A \mid B) = \mathbb{P}(A)\mathbb{P}(B \mid A)$

• Joint probabilities: probability of two events occurring (intersections)

• Often replace \cap with commas: $\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A, B, C)$

• Definition of conditional probability implies:

 $\mathbb{P}(A \cap B) \equiv \mathbb{P}(A, B) = \mathbb{P}(B)\mathbb{P}(A \mid B) = \mathbb{P}(A)\mathbb{P}(B \mid A)$

• What about three events?

 $\mathbb{P}(A, B, C) = \mathbb{P}(A)\mathbb{P}(B \mid A)\mathbb{P}(C \mid A, B)$

• Joint probabilities: probability of two events occurring (intersections)

• Often replace \cap with commas: $\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A, B, C)$

• Definition of conditional probability implies:

 $\mathbb{P}(A \cap B) \equiv \mathbb{P}(A, B) = \mathbb{P}(B)\mathbb{P}(A \mid B) = \mathbb{P}(A)\mathbb{P}(B \mid A)$

• What about three events?

 $\mathbb{P}(A, B, C) = \mathbb{P}(A)\mathbb{P}(B \mid A)\mathbb{P}(C \mid A, B)$

• Generalize to the intersection of *N* events:

 $\mathbb{P}(A_1,\ldots,A_N)=\mathbb{P}(A_1)\mathbb{P}(A_2\mid A_1)\mathbb{P}(A_3\mid A_1,A_2)\ldots\mathbb{P}(A_N\mid A_1,\ldots,A_{N-1}).$

• Draw three cards at random from a deck without replacement.

- Draw three cards at random from a deck without replacement.
- What's the probability that we draw three Aces?

 $\mathbb{P}(\mathsf{Ace}_1 \cap \mathsf{Ace}_2 \cap \mathsf{Ace}_3) = \mathbb{P}(\mathsf{Ace}_1)\mathbb{P}(\mathsf{Ace}_2 \mid \mathsf{Ace}_1)\mathbb{P}(\mathsf{Ace}_3 \mid \mathsf{Ace}_2 \cap \mathsf{Ace}_1)$

- Draw three cards at random from a deck without replacement.
- What's the probability that we draw three Aces?

 $\mathbb{P}(\mathsf{Ace}_1 \cap \mathsf{Ace}_2 \cap \mathsf{Ace}_3) = \mathbb{P}(\mathsf{Ace}_1)\mathbb{P}(\mathsf{Ace}_2 \mid \mathsf{Ace}_1)\mathbb{P}(\mathsf{Ace}_3 \mid \mathsf{Ace}_2 \cap \mathsf{Ace}_1)$

• What are these probabilities?

- Draw three cards at random from a deck without replacement.
- What's the probability that we draw three Aces?

 $\mathbb{P}(\mathsf{Ace}_1 \cap \mathsf{Ace}_2 \cap \mathsf{Ace}_3) = \mathbb{P}(\mathsf{Ace}_1)\mathbb{P}(\mathsf{Ace}_2 \mid \mathsf{Ace}_1)\mathbb{P}(\mathsf{Ace}_3 \mid \mathsf{Ace}_2 \cap \mathsf{Ace}_1)$

• What are these probabilities?

• 4 Aces to pick out of 52 cards $\sim \mathbb{P}(Ace_1) = \frac{4}{52}$

- Draw three cards at random from a deck without replacement.
- What's the probability that we draw three Aces?

 $\mathbb{P}(\mathsf{Ace}_1 \cap \mathsf{Ace}_2 \cap \mathsf{Ace}_3) = \mathbb{P}(\mathsf{Ace}_1)\mathbb{P}(\mathsf{Ace}_2 \mid \mathsf{Ace}_1)\mathbb{P}(\mathsf{Ace}_3 \mid \mathsf{Ace}_2 \cap \mathsf{Ace}_1)$

• What are these probabilities?

• 4 Aces to pick out of 52 cards $\sim \mathbb{P}(Ace_1) = \frac{4}{52}$

▶ 3 Aces left in the 51 remaining cards $\sim \mathbb{P}(Ace_2 \mid Ace_1) = \frac{3}{51}$

- Draw three cards at random from a deck without replacement.
- What's the probability that we draw three Aces?

 $\mathbb{P}(\mathsf{Ace}_1 \cap \mathsf{Ace}_2 \cap \mathsf{Ace}_3) = \mathbb{P}(\mathsf{Ace}_1)\mathbb{P}(\mathsf{Ace}_2 \mid \mathsf{Ace}_1)\mathbb{P}(\mathsf{Ace}_3 \mid \mathsf{Ace}_2 \cap \mathsf{Ace}_1)$

• What are these probabilities?

• 4 Aces to pick out of 52 cards $\sim \mathbb{P}(Ace_1) = \frac{4}{52}$

- ▶ 3 Aces left in the 51 remaining cards $\sim \mathbb{P}(Ace_2 \mid Ace_1) = \frac{3}{51}$
- ▶ 2 Aces left in the 50 remaining cards $\sim \mathbb{P}(Ace_3 \mid Ace_2 \cap Ace_1) = \frac{2}{50}$

- Draw three cards at random from a deck without replacement.
- What's the probability that we draw three Aces?

 $\mathbb{P}(\mathsf{Ace}_1 \cap \mathsf{Ace}_2 \cap \mathsf{Ace}_3) = \mathbb{P}(\mathsf{Ace}_1)\mathbb{P}(\mathsf{Ace}_2 \mid \mathsf{Ace}_1)\mathbb{P}(\mathsf{Ace}_3 \mid \mathsf{Ace}_2 \cap \mathsf{Ace}_1)$

• What are these probabilities?

• 4 Aces to pick out of 52 cards $\sim \mathbb{P}(Ace_1) = \frac{4}{52}$

- ▶ 3 Aces left in the 51 remaining cards $\sim \mathbb{P}(Ace_2 \mid Ace_1) = \frac{3}{51}$
- 2 Aces left in the 50 remaining cards $\sim \mathbb{P}(\text{Ace}_3 \mid \text{Ace}_2 \cap \text{Ace}_1) = \frac{2}{50}$
- Thus,

$$\mathbb{P}(\mathsf{Ace}_1 \cap \mathsf{Ace}_2 \cap \mathsf{Ace}_3) = \frac{4}{52} \times \frac{3}{51} \times \frac{2}{50} \approx 0.00018.$$

Probability of War Resolution

- Suppose we observed country-dyads over 3 years.
- In each year the dyad can be at war (W_t) or at peace (P_t) .
- What's the probability that a war starts in year 1 and ends after 2 years?

 $\mathbb{P}(W_1, W_2, P_3) = \mathbb{P}(W_1)\mathbb{P}(W_2 \mid W_1)\mathbb{P}(P_3 \mid W_1, W_2).$

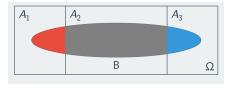
Probability of War Resolution

- Suppose we observed country-dyads over 3 years.
- In each year the dyad can be at war (W_t) or at peace (P_t) .
- What's the probability that a war starts in year 1 and ends after 2 years?

 $\mathbb{P}(W_1, W_2, P_3) = \mathbb{P}(W_1)\mathbb{P}(W_2 \mid W_1)\mathbb{P}(P_3 \mid W_1, W_2).$

• Actual Research QuestionTM: modeling the continuation probability of war, $\mathbb{P}(W_2 \mid W_1)$, and the probability of conflict resolution, $\mathbb{P}(P_3 \mid W_1, W_2)$.

Law of Total Probability



- Often we only have disaggregated probabilities.
 - B = sampling a Trump supporter from either Cambridge or Somerville.
 - We know the prop. of Trump supporters in each city from precinct data.
 - ▶ How to calculate the overall probability of *B*?
- A partition is a set of mutually disjoint events whose union is Ω .

Law of Total Probability

• The **law of total probability** (LTP) states if A_1, \ldots, A_k is a partition:

$$\mathbb{P}(B) = \sum_{j=1}^{k} \mathbb{P}(B \mid A_j) \mathbb{P}(A_j).$$

- Overall probability = weighted sum of within-partition probabilities.
- Weights are the probability of the particular partition.

• Randomly drawing voters from either Cambridge or Somerville:

• Randomly drawing voters from either Cambridge or Somerville:

► Camb. had 50k voters and Somer. had around 40k, so: $\mathbb{P}(\text{Camb.}) = 0.56$ and $\mathbb{P}(\text{Somer.}) = 0.44$.

- Randomly drawing voters from either Cambridge or Somerville:
 - ► Camb. had 50k voters and Somer. had around 40k, so: $\mathbb{P}(\text{Camb.}) = 0.56$ and $\mathbb{P}(\text{Somer.}) = 0.44$.
- The state provides the following election results for each city:

- Randomly drawing voters from either Cambridge or Somerville:
 - ► Camb. had 50k voters and Somer. had around 40k, so: $\mathbb{P}(\text{Camb.}) = 0.56$ and $\mathbb{P}(\text{Somer.}) = 0.44$.
- The state provides the following election results for each city:

 $\blacktriangleright \mathbb{P}(\mathsf{Trump} \mid \mathsf{Camb.}) = 0.066$

- Randomly drawing voters from either Cambridge or Somerville:
 - ► Camb. had 50k voters and Somer. had around 40k, so: $\mathbb{P}(\text{Camb.}) = 0.56$ and $\mathbb{P}(\text{Somer.}) = 0.44$.
- The state provides the following election results for each city:
 - $\blacktriangleright \mathbb{P}(\mathsf{Trump} \mid \mathsf{Camb.}) = 0.066$
 - $\mathbb{P}(\mathsf{Trump} \mid \mathsf{Somer.}) = 0.103.$

- Randomly drawing voters from either Cambridge or Somerville:
 - ► Camb. had 50k voters and Somer. had around 40k, so: $\mathbb{P}(\text{Camb.}) = 0.56$ and $\mathbb{P}(\text{Somer.}) = 0.44$.
- The state provides the following election results for each city:
 - $\blacktriangleright \mathbb{P}(\mathsf{Trump} \mid \mathsf{Camb.}) = 0.066$
 - $\mathbb{P}(\mathsf{Trump} \mid \mathsf{Somer.}) = 0.103.$
- To get the overall turnout rate, $\mathbb{P}(\mathsf{Trump})$, we can apply the LTP:

 $\mathbb{P}(\mathsf{Trump}) = \mathbb{P}(\mathsf{Trump} \mid \mathsf{Camb.})\mathbb{P}(\mathsf{Camb.}) + \mathbb{P}(\mathsf{Trump} \mid \mathsf{Somer.})\mathbb{P}(\mathsf{Somer.})$

 $= 0.066 \times 0.56 + 0.103 \times 0.44 = 0.082.$

QAnon

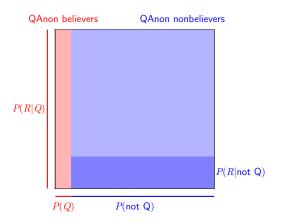
You meet a man named Steve and he tells you that he is a Republican. You have been interested in meeting someone who believes in the QAnon conspiracy theory. Given what you know about Steve, would you guess that he believes in QAnon or not?

QAnon

You meet a man named Steve and he tells you that he is a Republican. You have been interested in meeting someone who believes in the QAnon conspiracy theory. Given what you know about Steve, would you guess that he believes in QAnon or not?

- Common response: probably believes in QAnon since believers tend to be Republicans.
- Base rate fallacy: ignores how uncommon QAnon believers are!

Visualizing QAnon support



Chance a random Republican believes $QAnon = \frac{P(R|Q)P(Q)}{P(R|Q)P(Q) + P(R|not Q)P(not Q)}$

Gov	2	n	0	a
GOV	2	υ	υ	4

Bayes' rule

- Reverend Thomas Bayes (1701–61): English minister and statistician
- **Bayes' rule**: if $\mathbb{P}(B) > 0$, then:

Bayes' rule

- Reverend Thomas Bayes (1701–61): English minister and statistician
- **Bayes' rule**: if $\mathbb{P}(B) > 0$, then:

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A)\mathbb{P}(A)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B \mid A)\mathbb{P}(A)}{\mathbb{P}(B \mid A)\mathbb{P}(A) + \mathbb{P}(B \mid A^c)\mathbb{P}(A^c)}$$

• What is the probability of some hypothesis given some evidence?

- What is the probability of some hypothesis given some evidence?
 - ▶ $\mathbb{P}(QAnon | Republican)?$

- What is the probability of some hypothesis given some evidence?
 - ▶ $\mathbb{P}(\text{QAnon} | \text{Republican})?$
- Often easier to know probability of evidence given hypothesis.

- What is the probability of some hypothesis given some evidence?
 - ▶ $\mathbb{P}(QAnon | Republican)?$
- Often easier to know probability of evidence given hypothesis.
 - $\mathbb{P}(\mathsf{Republican} \mid \mathsf{QAnon})$

- What is the probability of some hypothesis given some evidence?
 - ▶ $\mathbb{P}(QAnon | Republican)?$
- Often easier to know probability of evidence given hypothesis.
 - $\mathbb{P}(\mathsf{Republican} \mid \mathsf{QAnon})$
- Combine this with the prior probability of the hypothesis.

- What is the probability of some hypothesis given some evidence?
 - ▶ $\mathbb{P}(QAnon | Republican)?$
- Often easier to know probability of evidence given hypothesis.
 - $\mathbb{P}(\mathsf{Republican} \mid \mathsf{QAnon})$
- Combine this with the **prior probability** of the hypothesis.
 - ▶ Prior: $\mathbb{P}(QAnon)$

- What is the probability of some hypothesis given some evidence?
 - ▶ $\mathbb{P}(\text{QAnon} | \text{Republican})?$
- Often easier to know probability of evidence given hypothesis.
 - $\mathbb{P}(\mathsf{Republican} \mid \mathsf{QAnon})$
- Combine this with the prior probability of the hypothesis.
 - ▶ Prior: $\mathbb{P}(QAnon)$
 - ► **Posterior**: $\mathbb{P}(QAnon | Republican)$

- What is the probability of some hypothesis given some evidence?
 - ▶ $\mathbb{P}(\text{QAnon} | \text{Republican})?$
- Often easier to know probability of evidence given hypothesis.
 - $\mathbb{P}(\mathsf{Republican} \mid \mathsf{QAnon})$
- Combine this with the **prior probability** of the hypothesis.
 - ▶ Prior: $\mathbb{P}(QAnon)$
 - ▶ **Posterior**: $\mathbb{P}(QAnon | Republican)$
- Applying Bayes' rule is often called updating the prior.

- What is the probability of some hypothesis given some evidence?
 - ▶ $\mathbb{P}(\text{QAnon} | \text{Republican})?$
- Often easier to know probability of evidence given hypothesis.
 - $\mathbb{P}(\mathsf{Republican} \mid \mathsf{QAnon})$
- Combine this with the **prior probability** of the hypothesis.
 - ▶ Prior: $\mathbb{P}(QAnon)$
 - ▶ **Posterior**: $\mathbb{P}(QAnon | Republican)$
- Applying Bayes' rule is often called updating the prior.
 - ▶ $\mathbb{P}(QAnon) \rightarrow \mathbb{P}(QAnon \mid Republican)$

Why is Bayes' Rule Useful?

- What is the probability of some hypothesis given some evidence?
 - ▶ $\mathbb{P}(\text{QAnon} | \text{Republican})?$
- Often easier to know probability of evidence given hypothesis.
 - $\mathbb{P}(\mathsf{Republican} \mid \mathsf{QAnon})$
- Combine this with the **prior probability** of the hypothesis.
 - ▶ Prior: $\mathbb{P}(QAnon)$
 - ▶ **Posterior**: $\mathbb{P}(QAnon | Republican)$
- Applying Bayes' rule is often called updating the prior.
 - ▶ $\mathbb{P}(QAnon) \rightarrow \mathbb{P}(QAnon \mid Republican)$
 - How does the evidence change the chance of the hypothesis being true?

• Medical testing:

• Medical testing:

► Want to know: $\mathbb{P}(\text{Disease} \mid \text{Test Positive})$

• Medical testing:

- ► Want to know: $\mathbb{P}(\text{Disease} \mid \text{Test Positive})$
- Have: $\mathbb{P}(\text{Test Positive} \mid \text{Disease}) \text{ and } \mathbb{P}(\text{Disease})$

• Medical testing:

► Want to know: $\mathbb{P}(\text{Disease} \mid \text{Test Positive})$

• Have: $\mathbb{P}(\text{Test Positive} \mid \text{Disease}) \text{ and } \mathbb{P}(\text{Disease})$

• Predicting traits from names:

• Medical testing:

► Want to know: P(Disease | Test Positive)

• Have: $\mathbb{P}(\text{Test Positive} \mid \text{Disease}) \text{ and } \mathbb{P}(\text{Disease})$

• Predicting traits from names:

• Want to know: $\mathbb{P}(\text{African American} | \text{Last Name})$

• Medical testing:

- ► Want to know: $\mathbb{P}(\text{Disease} \mid \text{Test Positive})$
- Have: $\mathbb{P}(\text{Test Positive} \mid \text{Disease}) \text{ and } \mathbb{P}(\text{Disease})$
- Predicting traits from names:
 - ▶ Want to know: P(African American | Last Name)
 - Have: $\mathbb{P}(\text{Last Name} \mid \text{African American}) \text{ and } \mathbb{P}(\text{African American})$

• Medical testing:

- ► Want to know: $\mathbb{P}(\text{Disease} \mid \text{Test Positive})$
- Have: $\mathbb{P}(\text{Test Positive} \mid \text{Disease}) \text{ and } \mathbb{P}(\text{Disease})$

• Predicting traits from names:

- ▶ Want to know: $\mathbb{P}(\text{African American} \mid \text{Last Name})$
- Have: $\mathbb{P}(\text{Last Name} \mid \text{African American}) \text{ and } \mathbb{P}(\text{African American})$

• Spam filtering:

• Medical testing:

- ► Want to know: $\mathbb{P}(\text{Disease} \mid \text{Test Positive})$
- Have: $\mathbb{P}(\text{Test Positive} \mid \text{Disease}) \text{ and } \mathbb{P}(\text{Disease})$
- Predicting traits from names:
 - ▶ Want to know: $\mathbb{P}(\text{African American} \mid \text{Last Name})$
 - Have: $\mathbb{P}(\text{Last Name} | \text{African American})$ and $\mathbb{P}(\text{African American})$

• Spam filtering:

• Want to know: $\mathbb{P}(\text{Spam} | \text{Email text})$

• Medical testing:

- ► Want to know: $\mathbb{P}(\text{Disease} \mid \text{Test Positive})$
- Have: $\mathbb{P}(\text{Test Positive} \mid \text{Disease}) \text{ and } \mathbb{P}(\text{Disease})$
- Predicting traits from names:
 - ► Want to know: $\mathbb{P}(\text{African American} \mid \text{Last Name})$
 - Have: $\mathbb{P}(\text{Last Name} | \text{African American})$ and $\mathbb{P}(\text{African American})$

• Spam filtering:

- Want to know: $\mathbb{P}(\text{Spam} | \text{Email text})$
- Have: $\mathbb{P}(\text{Email text} | \text{Spam}) \text{ and } \mathbb{P}(\text{Spam})$

• Suppose you go and get a COVID-19 test and it comes back positive!

- Suppose you go and get a COVID-19 test and it comes back positive!
 - ▶ Let a positive test be *PT*.

- Suppose you go and get a COVID-19 test and it comes back positive!
 - Let a positive test be *PT*.
- What's the probability you actually have COVID-19?

- Suppose you go and get a COVID-19 test and it comes back positive!
 - Let a positive test be *PT*.
- What's the probability you actually have COVID-19?
 - ► Let having COVID be labeled *C*.

- Suppose you go and get a COVID-19 test and it comes back positive!
 - Let a positive test be *PT*.
- What's the probability you actually have COVID-19?
 - ► Let having COVID be labeled C.
 - Question: What is $\mathbb{P}(C \mid PT)$?

- Suppose you go and get a COVID-19 test and it comes back positive!
 - Let a positive test be *PT*.
- What's the probability you actually have COVID-19?
 - ► Let having COVID be labeled C.
 - Question: What is $\mathbb{P}(C \mid PT)$?
- Components for calculating Bayes' rule:

- Suppose you go and get a COVID-19 test and it comes back positive!
 - Let a positive test be *PT*.
- What's the probability you actually have COVID-19?
 - ▶ Let having COVID be labeled C.
 - Question: What is $\mathbb{P}(C \mid PT)$?
- Components for calculating Bayes' rule:
 - $\mathbb{P}(PT \mid C) = 0.8$: true positive rate

- Suppose you go and get a COVID-19 test and it comes back positive!
 - Let a positive test be *PT*.
- What's the probability you actually have COVID-19?
 - ▶ Let having COVID be labeled C.
 - Question: What is $\mathbb{P}(C \mid PT)$?
- Components for calculating Bayes' rule:
 - $\mathbb{P}(PT \mid C) = 0.8$: true positive rate
 - $\mathbb{P}(PT \mid C^c) = 0.005$: false positive rate

- Suppose you go and get a COVID-19 test and it comes back positive!
 - Let a positive test be *PT*.
- What's the probability you actually have COVID-19?
 - Let having COVID be labeled C.
 - Question: What is $\mathbb{P}(C \mid PT)$?
- Components for calculating Bayes' rule:
 - $\mathbb{P}(PT \mid C) = 0.8$: true positive rate
 - $\mathbb{P}(PT \mid C^c) = 0.005$: false positive rate
 - ▶ $\mathbb{P}(C) = 0.007$ rough prevalence of active COVID cases.

Applying Bayes' rule to COVID tests

• Use the law of total probability to get the denominator:

$$\mathbb{P}(PT) = \mathbb{P}(PT \mid C)\mathbb{P}(C) + \mathbb{P}(PT \mid C^{c})\mathbb{P}(C^{c})$$

$$= (0.8 \times 0.007) + (0.005 \times 0.993)$$

= 0.011

Applying Bayes' rule to COVID tests

• Use the law of total probability to get the denominator:

$$\mathbb{P}(PT) = \mathbb{P}(PT \mid C)\mathbb{P}(C) + \mathbb{P}(PT \mid C^{c})\mathbb{P}(C^{c})$$

$$= (0.8 \times 0.007) + (0.005 \times 0.993)$$

= 0.011

• Now plug in all values to Bayes' rule:

$$\mathbb{P}(C \mid PT) = \frac{\mathbb{P}(PT \mid C)\mathbb{P}(C)}{\mathbb{P}(PT)} = \frac{0.8 \times 0.007}{0.0106} \approx 0.53$$

Applying Bayes' rule to COVID tests

• Use the law of total probability to get the denominator:

$$\mathbb{P}(PT) = \mathbb{P}(PT \mid C)\mathbb{P}(C) + \mathbb{P}(PT \mid C^{c})\mathbb{P}(C^{c})$$

$$= (0.8 \times 0.007) + (0.005 \times 0.993)$$

= 0.011

• Now plug in all values to Bayes' rule:

$$\mathbb{P}(C \mid PT) = \frac{\mathbb{P}(PT \mid C)\mathbb{P}(C)}{\mathbb{P}(PT)} = \frac{0.8 \times 0.007}{0.0106} \approx 0.53$$

- If false positive rate goes up to 1% $\rightsquigarrow \mathbb{P}(\mathit{C} \mid \mathit{PT}) \approx 0.36$

• Heart of Bayes's rule: knowing B occurs often changes probability of A.

• Heart of Bayes's rule: knowing B occurs often changes probability of A.

• What if B provides no information? \rightsquigarrow independence

• Heart of Bayes's rule: knowing B occurs often changes probability of A.

• What if *B* provides no information? \rightsquigarrow independence

• Two events A and B are **independent** if:

 $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$

• Heart of Bayes's rule: knowing B occurs often changes probability of A.

• What if B provides no information? \rightsquigarrow independence

• Two events A and B are **independent** if:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

• Sometimes written as $A \perp\!\!\!\perp B$

• Heart of Bayes's rule: knowing B occurs often changes probability of A.

• What if B provides no information? \rightsquigarrow independence

• Two events A and B are **independent** if:

 $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$

- Sometimes written as $A \perp\!\!\!\perp B$
- **Symmetric:** $A \perp\!\!\!\perp B$ equivalent to $B \perp\!\!\!\perp A$

• Heart of Bayes's rule: knowing B occurs often changes probability of A.

• What if B provides no information? \rightsquigarrow independence

• Two events A and B are **independent** if:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

- Sometimes written as $A \perp\!\!\!\perp B$
- **Symmetric:** $A \perp\!\!\!\perp B$ equivalent to $B \perp\!\!\!\perp A$
- Events that are not independent are **dependent**.

• Heart of Bayes's rule: knowing *B* occurs often changes probability of *A*.

• What if *B* provides no information? \rightsquigarrow independence

• Two events A and B are **independent** if:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

- Sometimes written as $A \perp\!\!\!\perp B$
- **Symmetric:** $A \perp\!\!\!\perp B$ equivalent to $B \perp\!\!\!\perp A$
- Events that are not independent are **dependent**.
- Important consequence: if $A \perp\!\!\!\perp B$ and $\mathbb{P}(B) > 0$, then:

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A)\mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A)$$

• Heart of Bayes's rule: knowing B occurs often changes probability of A.

• What if *B* provides no information? \rightsquigarrow independence

• Two events A and B are **independent** if:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

- Sometimes written as $A \perp\!\!\!\perp B$
- **Symmetric:** $A \perp\!\!\!\perp B$ equivalent to $B \perp\!\!\!\perp A$
- Events that are not independent are **dependent**.
- Important consequence: if $A \perp\!\!\!\perp B$ and $\mathbb{P}(B) > 0$, then:

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A)\mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A)$$

► Knowing *B* occurs has no impact on the probability of *A*.

• Heart of Bayes's rule: knowing B occurs often changes probability of A.

• What if *B* provides no information? \rightsquigarrow independence

• Two events A and B are **independent** if:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

- Sometimes written as $A \perp\!\!\!\perp B$
- **Symmetric:** $A \perp\!\!\!\perp B$ equivalent to $B \perp\!\!\!\perp A$
- Events that are not independent are dependent.
- Important consequence: if $A \perp\!\!\!\perp B$ and $\mathbb{P}(B) > 0$, then:

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A)\mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A)$$

- Knowing *B* occurs has no impact on the probability of *A*.
- ▶ Works other way too: if $\mathbb{P}(A) > 0$ and $A \perp B$, then $\mathbb{P}(B \mid A) = \mathbb{P}(B)$.

- Common misunderstanding: independent is different than disjoint!
 - Mutually exclusive events provide information!

Independence example

- If we have a gathering of size *n* drawn randomly from the population of MA with a current COVID infection rate of 1.37%, what's the probability someone in attendance is infected?
- When seeing "prob. of at least one" \rightsquigarrow work with complement:

 $\mathbb{P}(At \text{ least one COVID case at gathering})$

 $= 1 - \mathbb{P}(\mathsf{No} \mathsf{ COVID} \mathsf{ cases at gathering})$

• How we draw the random sample matters:

- How we draw the random sample matters:
 - Sample n > 1 with replacement \rightsquigarrow independent events

- How we draw the random sample matters:
 - ▶ Sample n > 1 with replacement \rightsquigarrow independent events
 - Sample n > 1 without replacement \rightsquigarrow dependent events

- How we draw the random sample matters:
 - ▶ Sample n > 1 with replacement \rightsquigarrow independent events
 - ▶ Sample n > 1 without replacement \rightsquigarrow dependent events
- Sampling with replacement n for gathering:

P(No COVID cases at gathering)

- $= P(\text{No COVID for Person } 1 \cap \cdots \cap \text{No COVID for Person } n)$
- $= P(\text{No COVID for Person } 1) \cdots P(\text{No COVID for Person } n)$
- $= (1 0.007)^n$

- How we draw the random sample matters:
 - ▶ Sample n > 1 with replacement \rightsquigarrow independent events
 - ▶ Sample n > 1 without replacement \rightsquigarrow dependent events
- Sampling with replacement n for gathering:

P(No COVID cases at gathering)

- $= P(\text{No COVID for Person } 1 \cap \dots \cap \text{No COVID for Person } n)$
- $= P(\text{No COVID for Person } 1) \cdots P(\text{No COVID for Person } n)$
- $= (1 0.007)^n$
- Using the complement:

 $P(\text{At least one COVID case at gathering}) = 1 - (1 - 0.007)^n$

- How we draw the random sample matters:
 - ▶ Sample n > 1 with replacement \rightsquigarrow independent events
 - ▶ Sample n > 1 without replacement \rightsquigarrow dependent events
- Sampling with replacement n for gathering:

P(No COVID cases at gathering)

- $= P(\text{No COVID for Person } 1 \cap \dots \cap \text{No COVID for Person } n)$
- $= P(\text{No COVID for Person } 1) \cdots P(\text{No COVID for Person } n)$
- $= (1 0.007)^n$
- Using the complement:

 $P(\text{At least one COVID case at gathering}) = 1 - (1 - 0.007)^n$

• $n = 5 \rightsquigarrow \text{ prob of } 0.035$

- How we draw the random sample matters:
 - ▶ Sample n > 1 with replacement \rightsquigarrow independent events
 - ▶ Sample n > 1 without replacement \rightsquigarrow dependent events
- Sampling with replacement n for gathering:

 $P(No \ COVID \ cases at \ gathering)$

- $= P(\text{No COVID for Person } 1 \cap \dots \cap \text{No COVID for Person } n)$
- $= P(\text{No COVID for Person } 1) \cdots P(\text{No COVID for Person } n)$

 $= (1 - 0.007)^n$

• Using the complement:

 $P(\text{At least one COVID case at gathering}) = 1 - (1 - 0.007)^n$

•
$$n = 5 \rightsquigarrow \text{ prob of } 0.035$$

• $n = 100 \rightsquigarrow \text{prob of } 0.5$

• A and B are conditionally independent given E if

• A and B are conditionally independent given E if

 $P(A \cap B \mid E) = P(A \mid E)P(B \mid E)$

• Massively important in statistics and causal inference.

• A and B are conditionally independent given E if

- Massively important in statistics and causal inference.
- Warning: independence \neq conditional independence.

• A and B are conditionally independent given E if

- Massively important in statistics and causal inference.
- Warning: independence \neq conditional independence.
 - Cond. ind. \neq ind.: flipping a coin with unknown bias.

• A and B are conditionally independent given E if

- Massively important in statistics and causal inference.
- Warning: independence \neq conditional independence.
 - Cond. ind. \neq ind.: flipping a coin with unknown bias.
 - ▶ Ind. \Rightarrow cond. ind.: test scores, athletics, and college admission.