3: Random Variables

Naijia Liu

Spring 2025

Where are we? Where are we going?

- Up to now: probability of abstract events, but data is numeric!
- Connection between probability and data: random variables.

Where are we? Where are we going?

- Up to now: probability of abstract events, but data is numeric!
- Connection between probability and data: random variables.
- Long-term goal: inferring the data-generating process of this variable.
 - What is the true Biden approval rate in the US?

Where are we? Where are we going?

- Up to now: probability of abstract events, but data is numeric!
- Connection between probability and data: random variables.
- Long-term goal: inferring the data-generating process of this variable.
 - What is the true Biden approval rate in the US?
- Today: given a probability distribution, what data is likely?
 - If we knew the true Biden approval, what samples are likely?

Roadmap

- 1. Random variables
- 2. Famous distributions
- 3. Cumulative distribution functions
- 4. Functions of random variables
- 5. Independent random variables

Definition

A random variable (r.v.) is a function that maps from the sample space of an experiment to the real line or $X: \Omega \to \mathbb{R}$.

Definition

A random variable (r.v.) is a function that maps from the sample space of an experiment to the real line or $X: \Omega \to \mathbb{R}$.

• Numeric representation of uncertain events ~~we can use math!

Definition

A random variable (r.v.) is a function that maps from the sample space of an experiment to the real line or $X: \Omega \to \mathbb{R}$.

- Numeric representation of uncertain events ~~we can use math!
- The r.v. is X and the numerical value for some outcome ω is $X(\omega).$

Definition

A random variable (r.v.) is a function that maps from the sample space of an experiment to the real line or $X: \Omega \to \mathbb{R}$.

- Numeric representation of uncertain events ~~we can use math!
- The r.v. is X and the numerical value for some outcome ω is $X(\omega).$
- Randomness comes from the randomness of the experiment.

• For any experiment, there can be many random variables.

- For any experiment, there can be many random variables.
- Randomly sample 2 senators \rightsquigarrow 4 outcomes:

 $\Omega = \{DD, RD, DR, RR\}.$

- For any experiment, there can be many random variables.
- Randomly sample 2 senators \rightsquigarrow 4 outcomes:

$$\Omega = \{DD, RD, DR, RR\}.$$

• X = number of Democrats in the two draws.

- For any experiment, there can be many random variables.
- Randomly sample 2 senators \rightsquigarrow 4 outcomes:

$$\Omega = \{DD, RD, DR, RR\}.$$

• X = number of Democrats in the two draws.

•
$$X(DD) = 2, X(RD) = X(DR) = 1, X(RR) = 0$$

- For any experiment, there can be many random variables.
- Randomly sample 2 senators \rightsquigarrow 4 outcomes:

$$\Omega = \{DD, RD, DR, RR\}.$$

• X = number of Democrats in the two draws.

•
$$X(DD) = 2, X(RD) = X(DR) = 1, X(RR) = 0$$

Another r.v. Y = number of Republicans in the two draws, Y = 2 - X

- For any experiment, there can be many random variables.
- Randomly sample 2 senators \rightsquigarrow 4 outcomes:

$$\Omega = \{DD, RD, DR, RR\}.$$

• X = number of Democrats in the two draws.

•
$$X(DD) = 2, X(RD) = X(DR) = 1, X(RR) = 0$$

- Another r.v. Y = number of Republicans in the two draws, Y = 2 - X
- Z = 1 if draw is two Democrats (*DD*), 0 otherwise.

- For any experiment, there can be many random variables.
- Randomly sample 2 senators \rightsquigarrow 4 outcomes:

$$\Omega = \{DD, RD, DR, RR\}.$$

• X = number of Democrats in the two draws.

•
$$X(DD) = 2, X(RD) = X(DR) = 1, X(RR) = 0$$

Another r.v. Y = number of Republicans in the two draws, Y = 2 - X

• Z = 1 if draw is two Democrats (*DD*), 0 otherwise.

• Usually abstract away from the underlying sample space fairly quickly.

Types of R.V.

• Two main types of r.v.s: discrete and continuous. Focus on discrete now.

Types of R.V.

• Two main types of r.v.s: discrete and continuous. Focus on discrete now.

Definition

A r.v. X is $\ensuremath{\text{discrete}}$ if the values it takes with positive probability are finite

$$X \in \{x_1, \dots, x_k\}$$

or countably infinite

$$X \in \{x_1, x_2, \dots\}.$$

Types of R.V.

• Two main types of r.v.s: discrete and continuous. Focus on discrete now.

Definition

A r.v. X is **discrete** if the values it takes with positive probability are finite

$$X \in \{x_1, \dots, x_k\}$$

or countably infinite

$$X \in \{x_1, x_2, \dots\}.$$

• The **support** of X is the values x such that

$$\mathbb{P}(X=x) > 0.$$

• How are r.v.s random?

• How are r.v.s random?

• Uncertainty over $\Omega \rightsquigarrow$ uncertainty over value of X.

- How are r.v.s random?
 - Uncertainty over $\Omega \rightsquigarrow$ uncertainty over value of X.
 - We'll use probability to formalize this uncertainty.

- How are r.v.s random?
 - Uncertainty over $\Omega \rightsquigarrow$ uncertainty over value of X.
 - We'll use probability to formalize this uncertainty.
- The **distribution** of a r.v. describes its behavior in terms of probability.

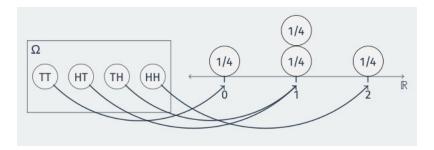
- How are r.v.s random?
 - Uncertainty over $\Omega \rightsquigarrow$ uncertainty over value of X.
 - We'll use probability to formalize this uncertainty.
- The **distribution** of a r.v. describes its behavior in terms of probability.
 - Specifies probabilities of all possible events of the r.v.

- How are r.v.s random?
 - Uncertainty over $\Omega \rightsquigarrow$ uncertainty over value of X.
 - We'll use probability to formalize this uncertainty.
- The **distribution** of a r.v. describes its behavior in terms of probability.
 - Specifies probabilities of all possible events of the r.v.
 - X = number of times a randomly chosen citizen contributed to a campaign in 2020.

- How are r.v.s random?
 - Uncertainty over $\Omega \rightsquigarrow$ uncertainty over value of X.
 - We'll use probability to formalize this uncertainty.
- The **distribution** of a r.v. describes its behavior in terms of probability.
 - Specifies probabilities of all possible events of the r.v.
 - X = number of times a randomly chosen citizen contributed to a campaign in 2020.
 - What's the $\mathbb{P}(X > 5)$? $\mathbb{P}(X = 0)$?

- How are r.v.s random?
 - Uncertainty over $\Omega \rightsquigarrow$ uncertainty over value of X.
 - We'll use probability to formalize this uncertainty.
- The **distribution** of a r.v. describes its behavior in terms of probability.
 - Specifies probabilities of all possible events of the r.v.
 - X = number of times a randomly chosen citizen contributed to a campaign in 2020.
 - What's the $\mathbb{P}(X > 5)$? $\mathbb{P}(X = 0)$?
- Often there are many ways to express a distribution.

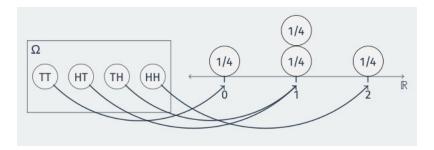
Inducing probabilities



• Let X be the number of heads in two coin flips.

ω	$\mathbb{P}(\{\omega\})$	$X(\omega)$
TT	1/4	0
ΗT	1/4	1
ΤH	1/4	1
ΗH	1/4	2

Inducing probabilities



• Let X be the number of heads in two coin flips.

ω	$\mathbb{P}(\{\omega\})$	$X(\omega)$	- x	$\mid \mathbb{P}(X=x)$
TT	1/4	0		$\frac{\mathbb{I}\left(X-x\right)}{1/4}$
ΗT	1/4	1	0	1/4
ΤH	1/4	1	1	1/2
нн	1/4	2	2	1/4

• Probability mass function (p.m.f.): $p_X(x) = \mathbb{P}(X = x)$

- Probability mass function (p.m.f.): $p_X(x) = \mathbb{P}(X = x)$
 - Careful: $\mathbb{P}(X = x)$ makes sense because $\{X = x\}$ is an event.

- Probability mass function (p.m.f.): $p_X(x) = \mathbb{P}(X = x)$
 - Careful: $\mathbb{P}(X = x)$ makes sense because $\{X = x\}$ is an event.
 - $\mathbb{P}(X)$ doesn't make any sense since X is just a mapping.

- Probability mass function (p.m.f.): $p_X(x) = \mathbb{P}(X = x)$
 - Careful: $\mathbb{P}(X = x)$ makes sense because $\{X = x\}$ is an event.
 - $\mathbb{P}(X)$ doesn't make any sense since X is just a mapping.
- Some properties of valid p.m.f. of a discrete r.v. X with support x_1, x_2, \ldots :

- Probability mass function (p.m.f.): $p_X(x) = \mathbb{P}(X = x)$
 - Careful: $\mathbb{P}(X = x)$ makes sense because $\{X = x\}$ is an event.
 - $\mathbb{P}(X)$ doesn't make any sense since X is just a mapping.
- Some properties of valid p.m.f. of a discrete r.v. X with support x_1, x_2, \ldots :
 - ▶ Nonnegative: $p_X(x) > 0$ if $x \in \{x_1, x_2, ...\}$ and $p_X(x) = 0$ otherwise.

- Probability mass function (p.m.f.): $p_X(x) = \mathbb{P}(X = x)$
 - Careful: $\mathbb{P}(X = x)$ makes sense because $\{X = x\}$ is an event.
 - $\mathbb{P}(X)$ doesn't make any sense since X is just a mapping.
- Some properties of valid p.m.f. of a discrete r.v. X with support x_1, x_2, \ldots :
 - ▶ Nonnegative: $p_X(x) > 0$ if $x \in \{x_1, x_2, ...\}$ and $p_X(x) = 0$ otherwise.
 - Sums to 1: $\sum_{j=1}^{\infty} p_X(x_j) = 1$.

- Probability mass function (p.m.f.): $p_X(x) = \mathbb{P}(X = x)$
 - Careful: $\mathbb{P}(X = x)$ makes sense because $\{X = x\}$ is an event.
 - $\mathbb{P}(X)$ doesn't make any sense since X is just a mapping.
- Some properties of valid p.m.f. of a discrete r.v. *X* with support x_1, x_2, \ldots :
 - ▶ Nonnegative: $p_X(x) > 0$ if $x \in \{x_1, x_2, ...\}$ and $p_X(x) = 0$ otherwise.
 - Sums to 1: $\sum_{j=1}^{\infty} p_X(x_j) = 1$.
- Probability of a set of values $S \subset \{x_1, x_2, \dots\}$:

$$\mathbb{P}(X \in S) = \sum_{x \in S} p_X(x)$$

• You want to run a randomized control trial on 3 people.

- You want to run a randomized control trial on 3 people.
- Use the following procedure:

- You want to run a randomized control trial on 3 people.
- Use the following procedure:
 - Flip independent fair coins for each unit

- You want to run a randomized control trial on 3 people.
- Use the following procedure:
 - Flip independent fair coins for each unit
 - ► Heads assigned to Control (C), tails to Treatment (T)

- You want to run a randomized control trial on 3 people.
- Use the following procedure:
 - Flip independent fair coins for each unit
 - ► Heads assigned to Control (C), tails to Treatment (T)
- Let X be the number of treated units:

$$X = \begin{cases} 0 & \text{if } (C, C, C) \\ 1 & \text{if } (T, C, C) \text{ or } (C, T, C) \text{ or } (C, C, T) \\ 2 & \text{if } (T, T, C) \text{ or } (C, T, T) \text{ or } (T, C, T) \\ 3 & \text{if } (T, T, T) \end{cases}$$

- You want to run a randomized control trial on 3 people.
- Use the following procedure:
 - Flip independent fair coins for each unit
 - Heads assigned to Control (C), tails to Treatment (T)
- Let X be the number of treated units:

$$X = \begin{cases} 0 & \text{if } (C, C, C) \\ 1 & \text{if } (T, C, C) \text{ or } (C, T, C) \text{ or } (C, C, T) \\ 2 & \text{if } (T, T, C) \text{ or } (C, T, T) \text{ or } (T, C, T) \\ 3 & \text{if } (T, T, T) \end{cases}$$

• Use independence and fair coins:

- You want to run a randomized control trial on 3 people.
- Use the following procedure:
 - Flip independent fair coins for each unit
 - Heads assigned to Control (C), tails to Treatment (T)
- Let X be the number of treated units:

$$X = \begin{cases} 0 & \text{if } (C, C, C) \\ 1 & \text{if } (T, C, C) \text{ or } (C, T, C) \text{ or } (C, C, T) \\ 2 & \text{if } (T, T, C) \text{ or } (C, T, T) \text{ or } (T, C, T) \\ 3 & \text{if } (T, T, T) \end{cases}$$

• Use independence and fair coins:

- You want to run a randomized control trial on 3 people.
- Use the following procedure:
 - Flip independent fair coins for each unit
 - ► Heads assigned to Control (C), tails to Treatment (T)
- Let X be the number of treated units:

$$X = \begin{cases} 0 & \text{if } (C, C, C) \\ 1 & \text{if } (T, C, C) \text{ or } (C, T, C) \text{ or } (C, C, T) \\ 2 & \text{if } (T, T, C) \text{ or } (C, T, T) \text{ or } (T, C, T) \\ 3 & \text{if } (T, T, T) \end{cases}$$

• Use independence and fair coins:

$$\mathbb{P}(C, T, C) = \mathbb{P}(C)\mathbb{P}(T)\mathbb{P}(C) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$

Calculating the p.m.f.

$$p_X(0) = \mathbb{P}(X=0) = \mathbb{P}(C, C, C) = \frac{1}{8}$$

$$p_X(1) = \mathbb{P}(X=1) = \mathbb{P}(T, C, C) + \mathbb{P}(C, T, C) + \mathbb{P}(C, C, T) = \frac{3}{8}$$

$$p_X(2) = \mathbb{P}(X=2) = \mathbb{P}(T, T, C) + \mathbb{P}(C, T, T) + \mathbb{P}(T, C, T) = \frac{3}{8}$$

$$p_X(3) = \mathbb{P}(X=3) = \mathbb{P}(T, T, T) = \frac{1}{8}$$

• What's $\mathbb{P}(X=4)$?

Calculating the p.m.f.

$$p_X(0) = \mathbb{P}(X=0) = \mathbb{P}(C, C, C) = \frac{1}{8}$$

$$p_X(1) = \mathbb{P}(X=1) = \mathbb{P}(T, C, C) + \mathbb{P}(C, T, C) + \mathbb{P}(C, C, T) = \frac{3}{8}$$

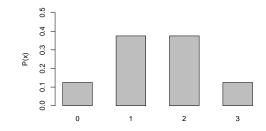
$$p_X(2) = \mathbb{P}(X=2) = \mathbb{P}(T, T, C) + \mathbb{P}(C, T, T) + \mathbb{P}(T, C, T) = \frac{3}{8}$$

$$p_X(3) = \mathbb{P}(X=3) = \mathbb{P}(T, T, T) = \frac{1}{8}$$

• What's $\mathbb{P}(X=4)$? 0!

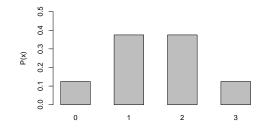
Plotting the p.m.f.

• We could plot this p.m.f. using R:



Plotting the p.m.f.

• We could plot this p.m.f. using R:



• **Question:** Does this seem like a good way to assign treatment? What is one major problem with it?

Definition

An r.v. X has a **Bernoulli distribution** with parameter p if

$$P(X=1) = p$$

and

$$P(X=0) = 1 - p$$

and this is written as $X \sim \text{Bern}(p)$.

Definition

An r.v. X has a **Bernoulli distribution** with parameter p if

$$P(X=1) = p$$

and

$$P(X=0) = 1 - p$$

and this is written as $X \sim \text{Bern}(p)$.

• Story: indicator of success in some trial with either success or failure.

Definition

An r.v. X has a **Bernoulli distribution** with parameter p if

$$P(X=1) = p$$

and

$$P(X=0) = 1 - p$$

and this is written as $X \sim \text{Bern}(p)$.

- Story: indicator of success in some trial with either success or failure.
- Actually a **family** of distributions indexed by *p*.

Definition

An r.v. X has a **Bernoulli distribution** with parameter p if

$$P(X=1) = p$$

and

$$P(X=0) = 1 - p$$

and this is written as $X \sim \text{Bern}(p)$.

- Story: indicator of success in some trial with either success or failure.
- Actually a **family** of distributions indexed by *p*.
- Any event A has an associated Bernoulli r.v.: indicator variable
 I(A) ~ Bern(p) with p = P(A)

Definition

Definition

Let X be the number of successes in n independent Bernoulli trials all with success probability p. Then X follows the **binomial distribution** with parameters n and p, which is written $X \sim Bin(n, p)$.

• Definition is based on a story: helps pattern match to our data.

Definition

- Definition is based on a story: helps pattern match to our data.
- Also helps draw immediate connections:

Definition

- Definition is based on a story: helps pattern match to our data.
- Also helps draw immediate connections:
 - ▶ $\mathsf{Bin}(1, p) \sim \mathsf{Bern}(p)$.

Definition

- Definition is based on a story: helps pattern match to our data.
- Also helps draw immediate connections:
 - ▶ $\mathsf{Bin}(1, p) \sim \mathsf{Bern}(p).$
 - If $X \sim Bin(n, p)$, then $n X \sim Bin(n, 1 p)$.

Binomial p.m.f.

Binomial p.m.f.

If $X \sim Bin(n, p)$, then the p.m.f. of X is

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k},$$

for all k = 0, 1, ..., n.

• $p^k(1-p)^{n-k}$ is the probability of a **specific** sequence of 1's and 0's with k 1's.

Binomial p.m.f.

Binomial p.m.f.

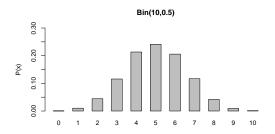
If $X \sim Bin(n, p)$, then the p.m.f. of X is

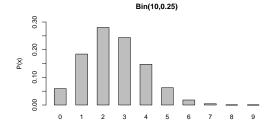
$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k},$$

for all k = 0, 1, ..., n.

- $p^k(1-p)^{n-k}$ is the probability of a **specific** sequence of 1's and 0's with k 1's.
- Binomial coefficient $\binom{n}{k}$ is how many of these combinations there are.

Some Binomial Distribution





Discrete uniform distribution

Definition

Let C be a finite, nonempty set of numbers. If X is the number chosen randomly with all values equally likely, we say it follows the **discrete uniform** distribution.

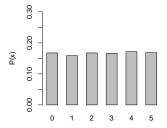
Discrete uniform distribution

Definition

Let C be a finite, nonempty set of numbers. If X is the number chosen randomly with all values equally likely, we say it follows the **discrete uniform** distribution.

• p.m.f. for a discrete uniform r.v.:

$$p_X(x) = \begin{cases} \frac{1}{|C|}, & \text{for } x \in C\\ 0, & \text{otherwise} \end{cases}$$



Cumulative distribution functions

Definition

The **cumulative distribution function (c.d.f.)** is a function $F_X(x)$ that returns the probability that a variable is less than a particular value:

$$F_X(x) \equiv \mathbb{P}(X \le x).$$

• Useful for all r.v.s since p.m.f. are unique to discrete r.v.s.

Cumulative distribution functions

Definition

The **cumulative distribution function (c.d.f.)** is a function $F_X(x)$ that returns the probability that a variable is less than a particular value:

$$F_X(x) \equiv \mathbb{P}(X \le x).$$

- Useful for all r.v.s since p.m.f. are unique to discrete r.v.s.
- For discrete r.v.:

$$F_X(x) = \sum_{x_j \le x} p_X(x_j)$$

• Remember example where X is the number of treated units:

x	$\mathbb{P}(X=x)$
0	1/8
1	3/8
2	3/8
3	1/8

• Let's calculate the c.d.f., $F_X(x) = \mathbb{P}(X \le x) \text{ for this:}$

• Remember example where X is the number of treated units:

x	$\mathbb{P}(X=x)$
0	1/8
1	3/8
2	3/8
3	1/8

• Let's calculate the c.d.f., $F_X(x) = \mathbb{P}(X \le x) \text{ for this:}$ $F_X(x) = \begin{cases} 0 & x < 0 \\ 1/8 & x \in \{0\} \\ 1/2 & x \in \{0,1\} \\ 7/8 & x \in \{0,1,2\} \\ 1 & x \le 3 \end{cases}$

• Remember example where X is the number of treated units:

 $\begin{array}{c|c|c} x & \mathbb{P}(X=x) \\ \hline 0 & 1/8 \\ 1 & 3/8 \\ 2 & 3/8 \\ 3 & 1/8 \end{array}$

• What is $F_X(1.4)$ here?

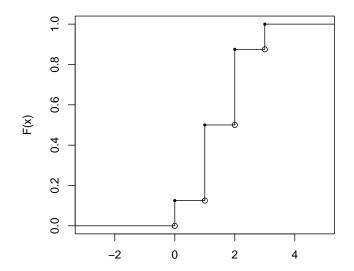
• Let's calculate the c.d.f., $F_X(x) = \mathbb{P}(X \le x) \text{ for this:}$ $F_X(x) = \begin{cases} 0 & x < 0 \\ 1/8 & x \in \{0\} \\ 1/2 & x \in \{0,1\} \\ 7/8 & x \in \{0,1,2\} \\ 1 & x \le 3 \end{cases}$

• Remember example where X is the number of treated units:

 $\begin{array}{c|c|c} x & \mathbb{P}(X=x) \\ \hline 0 & 1/8 \\ 1 & 3/8 \\ 2 & 3/8 \\ 3 & 1/8 \end{array}$

• What is $F_X(1.4)$ here? 0.5

• Let's calculate the c.d.f., $F_X(x) = \mathbb{P}(X \le x) \text{ for this:}$ $F_X(x) = \begin{cases} 0 & x < 0 \\ 1/8 & x \in \{0\} \\ 1/2 & x \in \{0,1\} \\ 7/8 & x \in \{0,1,2\} \\ 1 & x \le 3 \end{cases}$ Graph of discrete c.d.f.



Gov 2001

Properties of the c.d.f.

• Finding the probability of any region:

Properties of the c.d.f.

• Finding the probability of any region:

$$\blacktriangleright \mathbb{P}(a < X \le b) = F_X(b) - F_X(a).$$

Properties of the c.d.f.

• Finding the probability of any region:

$$\blacktriangleright \mathbb{P}(a < X \le b) = F_X(b) - F_X(a).$$

$$\blacktriangleright \mathbb{P}(X > a) = 1 - F_X(a).$$

• Finding the probability of any region:

$$\blacktriangleright \mathbb{P}(a < X \le b) = F_X(b) - F_X(a).$$

$$\blacktriangleright \mathbb{P}(X > a) = 1 - F_X(a).$$

• Properties of F_X :

$$\blacktriangleright \mathbb{P}(a < X \le b) = F_X(b) - F_X(a).$$

$$\blacktriangleright \mathbb{P}(X > a) = 1 - F_X(a).$$

- Properties of F_X :
 - 1. Increasing: if $x_1 \leq x_2$ then $F_X(x_1) \leq F_X(x_2)$.

$$\blacktriangleright \mathbb{P}(a < X \le b) = F_X(b) - F_X(a).$$

- $\blacktriangleright \mathbb{P}(X > a) = 1 F_X(a).$
- Properties of F_X :
 - 1. Increasing: if $x_1 \leq x_2$ then $F_X(x_1) \leq F_X(x_2)$.
 - ✓ Proof: the event $X < x_1$ includes the event $X < x_2$ so $\mathbb{P}(X < x_2)$ can't be smaller than $\mathbb{P}(X < x_1)$.

$$\blacktriangleright \mathbb{P}(a < X \le b) = F_X(b) - F_X(a).$$

- $\blacktriangleright \mathbb{P}(X > a) = 1 F_X(a).$
- Properties of F_X :
 - 1. Increasing: if $x_1 \leq x_2$ then $F_X(x_1) \leq F_X(x_2)$.
 - ✓ Proof: the event $X < x_1$ includes the event $X < x_2$ so $\mathbb{P}(X < x_2)$ can't be smaller than $\mathbb{P}(X < x_1)$.
 - 2. Converges to 0 and 1: $\lim_{x\to-\infty} F_X(x) = 0$ and $\lim_{x\to\infty} F_X(x) = 1$.

$$\blacktriangleright \mathbb{P}(a < X \le b) = F_X(b) - F_X(a).$$

- $\blacktriangleright \mathbb{P}(X > a) = 1 F_X(a).$
- Properties of F_X :
 - 1. Increasing: if $x_1 \leq x_2$ then $F_X(x_1) \leq F_X(x_2)$.
 - ✓ Proof: the event $X < x_1$ includes the event $X < x_2$ so $\mathbb{P}(X < x_2)$ can't be smaller than $\mathbb{P}(X < x_1)$.
 - 2. Converges to 0 and 1: $\lim_{x \to -\infty} F_X(x) = 0$ and $\lim_{x \to \infty} F_X(x) = 1$.
 - 3. **Right continuous**: no jumps when we approach a point from the right:

$$F(a) = \lim_{x \to a^+} F(x)$$

• *Y* = number of citizens who vote in an election in a population of 1,000.

- *Y* = number of citizens who vote in an election in a population of 1,000.
- We could model the distribution of Y as Bin(1000, p).

- *Y* = number of citizens who vote in an election in a population of 1,000.
- We could model the distribution of Y as Bin(1000, p).

• Allows us to make statements like $\mathbb{P}(Y \ge 500)$.

- *Y* = number of citizens who vote in an election in a population of 1,000.
- We could model the distribution of Y as Bin(1000, p).

• Allows us to make statements like $\mathbb{P}(Y \ge 500)$.

• What about the proportion turnout X = Y/1000?

- *Y* = number of citizens who vote in an election in a population of 1,000.
- We could model the distribution of Y as Bin(1000, p).

• Allows us to make statements like $\mathbb{P}(Y \ge 500)$.

- What about the proportion turnout X = Y/1000?
 - Can we make statements about $\mathbb{P}(X \ge 0.5)$?

• Any function of a random variable is also a random variable.

- Any function of a random variable is also a random variable.
- Y = g(X) where $g() : \mathbb{R} \to \mathbb{R}$ is the function that maps from the sample space to $\omega : g(X(\omega))$

- Any function of a random variable is also a random variable.
- Y = g(X) where $g() : \mathbb{R} \to \mathbb{R}$ is the function that maps from the sample space to $\omega : g(X(\omega))$
 - Let x_1, \ldots, x_k be the support of X and $y_j = g(x_j)$ be the support of Y.

- Any function of a random variable is also a random variable.
- Y = g(X) where $g() : \mathbb{R} \to \mathbb{R}$ is the function that maps from the sample space to $\omega : g(X(\omega))$

• Let x_1, \ldots, x_k be the support of X and $y_j = g(x_j)$ be the support of Y.

• If all x_j values map to a single y_j value ("one-to-one"), then we have:

$$\mathbb{P}(Y = g(x_j)) = \mathbb{P}(g(X) = x_j) = \mathbb{P}(X = x_j).$$

- Any function of a random variable is also a random variable.
- Y = g(X) where $g() : \mathbb{R} \to \mathbb{R}$ is the function that maps from the sample space to $\omega : g(X(\omega))$

• Let x_1, \ldots, x_k be the support of X and $y_j = g(x_j)$ be the support of Y.

• If all x_j values map to a single y_j value ("one-to-one"), then we have:

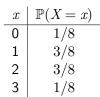
$$\mathbb{P}(Y = g(x_j)) = \mathbb{P}(g(X) = x_j) = \mathbb{P}(X = x_j).$$

• If there are redundancies, we have to add those probabilities together:

$$\mathbb{P}(Y=y_j) = \mathbb{P}(g(X)=y_j) = \sum_{x_i:g(x_i)=y_j} \mathbb{P}(X=x_i).$$

- $X \sim Bin(n, p)$: number of successes.
- Y = X/n: proportion of successes (one-to-one).
- $Z = \mathbb{I}(X > 0)$: any successes (not one-to-one).

- $X \sim Bin(n, p)$: number of successes.
- Y = X/n: proportion of successes (one-to-one).
- $Z = \mathbb{I}(X > 0)$: any successes (not one-to-one).



- $X \sim Bin(n, p)$: number of successes.
- Y = X/n: proportion of successes (one-to-one).
- $Z = \mathbb{I}(X > 0)$: any successes (not one-to-one).

x	$\mathbb{P}(X=x)$	y	$\mathbb{P}(Y=y)$
0	1/8	0	1/8
1	3/8	1/3	3/8
2	3/8	2/3	3/8
3	1/8	1	1/8

- $X \sim Bin(n, p)$: number of successes.
- Y = X/n: proportion of successes (one-to-one).
- $Z = \mathbb{I}(X > 0)$: any successes (not one-to-one).

x	$\mathbb{P}(X=x)$	y	$\mathbb{P}(Y=y)$		
0	1/8	0	1/8	z	$\mathbb{P}(Z=z)$
1	3/8	1/3	3/8	0	1/8
2	3/8	2/3	3/8	1	3/8 + 3/8 + 1/8 = 7/8
3	1/8	1	1/8		

• Easy to confuse r.v.s, their distribution, events, and values the r.v.s take.

- Easy to confuse r.v.s, their distribution, events, and values the r.v.s take.
- A few common examples:

- Easy to confuse r.v.s, their distribution, events, and values the r.v.s take.
- A few common examples:
 - If X and Y have the same distribution $\neq \mathbb{P}(X = Y) = 1$

- Easy to confuse r.v.s, their distribution, events, and values the r.v.s take.
- A few common examples:
 - If X and Y have the same distribution $\neq \mathbb{P}(X = Y) = 1$
 - Scaling an r.v. doesn't scale the p.m.f., so Y = 2X does not have $p_Y(y) \neq 2p_X(x)$

• Two r.v.s are independent if

$$\mathbb{P}(X \le x, \, Y \le y) = \mathbb{P}(X \le x)\mathbb{P}(Y \le y)$$

• Two r.v.s are independent if

$$\mathbb{P}(X \le x, Y \le y) = \mathbb{P}(X \le x)\mathbb{P}(Y \le y)$$

• For many r.v.s:

$$\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n) = \mathbb{P}(X_1 \le x_1) \times \dots \times \mathbb{P}(X_n \le x_n)$$

• Two r.v.s are independent if

$$\mathbb{P}(X \le x, Y \le y) = \mathbb{P}(X \le x)\mathbb{P}(Y \le y)$$

• For many r.v.s:

$$\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n) = \mathbb{P}(X_1 \le x_1) \times \dots \times \mathbb{P}(X_n \le x_n)$$

▶ Remember: X₁,..., X_n independent ⇒ pairwise independent, but not vice versa.

• Two r.v.s are independent if

$$\mathbb{P}(X \le x, \, Y \le y) = \mathbb{P}(X \le x)\mathbb{P}(Y \le y)$$

• For many r.v.s:

$$\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n) = \mathbb{P}(X_1 \le x_1) \times \dots \times \mathbb{P}(X_n \le x_n)$$

- ▶ Remember: X₁,..., X_n independent ⇒ pairwise independent, but not vice versa.
- For discrete r.v.s (not continuous), we can write this as:

$$\mathbb{P}(X=x,\,Y=y)=\mathbb{P}(X=x)\mathbb{P}(\,Y=y)$$

• Independent and identically distributed (i.i.d.) X_1, \ldots, X_n

• Independent and identically distributed (i.i.d.) X_1, \ldots, X_n

Identically distributed: all have the same p.m.f./c.d.f.

- Independent and identically distributed (i.i.d.) X_1, \ldots, X_n
 - Identically distributed: all have the same p.m.f./c.d.f.
 - Extremely common data assumption

- Independent and identically distributed (i.i.d.) X_1, \ldots, X_n
 - Identically distributed: all have the same p.m.f./c.d.f.
 - Extremely common data assumption
- Story of the binomial: if $X \sim Bin(n, p)$, we can write it as

$$X = X_1 + \dots + X_n$$

```
where X_i are i.i.d. Bern(p).
```

- Independent and identically distributed (i.i.d.) X_1, \ldots, X_n
 - Identically distributed: all have the same p.m.f./c.d.f.
 - Extremely common data assumption
- Story of the binomial: if $X \sim Bin(n, p)$, we can write it as

$$X = X_1 + \dots + X_n$$

where X_i are i.i.d. Bern(p).

• Theorem: If $X \sim Bin(n, p)$ and $Y \sim Bin(m, p)$ with X and Y independent, then

$$X + Y \sim \mathsf{Bin}(n+m, p).$$

Proof: PMF Approach

Step 1: Define the PMFs of X and Y

Proof: PMF Approach

Step 1: Define the PMFs of X and Y

The PMF of a binomially distributed random variable is given by:

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, \dots, n.$$

$$P(Y=j) = \binom{m}{j} p^{j} (1-p)^{m-j}, \quad j = 0, 1, \dots, m.$$

Proof: PMF Approach

Step 1: Define the PMFs of X and Y

The PMF of a binomially distributed random variable is given by:

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}, \quad k = 0, 1, \dots, n.$$
$$P(Y = j) = \binom{m}{j} p^j (1 - p)^{m-j}, \quad j = 0, 1, \dots, m.$$

Since X and Y are independent, their joint probability is:

$$P(X = k, Y = j) = P(X = k)P(Y = j).$$

Proof: Computing the Distribution of X + Y

We seek to find P(X + Y = r), i.e., the probability that the sum of X and Y equals r:

$$P(X + Y = r) = \sum_{k=0}^{r} P(X = k)P(Y = r - k).$$

Proof: Computing the Distribution of X + Y

We seek to find P(X + Y = r), i.e., the probability that the sum of X and Y equals r:

$$P(X + Y = r) = \sum_{k=0}^{r} P(X = k)P(Y = r - k).$$

Substituting the PMFs:

$$P(X+Y=r) = \sum_{k=0}^{r} \binom{n}{k} p^{k} (1-p)^{n-k} \cdot \binom{m}{r-k} p^{r-k} (1-p)^{m-(r-k)}.$$

Proof: Recognizing the Binomial Form

Rewriting the product:

$$P(X+Y=r) = p^{r}(1-p)^{(n+m)-r} \sum_{k=0}^{r} \binom{n}{k} \binom{m}{r-k}.$$

Proof: Recognizing the Binomial Form

Rewriting the product:

$$P(X + Y = r) = p^{r}(1 - p)^{(n+m)-r} \sum_{k=0}^{r} \binom{n}{k} \binom{m}{r-k}.$$

Using the combinatorial identity:

$$\sum_{k=0}^{r} \binom{n}{k} \binom{m}{r-k} = \binom{n+m}{r},$$

Proof: Recognizing the Binomial Form

Rewriting the product:

$$P(X + Y = r) = p^{r}(1 - p)^{(n+m)-r} \sum_{k=0}^{r} \binom{n}{k} \binom{m}{r-k}.$$

Using the combinatorial identity:

$$\sum_{k=0}^{r} \binom{n}{k} \binom{m}{r-k} = \binom{n+m}{r},$$

we get:

$$P(X + Y = r) = {\binom{n+m}{r}} p^r (1-p)^{(n+m)-r}$$

Conclusion

This is exactly the PMF of a ${\bf Binomial}$ distribution with parameters $(n+m,p){:}$

$$X + Y \sim \mathsf{Bin}(n+m, p).$$

• Statistical modeling in a nutshell:

• Statistical modeling in a nutshell:

1. Assume the data, X_1, X_2, \ldots , are i.i.d. with p.m.f. $p_X(x; \theta)$ within a family of distributions (Bernoulli, binomial, etc) with parameter θ .

• Statistical modeling in a nutshell:

- 1. Assume the data, X_1, X_2, \ldots , are i.i.d. with p.m.f. $p_X(x; \theta)$ within a family of distributions (Bernoulli, binomial, etc) with parameter θ .
- 2. Use a function of the observed data to **estimate** the value of θ :

• Statistical modeling in a nutshell:

- 1. Assume the data, X_1, X_2, \ldots , are i.i.d. with p.m.f. $p_X(x; \theta)$ within a family of distributions (Bernoulli, binomial, etc) with parameter θ .
- 2. Use a function of the observed data to **estimate** the value of θ :

 $\hat{\theta}(X_1, X_2, \dots)$

• Example:

• Statistical modeling in a nutshell:

- 1. Assume the data, X_1, X_2, \ldots , are i.i.d. with p.m.f. $p_X(x; \theta)$ within a family of distributions (Bernoulli, binomial, etc) with parameter θ .
- 2. Use a function of the observed data to **estimate** the value of θ :

- Example:
 - Sample *n* respondents from the population with replacement.

• Statistical modeling in a nutshell:

- 1. Assume the data, X_1, X_2, \ldots , are i.i.d. with p.m.f. $p_X(x; \theta)$ within a family of distributions (Bernoulli, binomial, etc) with parameter θ .
- 2. Use a function of the observed data to **estimate** the value of θ :

- Example:
 - Sample *n* respondents from the population with replacement.
 - ► X₁, X₂,..., X_n: independent Bernoulli r.v.s indicating Biden approval.

• Statistical modeling in a nutshell:

- 1. Assume the data, X_1, X_2, \ldots , are i.i.d. with p.m.f. $p_X(x; \theta)$ within a family of distributions (Bernoulli, binomial, etc) with parameter θ .
- 2. Use a function of the observed data to **estimate** the value of θ :

- Example:
 - Sample *n* respondents from the population with replacement.
 - ► X₁, X₂,..., X_n: independent Bernoulli r.v.s indicating Biden approval.
 - ▶ *p* is the Biden approval rate in the population.

• Statistical modeling in a nutshell:

- 1. Assume the data, X_1, X_2, \ldots , are i.i.d. with p.m.f. $p_X(x; \theta)$ within a family of distributions (Bernoulli, binomial, etc) with parameter θ .
- 2. Use a function of the observed data to **estimate** the value of θ :

- Example:
 - Sample *n* respondents from the population with replacement.
 - ► X₁, X₂,..., X_n: independent Bernoulli r.v.s indicating Biden approval.
 - ▶ *p* is the Biden approval rate in the population.
 - $\bar{X} = \frac{1}{n} \sum_{i} X_i$ is our estimate of *p*. Properties?