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Where are we? Where are we going?

• Up to now: probability of abstract events, but data is numeric!
• Connection between probability and data: random variables.

• Long-term goal: inferring the data-generating process of this
variable.
▶ What is the true Biden approval rate in the US?

• Today: given a probability distribution, what data is likely?
▶ If we knew the true Biden approval, what samples are likely?
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Roadmap

1. Random variables
2. Famous distributions
3. Cumulative distribution functions
4. Functions of random variables
5. Independent random variables
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What are Random Variables?

Definition
A random variable (r.v.) is a function that maps from the sample
space of an experiment to the real line or X : Ω → R.

• Numeric representation of uncertain events ~~we can use math!
• The r.v. is X and the numerical value for some outcome ω is

X(ω).
• Randomness comes from the randomness of the experiment.
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Example of R.V.s

• For any experiment, there can be many random variables.

• Randomly sample 2 senators ⇝ 4 outcomes:

Ω = {DD,RD,DR,RR}.

▶ X = number of Democrats in the two draws.
▶ X(DD) = 2,X(RD) = X(DR) = 1,X(RR) = 0

▶ Another r.v. Y = number of Republicans in the two draws,
Y = 2− X

▶ Z = 1 if draw is two Democrats (DD), 0 otherwise.

• Usually abstract away from the underlying sample space fairly
quickly.
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Types of R.V.

• Two main types of r.v.s: discrete and continuous. Focus on
discrete now.

Definition
A r.v. X is discrete if the values it takes with positive probability are
finite

X ∈ {x1, ..., xk}

or countably infinite
X ∈ {x1, x2, ...}.

• The support of X is the values x such that

P(X = x) > 0.
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The random in random variable

• How are r.v.s random?

▶ Uncertainty over Ω ⇝ uncertainty over value of X.
▶ We’ll use probability to formalize this uncertainty.

• The distribution of a r.v. describes its behavior in terms of
probability.

▶ Specifies probabilities of all possible events of the r.v.
▶ X = number of times a randomly chosen citizen contributed to a

campaign in 2020.
▶ What’s the P(X > 5)? P(X = 0)?

• Often there are many ways to express a distribution.
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Inducing probabilities

• Let X be the number of heads in two coin flips.
ω P({ω}) X(ω)

TT 1/4 0
HT 1/4 1
TH 1/4 1
HH 1/4 2

x P(X = x)
0 1/4
1 1/2
2 1/4
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Expressing a Distribution

• Probability mass function (p.m.f.): pX(x) = P(X = x)

▶ Careful: P(X = x) makes sense because {X = x} is an event.
▶ P(X) doesn’t make any sense since X is just a mapping.

• Some properties of valid p.m.f. of a discrete r.v. X with support
x1, x2, . . . :

▶ Nonnegative: pX(x) > 0 if x ∈ {x1, x2, . . . } and pX(x) = 0
otherwise.

▶ Sums to 1:
∑∞

j=1 pX(xj) = 1.

• Probability of a set of values S ⊂ {x1, x2, . . . }:

P(X ∈ S) =
∑
x∈S

pX(x)
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Example - random assignment to treatment

• You want to run a randomized control trial on 3 people.

• Use the following procedure:

▶ Flip independent fair coins for each unit
▶ Heads assigned to Control (C), tails to Treatment (T)

• Let X be the number of treated units:

X =


0 if (C,C,C)

1 if (T,C,C) or (C,T,C) or (C,C,T)

2 if (T,T,C) or (C,T,T) or (T,C,T)

3 if (T,T,T)

• Use independence and fair coins:

P(C,T,C) = P(C)P(T)P(C) =
1

2
· 1
2
· 1
2
=

1

8
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Calculating the p.m.f.

pX(0) = P(X = 0) = P(C,C,C) =
1

8

pX(1) = P(X = 1) = P(T,C,C) + P(C,T,C) + P(C,C,T) =
3

8

pX(2) = P(X = 2) = P(T,T,C) + P(C,T,T) + P(T,C,T) =
3

8

pX(3) = P(X = 3) = P(T,T,T) =
1

8

• What’s P(X = 4)?

0!
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Plotting the p.m.f.

• We could plot this p.m.f. using R:

0 1 2 3

P
(x

)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

• Question: Does this seem like a good way to assign treatment?
What is one major problem with it?
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Bernoulli distribution
Definition
An r.v. X has a Bernoulli distribution with parameter p if

P(X = 1) = p

and
P(X = 0) = 1− p

and this is written as X ∼ Bern(p).

• Story: indicator of success in some trial with
either success or failure.

• Actually a family of distributions indexed by
p.

• Any event A has an associated Bernoulli
r.v.: indicator variable
I(A) ∼ Bern(p) with p = P(A)
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Binomial distribution

Definition
Let X be the number of successes in n independent Bernoulli trials all
with success probability p. Then X follows the binomial distribution
with parameters n and p, which is written X ∼ Bin(n, p).

• Definition is based on a story: helps pattern match to our data.
• Also helps draw immediate connections:

▶ Bin(1, p) ∼ Bern(p).
▶ If X ∼ Bin(n, p), then n − X ∼ Bin(n, 1− p).
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Binomial p.m.f.

Binomial p.m.f.
If X ∼ Bin(n, p), then the p.m.f. of X is

pX(k) =
(

n
k

)
pk(1− p)n−k,

for all k = 0, 1, . . . , n.

• pk(1− p)n−k is the probability of a specific sequence of 1’s and
0’s with k 1’s.

• Binomial coefficient
(n

k
)

is how many of these combinations there
are.
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Some Binomial Distribution
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Discrete uniform distribution

Definition
Let C be a finite, nonempty set of numbers. If X is the number chosen
randomly with all values equally likely, we say it follows the discrete
uniform distribution.

• p.m.f. for a discrete uniform r.v.:

pX(x) =


1
|C| , for x ∈ C

0, otherwise
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Cumulative distribution functions

Definition
The cumulative distribution function (c.d.f.) is a function FX(x)
that returns the probability that a variable is less than a particular
value:

FX(x) ≡ P(X ≤ x).

• Useful for all r.v.s since p.m.f. are unique to discrete r.v.s.

• For discrete r.v.:
FX(x) =

∑
xj≤x

pX(xj)
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Example of discrete c.d.f

• Remember example where X
is the number of treated units:

x P(X = x)
0 1/8
1 3/8
2 3/8
3 1/8

• Let’s calculate the c.d.f.,
FX(x) = P(X ≤ x) for this:

FX(x) =



0 x < 0

1/8 x ∈ {0}
1/2 x ∈ {0, 1}
7/8 x ∈ {0, 1, 2}
1 x ≤ 3

• What is FX(1.4) here? 0.5
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Graph of discrete c.d.f.
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Properties of the c.d.f.

• Finding the probability of any region:

▶ P(a < X ≤ b) = FX(b)− FX(a).
▶ P(X > a) = 1− FX(a).

• Properties of FX:

1. Increasing: if x1 ≤ x2 then FX(x1) ≤ FX(x2).

✓ Proof: the event X < x1 includes the event X < x2 so P(X < x2)
can’t be smaller than P(X < x1).

2. Converges to 0 and 1: lim
x→−∞

FX(x) = 0 and lim
x→∞

FX(x) = 1.

3. Right continuous: no jumps when we approach a point from the
right:

F(a) = lim
x→a+

F(x)
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Transforming a random variable

• Y = number of citizens who vote in an election in a population of
1,000.

• We could model the distribution of Y as Bin(1000, p).

▶ Allows us to make statements like P(Y ≥ 500).

• What about the proportion turnout X = Y/1000?

▶ Can we make statements about P(X ≥ 0.5)?
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Functions of random variables

• Any function of a random variable is also a random variable.

• Y = g(X) where g() : R → R is the function that maps from the
sample space to ω : g(X(ω))

▶ Let x1, . . . , xk be the support of X and yj = g(xj) be the support
of Y.

• If all xj values map to a single yj value (“one-to-one”), then we
have:

P(Y = g(xj)) = P(g(X) = xj) = P(X = xj).

• If there are redundancies, we have to add those probabilities
together:

P(Y = yj) = P(g(X) = yj) =
∑

xi:g(xi)=yj

P(X = xi).
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Sum vs mean vs any

• X ∼ Bin(n, p): number of successes.
• Y = X/n: proportion of successes (one-to-one).
• Z = I(X > 0): any successes (not one-to-one).

x P(X = x)
0 1/8
1 3/8
2 3/8
3 1/8

y P(Y = y)
0 1/8

1/3 3/8
2/3 3/8
1 1/8

z P(Z = z)
0 1/8
1 3/8 + 3/8 + 1/8 = 7/8
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Careful with r.v.s

• Easy to confuse r.v.s, their distribution, events, and values the
r.v.s take.

• A few common examples:

▶ If X and Y have the same distribution ̸⇒ P(X = Y) = 1

▶ Scaling an r.v. doesn’t scale the p.m.f., so Y = 2X does not have
pY(y) ̸= 2pX(x)
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Independence of r.v.s

• Two r.v.s are independent if

P(X ≤ x,Y ≤ y) = P(X ≤ x)P(Y ≤ y)

• For many r.v.s:

P(X1 ≤ x1, . . . ,Xn ≤ xn) = P(X1 ≤ x1)× · · · × P(Xn ≤ xn)

▶ Remember: X1, . . . ,Xn independent =⇒ pairwise independent,
but not vice versa.

• For discrete r.v.s (not continuous), we can write this as:

P(X = x,Y = y) = P(X = x)P(Y = y)
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i.i.d. and the Bern/Bin connection

• Independent and identically distributed (i.i.d.) X1, . . . ,Xn

▶ Identically distributed: all have the same p.m.f./c.d.f.
▶ Extremely common data assumption

• Story of the binomial: if X ∼ Bin(n, p), we can write it as

X = X1 + · · ·+ Xn

where Xi are i.i.d. Bern(p).
• Theorem: If X ∼ Bin(n, p) and Y ∼ Bin(m, p) with X and Y

independent, then

X + Y ∼ Bin(n + m, p).
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Proof: PMF Approach

Step 1: Define the PMFs of X and Y

The PMF of a binomially distributed random variable is given by:

P(X = k) =
(

n
k

)
pk(1− p)n−k, k = 0, 1, . . . , n.

P(Y = j) =
(

m
j

)
pj(1− p)m−j, j = 0, 1, . . . ,m.

Since X and Y are independent, their joint probability is:

P(X = k,Y = j) = P(X = k)P(Y = j).
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Proof: Computing the Distribution of X + Y

We seek to find P(X + Y = r), i.e., the probability that the sum of X
and Y equals r:

P(X + Y = r) =
r∑

k=0

P(X = k)P(Y = r − k).

Substituting the PMFs:

P(X + Y = r) =
r∑

k=0

(
n
k

)
pk(1− p)n−k ·

(
m

r − k

)
pr−k(1− p)m−(r−k).
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Proof: Recognizing the Binomial Form

Rewriting the product:

P(X + Y = r) = pr(1− p)(n+m)−r
r∑

k=0

(
n
k

)(
m

r − k

)
.

Using the combinatorial identity:
r∑

k=0

(
n
k

)(
m

r − k

)
=

(
n + m

r

)
,

we get:
P(X + Y = r) =

(
n + m

r

)
pr(1− p)(n+m)−r.
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Conclusion

This is exactly the PMF of a Binomial distribution with parameters
(n + m, p):

X + Y ∼ Bin(n + m, p).

□
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Connections to data

• Statistical modeling in a nutshell:

1. Assume the data, X1,X2, . . . , are i.i.d. with p.m.f. pX(x; θ) within
a family of distributions (Bernoulli, binomial, etc) with parameter
θ.

2. Use a function of the observed data to estimate the value of θ:

θ̂(X1,X2, . . . )

• Example:

▶ Sample n respondents from the population with replacement.
▶ X1,X2, . . . ,Xn: independent Bernoulli r.v.s indicating Biden

approval.
▶ p is the Biden approval rate in the population.
▶ X̄ = 1

n
∑

i Xi is our estimate of p. Properties?
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