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Road map

e We've defined random variables and their distributions.
e Distributions give full information about the probabilities of an r.v.

e Today: begin to summarize distributions with expectation.
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Motivation: Causal Effects

e Consider a hypothetical intervention such as "door-to-door get
out the vote."
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Motivation: Causal Effects

Consider a hypothetical intervention such as “door-to-door get
out the vote."

We'll define two potential outcomes:

» Y;(1): whether person i would vote (1) or not (0) if they received
canvassing.

> V;(0): whether person i would vote (1) or not (0) if they didn’t
receive the canvassing.

The individual causal effect of canvassing then is

7= Yi(1) — Y3(0)

We can think of Y;(1) and Y;(0) as rvs and so 7; is a rv as well.

How should we summarize the distribution of causal effects?
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How can we summarize distributions?

e Probability distributions describe the uncertainty about r.v.s.

Bin(10,0.5) Bin(10,0.25)
8 8
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How can we summarize distributions?

e Probability distributions describe the uncertainty about r.v.s.
e Can we summarize probability distributions?

e Question: What is the difference between these two p.m.f.s?
How might we summarize this difference?

8in(10,0.5) Bin(10,0.25)

. b,

o 1 2 3 4 5 & 7 8 9 10 12 3 78 9

000 010 020 030

)
000 010 020 030
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Goals for summarizing

1. Central tendency: where the center of the distribution is.
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Goals for summarizing

1. Central tendency: where the center of the distribution is.
» We'll focus on the mean/expectation.
2. Spread: how spread out the distribution is around the center.

» We'll focus on the variance/standard deviation.

e These are population parameters so we don't get to observe
them.

> We won't get to observe them...

» but we'll use our sample to learn about them.
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Two ways to calculate averages

e Calculate the average of: {1,1,1,3,4,4,5,5}

1+1+1+3+4+4+5+5

3
8
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Two ways to calculate averages

e Calculate the average of: {1,1,1,3,4,4,5,5}

1+1+1+3+4+4+5+5

3
8

e Alternative way to calculate average based on frequency
weights:

1><3+3><1+4><2+5><2—3
8 8 8 8

» Each value times how often that value occurs in the data.

> We'll use this intuition to create an average/mean for r.v.s.
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Expectation

The expected value (or expectation or mean) of a discrete r.v. X
with possible values, z;, 22, ... is

E:xj X = 1)

e Weighted average of the values of the r.v. weighted by the
probability of each value occurring.
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The expected value (or expectation or mean) of a discrete r.v. X
with possible values, x;, 22, ... is

E:% X = 1)

e Weighted average of the values of the r.v. weighted by the
probability of each value occurring.

» E[X] is a constant!
e Example: X ~ Bern(p), then E[X] = 1p+ 0(1 — p) = p.
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Expectation

Definition

The expected value (or expectation or mean) of a discrete r.v. X
with possible values, x;, 22, ... is

E:% X =)

e Weighted average of the values of the r.v. weighted by the
probability of each value occurring.

» E[X] is a constant!
e Example: X ~ Bern(p), then E[X] = 1p+ 0(1 — p) = p.
e If X and Y have the same distribution, then E[X] = E[Y].

» Converse isn't true!
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Example - number of treated units

e Randomized experiment with 3 units. X is the number of treated

units.
z | px() | z- px(z)
0| 1/8 0
1| 3/8 3/8
2| 3/8 6/8
30 1/8 3/8
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Example - number of treated units

e Randomized experiment with 3 units. X is the number of treated

units.
T ‘ px(x) ‘ z- px(x)
0| 1/8 0
1] 3/8 3/8
2| 3/8 6/8

3| 1/8 3/8

e Calculate the expectation of X:

E[X] = Z P(X = )

:O-IP(X:())+1-IP’(X:1)+2-IP’(X:2)+3~P(X:3)
1.3 3, .1 12

Gov 2001 Definition of Expectation 8 /38



Expectation as balancing point

Bin(10,0.5)
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Properties of the expected value

e We can derive expectation of transformations of other r.v.s
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We can derive expectation of transformations of other r.v.s

Possible for linear functions because expectation is linear:

E[X+ Y] =E[X] + E[Y]

E[aX] = aE[X] if ais a constant

True even if X and Y are dependent!

But this isn't always true for nonlinear operations:

> E[g(X)] # g(E[X]) unless g(-) is a linear function.
> E[XY] # E[X]E[Y] unless X and Y are independent.
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Examples
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Examples

e E[g(X)] # g(E[X]) unless g(-) is a linear function.
> Let g(X) = X2
> Efg(X)] = E[X?]
> ¢(E[X]) = (E[X])*
e E[XY] £ E[X]E[Y] unless X and Y are independent.
> let X=2Y
> E[XY] = E[2Y?] = 2E[Y?]
> E[XE[Y] = E[2Y]E[Y] = 2(E[Y])*

11/ 38



Expectation of a binomial

e Let X ~ Bin(n, p), what's E[X]? Could just plug in formula:

E[X] =) k<Z>pk(1 —p)" =
k=0
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Expectation of a binomial

e Let X ~ Bin(n, p), what's E[X]? Could just plug in formula:

E[X] =) k<:>pk(1 —p)" =
k=0

e Use the story of the binomial as a sum of n Bernoulli
X; ~ Bern(p)

X=Xi+ -+ X,

e Use linearity:

E[X] = E[X; + -+ X,] = E[Xi] + - + E[X,] = np

Gov 2001 Linearity of Expectation 12 /38



Expectation of the sample mean

o Let Xj,..., X, be identically distributed with E[X;] = p.
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Expectation of the sample mean

o Let Xi,..., X, be identically distributed with E[X;] = p.

e Define the sample mean to be
n
Xp=n"'> X
=1

> Xisar.v.!
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Expectation of the sample mean

o Let Xi,..., X, be identically distributed with E[X;] = p.

e Define the sample mean to be
n
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> Xisar.v.!

e We can find the expectation of the sample mean using linearity:

:E[i;X,] ZE fnu I

Gov 2001 Linearity of Expectation 13 /38



Expectation of the sample mean

Let Xi,..., X, be identically distributed with E[X;] = p.

Define the sample mean to be

n
Xn = n_l Z Xl
=1

> Xisar.v.!

We can find the expectation of the sample mean using linearity:

iZXz] ZE fnu 7
=1

Intuition: on average, the sample mean is equal to the
population mean.

Gov 2001 Linearity of Expectation 13 /38



Monotonicity of expectations

e Expectations don't have to be in the support of the data.
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Monotonicity of expectations

e Expectations don't have to be in the support of the data.
»> X ~ Bern(p) has E[X] = p which isn't 0 or 1.

e But it must be between the highest and lowest possible value of
an r.v.

> IfP(X>c¢) =1, then E[X] > c.
> IfP(X<c¢) =1, thenE[X] < e

e Useful application of linearity: expectation is monotone.
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Monotonicity of expectations

e Expectations don't have to be in the support of the data.
»> X ~ Bern(p) has E[X] = p which isn't 0 or 1.

e But it must be between the highest and lowest possible value of
an r.v.

> If P(X > ¢) =1, then E[X] > ¢.
> IfP(X<c¢) =1, thenE[X] < e
e Useful application of linearity: expectation is monotone.

> If X > Y with probability 1, then E(X) > E(Y).

Gov 2001 Linearity of Expectation

14 / 38



St. Petersburg Paradox

e Game of chance: stranger pays you $ 2% where X is the number
of flips with a fair coin until the first heads.
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St. Petersburg Paradox

e Game of chance: stranger pays you $ 2% where X is the number
of flips with a fair coin until the first heads.

» Probability of reaching X = k is:

P(X=k) =P(TiNToN--- Tor N Hy)
=P(T1)P(T2) ... P(Tr—1)P(Hi)

1

ok

[\~
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St. Petersburg Paradox

e How much would you be willing to pay to play the game?
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St. Petersburg Paradox

e How much would you be willing to pay to play the game?
e Let payout be Y = 2%, we want E[Y]:

E[Y] = sz 21_

e Two ways to resolve the paradox :
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St. Petersburg Paradox

e How much would you be willing to pay to play the game?
e Let payout be Y= 2%, we want E[Y]:

E[Y] = szl 21—

k=1
e Two ways to resolve the “paradox”:

» No infinite money: max payout of 2%° (around a trillion)
= E[Y] =41
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St. Petersburg Paradox

e How much would you be willing to pay to play the game?
e Let payout be Y= 2%, we want E[Y]:

E[Y] = szl 21—

k=1
e Two ways to resolve the “paradox”:

» No infinite money: max payout of 2%° (around a trillion)
= E[Y] =41

> Risk avoidance/concave utility U= Y'/? = E[U(Y)] ~ 2.41

Gov 2001 Linearity of Expectation 16 / 38



Undefined expectations

e We saw E[X] can be infinite, but it can also be undefined.
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Undefined expectations

e We saw E[X] can be infinite, but it can also be undefined.

e Example: X takes 2% and —2* each with prob 27%1.

E[X szQ—k 1 ZQkQ—k 1 Z__Z_: .
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Undefined expectations

e We saw E[X] can be infinite, but it can also be undefined.

e Example: X takes 2% and —2* each with prob 27%1.

E[X]:im—k ! szz k=1 Z*—Z
k=1 k=1

e Often, both of these are assumed away by assuming E[|X]] < oo
which implies E[X] exists and is finite.

Gov 2001 Linearity of Expectation 17 / 38



Indicator variables/fundamental bridge

e The probability of an event is equal to the expectation of its
indicator:

P(4) = E[I(A)]
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Indicator variables/fundamental bridge

e The probability of an event is equal to the expectation of its
indicator:

P(A4) = E[I(A)]
e Fundamental bridge between probability and expectation

e Makes it easy to prove probability results like Bonferroni’s
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Indicator variables/fundamental bridge

The probability of an event is equal to the expectation of its
indicator:

P(A) = E[I(4)]

Fundamental bridge between probability and expectation

Makes it easy to prove probability results like Bonferroni’s
inequality

P(A U---UA,) <P(A)) +---+P(4,)

Use the fact that I(A4; U---U A,) <I(A4;)+---+1(4,) and
then take expectations.

Gov 2001 Indicator Variables 18 / 38



Proof of Bonferroni’'s Inequality

Bonferroni’s Inequality: For any finite set of events Ay, As, ..., Ay,
we have:

P(AjUAyU---UA,) < P(A1) + P(A2) + - -+ P(Ay)

Proof: Using indicator variables.

e Define the indicator random variable for each event:

1(A;) = {1, if A; occurs

0, otherwise

Gov 2001 Indicator Variables 19 / 38



Proof of Bonferroni’s Inequality

14y = 1, if A; occurs
v 0, otherwise

e Consider the indicator for the union:

I(A1UA2U~~-UAn) < I(A1)+I(A2)++I(An)
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Proof of Bonferroni’s Inequality

14y = {1, if A; occurs

0, otherwise

e Consider the indicator for the union:

I(AlUAQU”-UAn) < I(A1)+I(A2)++I(An)

e Taking expectations on both sides:

E[I(Ay U Ay U---U Ay)] < BII(A1)] + E[I(A3)] + - - + E[I(A,)]
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Proof of Bonferroni’'s Inequality

14y = {1, if A; occurs

0, otherwise

e Consider the indicator for the union:

I(A1UA2U~~-UAn) < I(A1)+I(A2)++I(An)

e Taking expectations on both sides:

E[I(A1 U Ay U+ U Ay)] < B{I(A)] + E[I(As)] + - - + E[I(Ay)]

e Since E[I(A;)] = P(A;), we get:

P(A1UA2U"~UAn) SP(Al)—l-P(AQ)—{——i-P(An)

Gov 2001 Indicator Variables 20 / 38



Using indicators to find expectations

e Suppose we are assigning n units to k treatments and all
possibilities are equally likely. What is the expected number of
treatment conditions without any units?
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Using indicators to find expectations

e Suppose we are assigning n units to k treatments and all
possibilities are equally likely. What is the expected number of
treatment conditions without any units?

e Use indicators! [; = 1 if jth condition is empty. So I 4 --- + I is
the number of empty conditions.

E[J;] = P(cond j empty)
= P({unit 1 not in cond j} N --- N {unit n not in cond j})
= P({unit 1 not in cond j}).. ({unit n not in cond j})

(=)
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Using indicators to find expectations

e Suppose we are assigning n units to k treatments and all
possibilities are equally likely. What is the expected number of
treatment conditions without any units?

e Use indicators! [; = 1 if jth condition is empty. So I 4 --- + I is
the number of empty conditions.

E[J;] = P(cond j empty)
= P({unit 1 not in cond j} N --- N {unit n not in cond j})
= P({unit 1 not in cond j})...P({unit n not in cond j})

-

e Thus, we have :
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Variance

e The variance measures the spread of the distribution:

V[X] = E[(X — E[X])?]
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e The variance measures the spread of the distribution:

V[X] = E[(X — E[X])?]
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Variance

e The variance measures the spread of the distribution:

V[X] = E[(X - E[X))?]

Could also use E[| X — E[X]|] but more clunky as a function.

Weighted average of the squared distances from the mean.

» Larger deviations (+ or —) ~- higher variance.

The standard deviation is the (positive) square root of the
variance:

SD(X) = /V[X]

Useful equivalent representation of the variance:
V[X] = E[X?] - (E[X])?
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LOTUS

e How do we calculate E[X?] since it's nonlinear?

The Law of the Unconscious Statistician, or LOTUS, states that if
g(X) is a function of a discrete random variable, then

E[g(X)] =) g(n)P(X = 1)

x
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LOTUS

e How do we calculate E[X?] since it's nonlinear?

Definition
The Law of the Unconscious Statistician, or LOTUS, states that if
g(X) is a function of a discrete random variable, then

e Example: E[X?] where X ~ Bin(n, p).

E[X] = Zk )=t
k=0
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LOTUS

e How do we calculate E[X?] since it's nonlinear?

Definition
The Law of the Unconscious Statistician, or LOTUS, states that if
g(X) is a function of a discrete random variable, then

e Example: E[X?] where X ~ Bin(n, p).
Bl = Y k() ot
k=0

E[X?] = g;)kz (Z) pH(1—p)" "

Gov 2001 Variance 23 /38



Example - number of treated units

o Use LOTUS to caIcuIate the variance for a discrete r.v.:

V[X] = 38 (2 — E[X))?P(X = )
T ‘ px(z ‘ z — E[X] ‘
0| 1/8 -15 2.25
1| 3/8 -0.5 0.25
2| 3/8 0.5 0.25
31 1/8 1.5 2.25
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Example - number of treated units

o Use LOTUS to calculate the variance for a discrete r.v.:
k
V[X] = >0 (5 — E[X])°P(X = ;)

j=1
v | px(a) | 2~ BLX] | (o~ ELX)?
0| 1/8 | -15 2.25
1| 3/8 05 0.25
2| 3/8 05 0.25
3| 1/8 15 2.25

e Let's go back to the number of treated units to figure out the
variance of the number of treated units:
k

VIX] =) (g5~ E[X])*px(z))
j=1

1 3 3
= (—1.5)? x 3+ (—0.5)% x 3+ (0.5)% x 3+ (1.5)%

1 3 3 1
=22 — 2 - 2 —+2.2 —=0.
5><8—|—0 5><8~|—0 5><8+ 5><8 0.75

Gov 2001 Variance 24 / 38
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Properties of variances

1. V[X + ¢] = V[X] for any constant c.
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Properties of variances

1. V[X + ¢] = V[X] for any constant c.

2. If ais a constant, V[aX] = a®V[X].

3. If X and Y are independent, then V[X + Y] = V[X] + V[Y].
» But this doesn’t hold for dependent r.v.s.

4. V[X] > 0 with equality holding only if X is a constant,
P(X=1b)=1.

Gov 2001 Variance 25 /38



Binomial variance

e Clunky to use LOTUS to calculate variances. Other ways?
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Binomial variance

e Clunky to use LOTUS to calculate variances. Other ways?
» Use stories and indicator variables!
e X ~ Bin(n, p) is equivalent to Xy + - - - + X,, where X; ~ Bern(p).

e Variance of a Bernoulli:

VIXj] = E[X;] — (E[X}))®> = p—p* = p(1 — p)
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Binomial variance

e Clunky to use LOTUS to calculate variances. Other ways?
» Use stories and indicator variables!
e X ~ Bin(n, p) is equivalent to Xy + - - - + X,, where X; ~ Bern(p).

e Variance of a Bernoulli:
VIXi] = E[X}] — (E[Xi])> =p—p* = p(1 - p)

> (Used X? = X; for indicator variables)
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Binomial variance

Clunky to use LOTUS to calculate variances. Other ways?
» Use stories and indicator variables!

X ~ Bin(n, p) is equivalent to Xj + - - - + X,, where X; ~ Bern(p).

Variance of a Bernoulli:

VIXj] = E[X;] — (E[X}))®> = p—p* = p(1 — p)

> (Used X? = X; for indicator variables)

Binomials are the sum of independent Bernoulli r.v.s so:

VIX] = VIXi + - 4+ Xo] = VIXa] + - + VX = np(1 — p)

Gov 2001 Variance 26 / 38



Variance of the sample mean

e Let Xi,...,X, beiid with E[X;] = p and V[X] = 0%
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Variance of the sample mean

e Let Xi,...,X, beiid with E[X;] = p and V[X] = 0%
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Variance of the sample mean

o Let Xi,..., X, beiid. with E[X;] =pu and V[Xj] = o
> Earlier we saw that E[X,] = u, what about V[X,]?

e We can apply the rules of variances:

2

- 1< 1 <& 1 , o

» Note: we needed independence and identical distribution for this.
> SD(X,) =o/y/n.
e Under i.i.d. sampling we know the expectation and variance of X,
without any other assumptions about the distribution of the X;!
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Variance of the sample mean

o Let Xi,..., X, beiid. with E[X;] =pu and V[Xj] = o
> Earlier we saw that E[X,] = u, what about V[X,]?

e We can apply the rules of variances:

2

- 1< 1 <& 1 , o

» Note: we needed independence and identical distribution for this.
> SD(X,) =o/y/n.
e Under i.i.d. sampling we know the expectation and variance of X,
without any other assumptions about the distribution of the X;!

» We don't know what distribution it takes though!

Gov 2001 Variance 27 / 38



Inequalities

e Bounds are very important in establishing unknown probabilities.
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Inequalities

e Bounds are very important in establishing unknown probabilities.
» Also very helpful in establishing limit results later on.

e Remember that E[a + bX] = a + bE[X] is linear, but
E[g(X)] # g(E[X]) for nonlinear functions.
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Inequalities

e Bounds are very important in establishing unknown probabilities.
» Also very helpful in establishing limit results later on.

e Remember that E[a + bX] = a + bE[X] is linear, but
E[g(X)] # g(E[X]) for nonlinear functions.

e Can we relate those? Yes, for convex and concave functions.

Gov 2001 Inequality 28 / 38



Convex and Concave

Definition (Convex Function). A function f: R” — R is said to be
convex if for all z,y € R™ and for all A € [0, 1], we have

foz+ (1= N)y) < M)+ (1= )f(y).
This means that the line segment connecting any two points on the
graph of flies above or on the graph.

Convex

a(x)
20 40 60 80 100 120

0
L
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Convex and Concave

Definition (Concave Function). A function g: R™ — R is said to be
concave if for all z,y € R™ and for all A € [0, 1], we have

g Az + (1= N)y) > Ag(z) + (1 — N)g(y).

This means that the line segment connecting any two points on the
graph of g lies below or on the graph.

Concave

a(x)
1.5

1.0

0.5

0.0
L
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Jensen’s inequality

Let X be a r.v. Then, we have

E[g(X)] > g(E[X]) if gis convex

E[g(X)] < g(E[X]) if gis concave

with equality only holding if g is linear.

e Makes proving variance positive simple.
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Jensen’s inequality
Let X be a r.v. Then, we have

E[g(X)] > ¢g(E[X]) if gis convex

E[g(X)] < g(E[X]) if gis concave

with equality only holding if g is linear.

e Makes proving variance positive simple.
> g(z) = 2? is convex, so E[X?] > (E[X])%.

e Allows us to easily reason about complicated functions:

Gov 2001 Inequality 31/38



Jensen’s inequality

Jensen’s inequality
Let X be a r.v. Then, we have

E[g(X)] > ¢g(E[X]) if gis convex
E[g(X)] < g(E[X]) if gis concave
with equality only holding if g is linear.

e Makes proving variance positive simple.
> g(z) = 2? is convex, so E[X?] > (E[X])%.
e Allows us to easily reason about complicated functions:

> E[|X]] > [E[X]|
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Jensen’s inequality

Jensen’s inequality
Let X be a r.v. Then, we have

E[g(X)] > ¢g(E[X]) if gis convex

E[g(X)] < g(E[X]) if gis concave

with equality only holding if g is linear.

e Makes proving variance positive simple.
> g(z) = 2? is convex, so E[X?] > (E[X])%.

e Allows us to easily reason about complicated functions:
> E[|X]] > [E[X]|
> E[1/X] > 1/E[X]
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Jensen’s inequality

Jensen’s inequality
Let X be a r.v. Then, we have

E[g(X)] > ¢g(E[X]) if gis convex

E[g(X)] < g(E[X]) if gis concave

with equality only holding if g is linear.

e Makes proving variance positive simple.
> g(z) = 2? is convex, so E[X?] > (E[X])%.
e Allows us to easily reason about complicated functions:
> E[|X]] > [E[X]|
> E[1/X] > 1/E[X]
> Eflog(X)] < log(E[X])

Gov 2001 Inequality 31/38



Poisson

Definition

An r.v. X has the Poisson distribution with parameter \ > 0, written
X ~ Pois()) if the p.m.f. of X is:

e~ M\F
Ko

P(X = k) = k=0,1,2,...

e One more discrete distribution is very popular, especially for
counts.
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e~ M\F

P(X=k)=

k=0,1,2,...
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Poisson

Definition

An r.v. X has the Poisson distribution with parameter \ > 0, written
X ~ Pois()) if the p.m.f. of X is:

e~ M\F

P(X=k)=

k=0,1,2,...

e One more discrete distribution is very popular, especially for
counts.

» Number of contributions a candidate for office receives in a day.

. . k
e Key calculus fact that makes this a valid p.m.f.: 2 % = e\
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Poisson properties

e A Poisson r.v. X ~ Pois(\) has an unusual property:

E[X] = V[X] = A

Gov 2001 Poisson 33 /38



Poisson properties

e A Poisson r.v. X ~ Pois(\) has an unusual property:

E[X] = V[X] = A

e The sum of independent Poisson r.v.s is Poisson:

X ~ Pois(A\1) Y~ Pois(A2) = X+ Y~ Pois(\; + A\2)
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Poisson properties

e A Poisson r.v. X ~ Pois(\) has an unusual property:

E[X] = V[X] = A

e The sum of independent Poisson r.v.s is Poisson:
X ~ Pois(A\1) Y~ Pois(A2) = X+ Y~ Pois(A; + A2)

e If X ~ Bin(n,p) with n large and p small, then X is approximately
Pois(np).
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Poisson Distribution as a Limiting Case of Binomial
Claim: If X, ~ Bin(n, p,) with n — oo and p,, — 0 such that
np, = A, then:

k_—X\
lim P(X, = k) = Ae

n—00 Ko7

k=0,1,2,...

which is the Poisson distribution X ~ Pois(\).
Proof:
e The binomial probability mass function (p.m.f.) is:

POt =) = ()bt =

Gov 2001 Poisson 34 /38



Poisson Distribution as a Limiting Case of Binomial
Claim: If X, ~ Bin(n, p,) with n — oo and p,, — 0 such that
np, = A, then:

k_—X\
lim P(X, = k) = Ae

n—00 Ko7

k=0,1,2,...

which is the Poisson distribution X ~ Pois(\).
Proof:
e The binomial probability mass function (p.m.f.) is:

n _
e Using the factorial form:

_ _ n! k n—k
P(X, =k) = mpn(l — Pn)

Gov 2001 Poisson 34 /38



Proof

e Approximate the terms as n — oo:
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Proof

e Approximate the terms as n — oo:

n—k! "
e Using p, = A\/n, rewrite the p.m.f.:
nF A\ F n
P(Xy = k) = (E) (1—X/n)"*
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Proof

e Approximate the terms as n — oo:

n—k! "
e Using p, = A\/n, rewrite the p.m.f.:
nF A\ F n

e Taking the limit as n — oc:
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Proof

e Approximate the terms as n — oo:
n! &
n—k! "
e Using p, = A\/n, rewrite the p.m.f.:
k k
n® [\ e
e Taking the limit as n — oc:

lim (1 —\/n)" % =¢?

n— 00

e Therefore, the binomial probability simplifies to:

A=A
k!
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Proof

e Approximate the terms as n — oo:

n! &
-k "

e Using p, = A\/n, rewrite the p.m.f.:

P(X, = k) ~ ’]j (2>k(1 z/n)k

e Taking the limit as n — oc:

lim (1 —\/n)" % =¢?

n—oc0
e Therefore, the binomial probability simplifies to:
Are=A

k!

P(X, =k —

e Thus, X,, converges to a Poisson(\) random variable.

Gov 2001 Poisson

35/ 38



Expectation of a Poisson Distribution
Claim: If X ~ Pois()), then its expectation is:

E[X] = \.

Proof:
e The expectation of X is given by:

E[X] = i KP(X = k).
k=0
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Expectation of a Poisson Distribution
Claim: If X ~ Pois()), then its expectation is:

E[X] = \.

Proof:
e The expectation of X is given by:

E[X] = i KP(X = k).
k=0

e Using the Poisson p.m.f.:

A=A

P(X=k) =",

k=0,1,2,...
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Expectation of a Poisson Distribution
Claim: If X ~ Pois()), then its expectation is:

E[X] = \.

Proof:
e The expectation of X is given by:

:f}mx:m
k=0

e Using the Poisson p.m.f.:

Ake_A

POX=k) =~

k=0,1,2,...

e Substituting:
Ak —A

2%
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Expectation of a Poisson Distribution

e Since k= K!/(k—1)!, rewrite:

0 k=X
E[X] = 2uk=1 ?k—l)!‘
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Expectation of a Poisson Distribution

e Since k= K!/(k—1)!, rewrite:
0o Ake=A
E[X] = > 2 h

e Changing the index of summation by setting j =k — 1:

0 A\l e—A
R g
=~ 7
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Expectation of a Poisson Distribution

e Since k= K!/(k—1)!, rewrite:

0 k=X
E[X] = 2uk=1 h

e Changing the index of summation by setting j =k — 1:

0 A\l e—A
B =3
=~ 7

e Factor out A:
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Expectation of a Poisson Distribution

e Recognizing the power series for e:

e Thus, we obtain:
EX] =X e =\

e Conclusion: The mean of a Poisson-distributed random variable
is .

Gov 2001 Poisson 38 /38
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