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Road map

• We’ve defined random variables and their distributions.
• Distributions give full information about the probabilities of an r.v.
• Today: begin to summarize distributions with expectation.

Gov 2001 2 / 38



Motivation: Causal Effects

• Consider a hypothetical intervention such as “door-to-door get
out the vote.”

• We’ll define two potential outcomes:

▶ Yi(1): whether person i would vote (1) or not (0) if they received
canvassing.

▶ Yi(0): whether person i would vote (1) or not (0) if they didn’t
receive the canvassing.

• The individual causal effect of canvassing then is

τi = Yi(1)− Yi(0)

• We can think of Yi(1) and Yi(0) as rvs and so τi is a rv as well.
• How should we summarize the distribution of causal effects?
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How can we summarize distributions?

• Probability distributions describe the uncertainty about r.v.s.

• Can we summarize probability distributions?
• Question: What is the difference between these two p.m.f.s?

How might we summarize this difference?
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Goals for summarizing

1. Central tendency: where the center of the distribution is.

▶ We’ll focus on the mean/expectation.
2. Spread: how spread out the distribution is around the center.

▶ We’ll focus on the variance/standard deviation.

• These are population parameters so we don’t get to observe
them.

▶ We won’t get to observe them...
▶ but we’ll use our sample to learn about them.
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Two ways to calculate averages

• Calculate the average of: {1, 1, 1, 3, 4, 4, 5, 5}

1 + 1 + 1 + 3 + 4 + 4 + 5 + 5

8
= 3

• Alternative way to calculate average based on frequency
weights:

1× 3

8
+ 3× 1

8
+ 4× 2

8
+ 5× 2

8
= 3

▶ Each value times how often that value occurs in the data.
▶ We’ll use this intuition to create an average/mean for r.v.s.
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Expectation

Definition
The expected value (or expectation or mean) of a discrete r.v. X
with possible values, x1, x2, . . . is

E[X] =

∞∑
j=1

xjP(X = xj)

• Weighted average of the values of the r.v. weighted by the
probability of each value occurring.

▶ E[X] is a constant!
• Example: X ∼ Bern(p), then E[X] = 1p + 0(1− p) = p.
• If X and Y have the same distribution, then E[X] = E[Y].

▶ Converse isn’t true!
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Example - number of treated units
• Randomized experiment with 3 units. X is the number of treated

units.
x pX(x) x · pX(x)
0 1/8 0
1 3/8 3/8
2 3/8 6/8
3 1/8 3/8

• Calculate the expectation of X:

E[X] =
k∑

j=1

xjP(X = xj)

= 0 · P(X = 0) + 1 · P(X = 1) + 2 · P(X = 2) + 3 · P(X = 3)

= 0 · 1
8
+ 1 · 3

8
+ 2 · 3

8
+ 3 · 1

8
=

12

8
= 1.5
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Expectation as balancing point
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Properties of the expected value

• We can derive expectation of transformations of other r.v.s

• Possible for linear functions because expectation is linear:

E[X + Y] = E[X] + E[Y]

E[aX] = aE[X] if a is a constant

• True even if X and Y are dependent!
• But this isn’t always true for nonlinear operations:

▶ E[g(X)] ̸= g(E[X]) unless g(·) is a linear function.
▶ E[XY] ̸= E[X]E[Y] unless X and Y are independent.
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Examples

• E[g(X)] ̸= g(E[X]) unless g(·) is a linear function.

▶ Let g(X) = X2

▶ E[g(X)] = E[X2]

▶ g(E[X]) = (E[X])2

• E[XY] ̸= E[X]E[Y] unless X and Y are independent.

▶ Let X = 2Y
▶ E[XY] = E[2Y2] = 2E[Y2]

▶ E[X]E[Y] = E[2Y]E[Y] = 2(E[Y])2
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Expectation of a binomial

• Let X ∼ Bin(n, p), what’s E[X]? Could just plug in formula:

E[X] =

n∑
k=0

k
(

n
k

)
pk(1− p)n−k =??

• Use the story of the binomial as a sum of n Bernoulli
Xi ∼ Bern(p)

X = X1 + · · ·+ Xn

• Use linearity:

E[X] = E[X1 + · · ·+ Xn] = E[X1] + · · ·+ E[Xn] = np
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Expectation of the sample mean

• Let X1, . . . ,Xn be identically distributed with E[Xi] = µ.

• Define the sample mean to be

X̄n = n−1
n∑

i=1

Xi.

▶ X̄ is a r.v.!

• We can find the expectation of the sample mean using linearity:

E[X̄n] = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[Xi] =
1

nnµ = µ

• Intuition: on average, the sample mean is equal to the
population mean.
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Monotonicity of expectations

• Expectations don’t have to be in the support of the data.

▶ X ∼ Bern(p) has E[X] = p which isn’t 0 or 1.
• But it must be between the highest and lowest possible value of

an r.v.

▶ If P(X ≥ c) = 1, then E[X] ≥ c.
▶ If P(X ≤ c) = 1, then E[X] ≤ c.

• Useful application of linearity: expectation is monotone.

▶ If X ≥ Y with probability 1, then E(X) ≥ E(Y).
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St. Petersburg Paradox

• Game of chance: stranger pays you $ 2X where X is the number
of flips with a fair coin until the first heads.

▶ Probability of reaching X = k is:

P(X = k) = P(T1 ∩ T2 ∩ · · · ∩ Tk−1 ∩ Hk)

= P(T1)P(T2) . . .P(Tk−1)P(Hk)

=
1

2k
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St. Petersburg Paradox

• How much would you be willing to pay to play the game?

• Let payout be Y = 2X, we want E[Y]:

E[Y] =
∞∑

k=1

2k 1

2k =
∞∑

k=1

1 = ∞

• Two ways to resolve the “paradox”:

▶ No infinite money: max payout of 240 (around a trillion)
⇒ E[Y] = 41

▶ Risk avoidance/concave utility U = Y1/2 ⇒ E[U(Y)] ≈ 2.41
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Undefined expectations

• We saw E[X] can be infinite, but it can also be undefined.

• Example: X takes 2k and −2k each with prob 2−k−1.

E[X] =
∞∑

k=1

2k2−k−1 −
∞∑

k=1

2k2−k−1 =
∞∑

k=1

1

2
−

∞∑
k=1

1

2
= ∞−∞

• Often, both of these are assumed away by assuming E[|X|] < ∞
which implies E[X] exists and is finite.
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Indicator variables/fundamental bridge

• The probability of an event is equal to the expectation of its
indicator:

P(A) = E[I(A)]

• Fundamental bridge between probability and expectation
• Makes it easy to prove probability results like Bonferroni’s

inequality

P(A1 ∪ · · · ∪ An) ≤ P(A1) + · · ·+ P(An)

• Use the fact that I(A1 ∪ · · · ∪ An) ≤ I(A1) + · · ·+ I(An) and
then take expectations.
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Proof of Bonferroni’s Inequality

Bonferroni’s Inequality: For any finite set of events A1,A2, . . . ,An,
we have:

P(A1 ∪ A2 ∪ · · · ∪ An) ≤ P(A1) + P(A2) + · · ·+ P(An)

Proof: Using indicator variables.

• Define the indicator random variable for each event:

I(Ai) =

{
1, if Ai occurs
0, otherwise
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Using indicators to find expectations
• Suppose we are assigning n units to k treatments and all

possibilities are equally likely. What is the expected number of
treatment conditions without any units?

• Use indicators! Ij = 1 if jth condition is empty. So I1 + · · ·+ Ik is
the number of empty conditions.
E[Ij] = P(cond j empty)

= P({unit 1 not in cond j} ∩ · · · ∩ {unit n not in cond j})
= P({unit 1 not in cond j}) . . .P({unit n not in cond j})

=

(
1− 1

k

)n

• Thus, we have :

E

∑
j

Ij

 = k
(
1− 1

k

)n
.
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Variance
• The variance measures the spread of the distribution:

V[X] = E[(X − E[X])2]

• Could also use E[|X − E[X]|] but more clunky as a function.
• Weighted average of the squared distances from the mean.

▶ Larger deviations (+ or −) ⇝ higher variance.

• The standard deviation is the (positive) square root of the
variance:

SD(X) =
√
V[X]

• Useful equivalent representation of the variance:

V[X] = E[X2]− (E[X])2
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LOTUS
• How do we calculate E[X2] since it’s nonlinear?

Definition
The Law of the Unconscious Statistician, or LOTUS, states that if
g(X) is a function of a discrete random variable, then

E[g(X)] =
∑

x
g(x)P(X = x)

• Example: E[X2] where X ∼ Bin(n, p).

E[X] =

n∑
k=0

k
(

n
k

)
pk(1− p)n−k

E[X2] =
n∑

k=0

k2
(

n
k

)
pk(1− p)n−k
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Example - number of treated units
• Use LOTUS to calculate the variance for a discrete r.v.:
V[X] =

∑k
j=1(xj − E[X])2P(X = xj)

x pX(x) x − E[X] (x − E[X])2

0 1/8 -1.5 2.25
1 3/8 -0.5 0.25
2 3/8 0.5 0.25
3 1/8 1.5 2.25

• Let’s go back to the number of treated units to figure out the
variance of the number of treated units:

V[X] =
k∑

j=1

(xj − E[X])2pX(xj)

= (−1.5)2 × 1

8
+ (−0.5)2 × 3

8
+ (0.5)2 × 3

8
+ (1.5)2 × 1

8

= 2.25× 1

8
+ 0.25× 3

8
+ 0.25× 3

8
+ 2.25× 1

8
= 0.75
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0 1/8 -1.5 2.25
1 3/8 -0.5 0.25
2 3/8 0.5 0.25
3 1/8 1.5 2.25

• Let’s go back to the number of treated units to figure out the
variance of the number of treated units:

V[X] =

k∑
j=1

(xj − E[X])2pX(xj)

= (−1.5)2 × 1

8
+ (−0.5)2 × 3

8
+ (0.5)2 × 3

8
+ (1.5)2 × 1

8

= 2.25× 1

8
+ 0.25× 3

8
+ 0.25× 3

8
+ 2.25× 1

8
= 0.75
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Properties of variances

1. V[X + c] = V[X] for any constant c.

2. If a is a constant, V[aX] = a2V[X].
3. If X and Y are independent, then V[X + Y] = V[X] + V[Y].

▶ But this doesn’t hold for dependent r.v.s.

4. V[X] ≥ 0 with equality holding only if X is a constant,
P(X = b) = 1.
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Binomial variance

• Clunky to use LOTUS to calculate variances. Other ways?

▶ Use stories and indicator variables!
• X ∼ Bin(n, p) is equivalent to X1 + · · ·+Xn where Xi ∼ Bern(p).
• Variance of a Bernoulli:

V[Xi] = E[X2
i ]− (E[Xi])

2 = p − p2 = p(1− p)

▶ (Used X2
i = Xi for indicator variables)

• Binomials are the sum of independent Bernoulli r.v.s so:

V[X] = V[X1 + · · ·+ Xn] = V[X1] + · · ·+ V[Xn] = np(1− p)
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Variance of the sample mean

• Let X1, . . . ,Xn be i.i.d. with E[Xi] = µ and V[Xi] = σ2.

▶ Earlier we saw that E[X̄n] = µ, what about V[X̄n]?
• We can apply the rules of variances:

V[X̄n] = V
[
1

n

n∑
i=1

Xi

]
=

1

n2

n∑
i=1

V[Xi] =
1

n2
nσ2 =

σ2

n

▶ Note: we needed independence and identical distribution for this.
▶ SD(X̄n) = σ/

√
n.

• Under i.i.d. sampling we know the expectation and variance of X̄n
without any other assumptions about the distribution of the Xi!

▶ We don’t know what distribution it takes though!
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Inequalities

• Bounds are very important in establishing unknown probabilities.

▶ Also very helpful in establishing limit results later on.
• Remember that E[a + bX] = a + bE[X] is linear, but

E[g(X)] ̸= g(E[X]) for nonlinear functions.
• Can we relate those? Yes, for convex and concave functions.
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Convex and Concave
Definition (Convex Function). A function f : Rn → R is said to be
convex if for all x, y ∈ Rn and for all λ ∈ [0, 1], we have

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y).
This means that the line segment connecting any two points on the
graph of f lies above or on the graph.
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40
60

80
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12

0
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x
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Convex and Concave
Definition (Concave Function). A function g : Rn → R is said to be
concave if for all x, y ∈ Rn and for all λ ∈ [0, 1], we have

g(λx + (1− λ)y) ≥ λg(x) + (1− λ)g(y).
This means that the line segment connecting any two points on the
graph of g lies below or on the graph.

0 1 2 3 4 5
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Jensen’s inequality

Jensen’s inequality
Let X be a r.v. Then, we have

E[g(X)] ≥ g(E[X]) if g is convex

E[g(X)] ≤ g(E[X]) if g is concave

with equality only holding if g is linear.

• Makes proving variance positive simple.

▶ g(x) = x2 is convex, so E[X2] ≥ (E[X])2.
• Allows us to easily reason about complicated functions:

▶ E[|X|] ≥ |E[X]|
▶ E[1/X] ≥ 1/E[X]

▶ E[log(X)] ≤ log(E[X])
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Poisson

Definition
An r.v. X has the Poisson distribution with parameter λ > 0, written
X ∼ Pois(λ) if the p.m.f. of X is:

P(X = k) = e−λλk

k! , k = 0, 1, 2, . . .

• One more discrete distribution is very popular, especially for
counts.

▶ Number of contributions a candidate for office receives in a day.
• Key calculus fact that makes this a valid p.m.f.:

∑∞
k=0

λk

k! = eλ.
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Poisson properties

• A Poisson r.v. X ∼ Pois(λ) has an unusual property:

E[X] = V[X] = λ

• The sum of independent Poisson r.v.s is Poisson:

X ∼ Pois(λ1) Y ∼ Pois(λ2) ⇒ X + Y ∼ Pois(λ1 + λ2)

• If X ∼ Bin(n, p) with n large and p small, then X is approximately
Pois(np).
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Poisson Distribution as a Limiting Case of Binomial
Claim: If Xn ∼ Bin(n, pn) with n → ∞ and pn → 0 such that
npn = λ, then:

lim
n→∞

P(Xn = k) = λke−λ

k! , k = 0, 1, 2, . . .

which is the Poisson distribution X ∼ Pois(λ).
Proof:

• The binomial probability mass function (p.m.f.) is:

P(Xn = k) =
(

n
k

)
pk

n(1− pn)
n−k

• Using the factorial form:

P(Xn = k) = n!
k!(n − k)!p

k
n(1− pn)

n−k
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Proof
• Approximate the terms as n → ∞:

n!
(n − k)! ≈ nk

• Using pn = λ/n, rewrite the p.m.f.:

P(Xn = k) ≈ nk

k!

(
λ

n

)k
(1− λ/n)n−k

• Taking the limit as n → ∞:

lim
n→∞

(1− λ/n)n−k = e−λ

• Therefore, the binomial probability simplifies to:

P(Xn = k) → λke−λ

k!
• Thus, Xn converges to a Poisson(λ) random variable.
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Expectation of a Poisson Distribution
Claim: If X ∼ Pois(λ), then its expectation is:

E[X] = λ.

Proof:
• The expectation of X is given by:

E[X] =

∞∑
k=0

kP(X = k).

• Using the Poisson p.m.f.:

P(X = k) = λke−λ

k! , k = 0, 1, 2, . . .

• Substituting:

E[X] =

∞∑
k=1

kλ
ke−λ

k! .
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Expectation of a Poisson Distribution

• Since k = k!/(k − 1)!, rewrite:
E[X] =

∑∞
k=1

λke−λ

(k−1)! .

• Changing the index of summation by setting j = k − 1:

E[X] =
∞∑

j=0

λj+1e−λ

j! .

• Factor out λ:
E[X] = λe−λ

∞∑
j=0

λj

j! .
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Expectation of a Poisson Distribution

• Recognizing the power series for eλ:
∞∑

j=0

λj

j! = eλ.

• Thus, we obtain:
E[X] = λe−λ · eλ = λ.

• Conclusion: The mean of a Poisson-distributed random variable
is λ.
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