Naijia Liu

Spring 2025

Road map

- We've defined random variables and their distributions.
- Distributions give full information about the probabilities of an r.v.
- Today: begin to summarize distributions with expectation.

• Consider a hypothetical intervention such as "door-to-door get out the vote."

- Consider a hypothetical intervention such as "door-to-door get out the vote."
- We'll define two potential outcomes:

- Consider a hypothetical intervention such as "door-to-door get out the vote."
- We'll define two potential outcomes:
 - ► Y_i(1): whether person i would vote (1) or not (0) if they received canvassing.

- Consider a hypothetical intervention such as "door-to-door get out the vote."
- We'll define two potential outcomes:
 - ► $Y_i(1)$: whether person *i* would vote (1) or not (0) if they **received** canvassing.
 - ► Y_i(0): whether person i would vote (1) or not (0) if they didn't receive the canvassing.

- Consider a hypothetical intervention such as "door-to-door get out the vote."
- We'll define two potential outcomes:
 - ► Y_i(1): whether person i would vote (1) or not (0) if they received canvassing.
 - ► Y_i(0): whether person i would vote (1) or not (0) if they didn't receive the canvassing.
- The individual causal effect of canvassing then is

$$\tau_i = Y_i(1) - Y_i(0)$$

- Consider a hypothetical intervention such as "door-to-door get out the vote."
- We'll define two potential outcomes:
 - ► $Y_i(1)$: whether person *i* would vote (1) or not (0) if they **received** canvassing.
 - ► Y_i(0): whether person i would vote (1) or not (0) if they didn't receive the canvassing.
- The individual causal effect of canvassing then is

$$\tau_i = Y_i(1) - Y_i(0)$$

• We can think of $Y_i(1)$ and $Y_i(0)$ as rvs and so τ_i is a rv as well.

- Consider a hypothetical intervention such as "door-to-door get out the vote."
- We'll define two potential outcomes:
 - ► $Y_i(1)$: whether person *i* would vote (1) or not (0) if they **received** canvassing.
 - ► Y_i(0): whether person i would vote (1) or not (0) if they didn't receive the canvassing.
- The individual causal effect of canvassing then is

$$\tau_i = Y_i(1) - Y_i(0)$$

- We can think of $Y_i(1)$ and $Y_i(0)$ as rvs and so τ_i is a rv as well.
- How should we summarize the distribution of causal effects?

How can we summarize distributions?

• Probability distributions describe the uncertainty about r.v.s.

How can we summarize distributions?

- Probability distributions describe the uncertainty about r.v.s.
- Can we summarize probability distributions?

How can we summarize distributions?

- Probability distributions describe the uncertainty about r.v.s.
- Can we summarize probability distributions?
- **Question:** What is the difference between these two p.m.f.s? How might we summarize this difference?

1. Central tendency: where the center of the distribution is.

- 1. Central tendency: where the center of the distribution is.
 - ▶ We'll focus on the mean/expectation.

- 1. Central tendency: where the center of the distribution is.
 - ► We'll focus on the mean/expectation.
- 2. Spread: how spread out the distribution is around the center.

- 1. Central tendency: where the center of the distribution is.
 - ► We'll focus on the mean/expectation.
- 2. **Spread:** how spread out the distribution is around the center.
 - ► We'll focus on the variance/standard deviation.

- 1. Central tendency: where the center of the distribution is.
 - ► We'll focus on the mean/expectation.
- 2. Spread: how spread out the distribution is around the center.
 - ► We'll focus on the variance/standard deviation.
- These are **population parameters** so we don't get to observe them.

- 1. Central tendency: where the center of the distribution is.
 - ► We'll focus on the mean/expectation.
- 2. Spread: how spread out the distribution is around the center.
 - We'll focus on the variance/standard deviation.
- These are **population parameters** so we don't get to observe them.
 - We won't get to observe them...

- 1. Central tendency: where the center of the distribution is.
 - ► We'll focus on the mean/expectation.
- 2. Spread: how spread out the distribution is around the center.
 - We'll focus on the variance/standard deviation.
- These are **population parameters** so we don't get to observe them.
 - We won't get to observe them...
 - but we'll use our sample to learn about them.

• Calculate the average of: $\{1, 1, 1, 3, 4, 4, 5, 5\}$

$$\frac{1+1+1+3+4+4+5+5}{8} = 3$$

• Calculate the average of: $\{1,1,1,3,4,4,5,5\}$

$$\frac{1+1+1+3+4+4+5+5}{8} = 3$$

Alternative way to calculate average based on frequency weights:

$$1 \times \frac{3}{8} + 3 \times \frac{1}{8} + 4 \times \frac{2}{8} + 5 \times \frac{2}{8} = 3$$

• Calculate the average of: $\{1, 1, 1, 3, 4, 4, 5, 5\}$

$$\frac{1+1+1+3+4+4+5+5}{8} = 3$$

• Alternative way to calculate average based on **frequency** weights:

$$1 \times \frac{3}{8} + 3 \times \frac{1}{8} + 4 \times \frac{2}{8} + 5 \times \frac{2}{8} = 3$$

Each value times how often that value occurs in the data.

• Calculate the average of: $\{1, 1, 1, 3, 4, 4, 5, 5\}$

$$\frac{1+1+1+3+4+4+5+5}{8} = 3$$

• Alternative way to calculate average based on **frequency** weights:

$$1 \times \frac{3}{8} + 3 \times \frac{1}{8} + 4 \times \frac{2}{8} + 5 \times \frac{2}{8} = 3$$

Each value times how often that value occurs in the data.

We'll use this intuition to create an average/mean for r.v.s.

Definition

The **expected value** (or **expectation** or **mean**) of a discrete r.v. X with possible values, x_1, x_2, \ldots is

$$\mathbb{E}[X] = \sum_{j=1}^{\infty} x_j \mathbb{P}(X = x_j)$$

• Weighted average of the values of the r.v. weighted by the probability of each value occurring.

Definition

The **expected value** (or **expectation** or **mean**) of a discrete r.v. X with possible values, x_1, x_2, \ldots is

$$\mathbb{E}[X] = \sum_{j=1}^{\infty} x_j \mathbb{P}(X = x_j)$$

• Weighted average of the values of the r.v. weighted by the probability of each value occurring.

Definition

The **expected value** (or **expectation** or **mean**) of a discrete r.v. X with possible values, x_1, x_2, \ldots is

$$\mathbb{E}[X] = \sum_{j=1}^{\infty} x_j \mathbb{P}(X = x_j)$$

- Weighted average of the values of the r.v. weighted by the probability of each value occurring.
 - $\mathbb{E}[X]$ is a constant!
- Example: $X \sim \text{Bern}(p)$, then $\mathbb{E}[X] = 1p + 0(1-p) = p$.

Definition

The **expected value** (or **expectation** or **mean**) of a discrete r.v. X with possible values, x_1, x_2, \ldots is

$$\mathbb{E}[X] = \sum_{j=1}^{\infty} x_j \mathbb{P}(X = x_j)$$

- Weighted average of the values of the r.v. weighted by the probability of each value occurring.
 - $\mathbb{E}[X]$ is a constant!
- Example: $X \sim \text{Bern}(p)$, then $\mathbb{E}[X] = 1p + 0(1-p) = p$.
- If X and Y have the same distribution, then $\mathbb{E}[X] = \mathbb{E}[Y]$.

Definition

The **expected value** (or **expectation** or **mean**) of a discrete r.v. X with possible values, x_1, x_2, \ldots is

$$\mathbb{E}[X] = \sum_{j=1}^{\infty} x_j \mathbb{P}(X = x_j)$$

- Weighted average of the values of the r.v. weighted by the probability of each value occurring.
 - ▶ E[X] is a constant!
- Example: $X \sim \text{Bern}(p)$, then $\mathbb{E}[X] = 1p + 0(1-p) = p$.
- If X and Y have the same distribution, then $\mathbb{E}[X] = \mathbb{E}[Y]$.
 - Converse isn't true!

Example - number of treated units

• Randomized experiment with 3 units. *X* is the number of treated units.

x	$p_X(x)$	$x \cdot p_X(x)$
0	1/8	0
1	3/8	3/8
2	3/8	6/8
3	1/8	3/8

Example - number of treated units

• Randomized experiment with 3 units. *X* is the number of treated units.

x	$p_X(x)$	$x \cdot p_X(x)$
0	1/8	0
1	3/8	3/8
2	3/8	6/8
3	1/8	3/8

• Calculate the expectation of X:

$$\mathbb{E}[X] = \sum_{j=1}^{k} x_j \mathbb{P}(X = x_j)$$

= 0 \cdot \mathbb{P}(X = 0) + 1 \cdot \mathbb{P}(X = 1) + 2 \cdot \mathbb{P}(X = 2) + 3 \cdot \mathbb{P}(X = 3)
= 0 \cdot \frac{1}{8} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{3}{8} + 3 \cdot \frac{1}{8} = \frac{12}{8} = 1.5

Expectation as balancing point

• We can derive expectation of transformations of other r.v.s

- We can derive expectation of transformations of other r.v.s
- Possible for linear functions because expectation is linear:

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

 $\mathbb{E}[aX] = a\mathbb{E}[X]$ if a is a constant

- We can derive expectation of transformations of other r.v.s
- Possible for linear functions because expectation is linear:

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

 $\mathbb{E}[aX] = a\mathbb{E}[X] \quad \text{if } a \text{ is a constant}$

• True even if X and Y are dependent!

- We can derive expectation of transformations of other r.v.s
- Possible for linear functions because expectation is linear:

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

 $\mathbb{E}[aX] = a\mathbb{E}[X] \quad \text{if } a \text{ is a constant}$

- True even if X and Y are dependent!
- But this isn't always true for nonlinear operations:

- We can derive expectation of transformations of other r.v.s
- Possible for linear functions because expectation is linear:

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

 $\mathbb{E}[aX] = a\mathbb{E}[X]$ if a is a constant

- True even if X and Y are dependent!
- But this isn't always true for nonlinear operations:
 - $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$ unless $g(\cdot)$ is a linear function.
Properties of the expected value

- We can derive expectation of transformations of other r.v.s
- Possible for linear functions because expectation is linear:

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

 $\mathbb{E}[aX] = a\mathbb{E}[X]$ if a is a constant

- True even if X and Y are dependent!
- But this isn't always true for nonlinear operations:
 - $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$ unless $g(\cdot)$ is a linear function.
 - $\mathbb{E}[XY] \neq \mathbb{E}[X]\mathbb{E}[Y]$ unless X and Y are independent.

• $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$ unless $g(\cdot)$ is a linear function.

• $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$ unless $g(\cdot)$ is a linear function.

• Let $g(X) = X^2$

• $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$ unless $g(\cdot)$ is a linear function.

• Let
$$g(X) = X^2$$

$$\blacktriangleright \mathbb{E}[g(X)] = \mathbb{E}[X^2]$$

- $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$ unless $g(\cdot)$ is a linear function.
 - Let $g(X) = X^2$
 - $\blacktriangleright \ \mathbb{E}[g(X)] = \mathbb{E}[X^2]$

$$\blacktriangleright g(\mathbb{E}[X]) = (\mathbb{E}[X])^2$$

• $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$ unless $g(\cdot)$ is a linear function.

• Let
$$g(X) = X^2$$

$$\blacktriangleright \mathbb{E}[g(X)] = \mathbb{E}[X^2]$$

•
$$g(\mathbb{E}[X]) = (\mathbb{E}[X])^2$$

• $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$ unless $g(\cdot)$ is a linear function.

• Let
$$g(X) = X^2$$

$$\blacktriangleright \mathbb{E}[g(X)] = \mathbb{E}[X^2]$$

•
$$g(\mathbb{E}[X]) = (\mathbb{E}[X])^2$$

• $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$ unless $g(\cdot)$ is a linear function.

• Let
$$g(X) = X^2$$

$$\blacktriangleright \ \mathbb{E}[g(X)] = \mathbb{E}[X^2]$$

•
$$g(\mathbb{E}[X]) = (\mathbb{E}[X])^2$$

• Let
$$X = 2Y$$

• $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$ unless $g(\cdot)$ is a linear function.

• Let
$$g(X) = X^2$$

$$\blacktriangleright \mathbb{E}[g(X)] = \mathbb{E}[X^2]$$

•
$$g(\mathbb{E}[X]) = (\mathbb{E}[X])^2$$

• Let
$$X = 2Y$$

$$\blacktriangleright \quad \mathbb{E}[XY] = \mathbb{E}[2Y^2] = 2\mathbb{E}[Y^2]$$

• $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$ unless $g(\cdot)$ is a linear function.

• Let
$$g(X) = X^2$$

$$\blacktriangleright \ \mathbb{E}[g(X)] = \mathbb{E}[X^2]$$

•
$$g(\mathbb{E}[X]) = (\mathbb{E}[X])^2$$

• Let
$$X = 2Y$$

$$\blacktriangleright \quad \mathbb{E}[XY] = \mathbb{E}[2Y^2] = 2\mathbb{E}[Y^2]$$

$$\blacktriangleright \mathbb{E}[X]\mathbb{E}[Y] = \mathbb{E}[2Y]\mathbb{E}[Y] = 2(\mathbb{E}[Y])^2$$

Expectation of a binomial

• Let $X \sim Bin(n, p)$, what's $\mathbb{E}[X]$? Could just plug in formula:

$$\mathbb{E}[X] = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} = ??$$

Expectation of a binomial

• Let $X \sim Bin(n, p)$, what's $\mathbb{E}[X]$? Could just plug in formula:

$$\mathbb{E}[X] = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} = ??$$

• Use the story of the binomial as a sum of n Bernoulli $X_i \sim \mathrm{Bern}(p)$

$$X = X_1 + \dots + X_n$$

Expectation of a binomial

• Let $X \sim Bin(n, p)$, what's $\mathbb{E}[X]$? Could just plug in formula:

$$\mathbb{E}[X] = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} = ??$$

• Use the story of the binomial as a sum of n Bernoulli $X_i \sim \mathrm{Bern}(p)$

$$X = X_1 + \dots + X_n$$

• Use linearity:

$$\mathbb{E}[X] = \mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n] = np$$

• Let X_1, \ldots, X_n be identically distributed with $\mathbb{E}[X_i] = \mu$.

- Let X_1, \ldots, X_n be identically distributed with $\mathbb{E}[X_i] = \mu$.
- Define the sample mean to be

$$\bar{X}_n = n^{-1} \sum_{i=1}^n X_i.$$

- Let X_1, \ldots, X_n be identically distributed with $\mathbb{E}[X_i] = \mu$.
- Define the sample mean to be

$$\bar{X}_n = n^{-1} \sum_{i=1}^n X_i.$$

- Let X_1, \ldots, X_n be identically distributed with $\mathbb{E}[X_i] = \mu$.
- Define the sample mean to be

$$\bar{X}_n = n^{-1} \sum_{i=1}^n X_i.$$

• \overline{X} is a r.v.!

• We can find the expectation of the sample mean using linearity:

$$\mathbb{E}[\bar{X}_n] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n \mathbb{E}[X_i] = \frac{1}{n}n\mu = \mu$$

- Let X_1, \ldots, X_n be identically distributed with $\mathbb{E}[X_i] = \mu$.
- Define the sample mean to be

$$\bar{X}_n = n^{-1} \sum_{i=1}^n X_i.$$

• \overline{X} is a r.v.!

• We can find the expectation of the sample mean using linearity:

$$\mathbb{E}[\bar{X}_n] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n \mathbb{E}[X_i] = \frac{1}{n}n\mu = \mu$$

• **Intuition**: on average, the sample mean is equal to the population mean.

• Expectations don't have to be in the support of the data.

- Expectations don't have to be in the support of the data.
 - $X \sim \text{Bern}(p)$ has $\mathbb{E}[X] = p$ which isn't 0 or 1.

• Expectations don't have to be in the support of the data.

• $X \sim \text{Bern}(p)$ has $\mathbb{E}[X] = p$ which isn't 0 or 1.

• But it must be between the highest and lowest possible value of an r.v.

• Expectations don't have to be in the support of the data.

• $X \sim \text{Bern}(p)$ has $\mathbb{E}[X] = p$ which isn't 0 or 1.

• But it must be between the highest and lowest possible value of an r.v.

• If $\mathbb{P}(X \ge c) = 1$, then $\mathbb{E}[X] \ge c$.

• Expectations don't have to be in the support of the data.

• $X \sim \text{Bern}(p)$ has $\mathbb{E}[X] = p$ which isn't 0 or 1.

- But it must be between the highest and lowest possible value of an r.v.
 - If $\mathbb{P}(X \ge c) = 1$, then $\mathbb{E}[X] \ge c$.
 - If $\mathbb{P}(X \leq c) = 1$, then $\mathbb{E}[X] \leq c$.

• Expectations don't have to be in the support of the data.

• $X \sim \text{Bern}(p)$ has $\mathbb{E}[X] = p$ which isn't 0 or 1.

• But it must be between the highest and lowest possible value of an r.v.

• If
$$\mathbb{P}(X \ge c) = 1$$
, then $\mathbb{E}[X] \ge c$.

- If $\mathbb{P}(X \leq c) = 1$, then $\mathbb{E}[X] \leq c$.
- Useful application of linearity: expectation is monotone.

• Expectations don't have to be in the support of the data.

• $X \sim \text{Bern}(p)$ has $\mathbb{E}[X] = p$ which isn't 0 or 1.

• But it must be between the highest and lowest possible value of an r.v.

• If
$$\mathbb{P}(X \ge c) = 1$$
, then $\mathbb{E}[X] \ge c$.

- If $\mathbb{P}(X \leq c) = 1$, then $\mathbb{E}[X] \leq c$.
- Useful application of linearity: expectation is monotone.

• If $X \ge Y$ with probability 1, then $\mathbb{E}(X) \ge \mathbb{E}(Y)$.

• Game of chance: stranger pays you 2^X where X is the number of flips with a fair coin until the first heads.

• Game of chance: stranger pays you 2^X where X is the number of flips with a fair coin until the first heads.

• Game of chance: stranger pays you \$ 2^X where X is the number of flips with a fair coin until the first heads.

• Probability of reaching
$$X = k$$
 is:

$$\mathbb{P}(X=k) = \mathbb{P}(T_1 \cap T_2 \cap \dots \cap T_{k-1} \cap H_k)$$

= $\mathbb{P}(T_1)\mathbb{P}(T_2)\dots\mathbb{P}(T_{k-1})\mathbb{P}(H_k)$
= $\frac{1}{2^k}$

• How much would you be willing to pay to play the game?

- How much would you be willing to pay to play the game?
- Let payout be $Y = 2^X$, we want $\mathbb{E}[Y]$:

- How much would you be willing to pay to play the game?
- Let payout be $Y = 2^X$, we want $\mathbb{E}[Y]$:

- How much would you be willing to pay to play the game?
- Let payout be $Y = 2^X$, we want $\mathbb{E}[Y]$:

$$\mathbb{E}[Y] = \sum_{k=1}^{\infty} 2^k \frac{1}{2^k} = \sum_{k=1}^{\infty} 1 = \infty$$

• Two ways to resolve the "paradox":

- How much would you be willing to pay to play the game?
- Let payout be $Y = 2^X$, we want $\mathbb{E}[Y]$:

$$\mathbb{E}[Y] = \sum_{k=1}^{\infty} 2^k \frac{1}{2^k} = \sum_{k=1}^{\infty} 1 = \infty$$

- Two ways to resolve the "paradox":
 - No infinite money: max payout of 2⁴⁰ (around a trillion)
 ⇒ 𝔼[Y] = 41

- How much would you be willing to pay to play the game?
- Let payout be $Y = 2^X$, we want $\mathbb{E}[Y]$:

$$\mathbb{E}[Y] = \sum_{k=1}^{\infty} 2^k \frac{1}{2^k} = \sum_{k=1}^{\infty} 1 = \infty$$

- Two ways to resolve the "paradox":
 - ▶ No infinite money: max payout of 2^{40} (around a trillion) ⇒ $\mathbb{E}[Y] = 41$
 - ▶ Risk avoidance/concave utility $U = Y^{1/2} \Rightarrow \mathbb{E}[U(Y)] \approx 2.41$

Undefined expectations

• We saw $\mathbb{E}[X]$ can be infinite, but it can also be undefined.

Undefined expectations

- We saw $\mathbb{E}[X]$ can be infinite, but it can also be undefined.
- Example: X takes 2^k and -2^k each with prob 2^{-k-1} .

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} 2^k 2^{-k-1} - \sum_{k=1}^{\infty} 2^k 2^{-k-1} = \sum_{k=1}^{\infty} \frac{1}{2} - \sum_{k=1}^{\infty} \frac{1}{2} = \infty - \infty$$
Undefined expectations

- We saw $\mathbb{E}[X]$ can be infinite, but it can also be undefined.
- Example: X takes 2^k and -2^k each with prob 2^{-k-1} .

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} 2^k 2^{-k-1} - \sum_{k=1}^{\infty} 2^k 2^{-k-1} = \sum_{k=1}^{\infty} \frac{1}{2} - \sum_{k=1}^{\infty} \frac{1}{2} = \infty - \infty$$

• Often, both of these are assumed away by assuming $\mathbb{E}[|X|] < \infty$ which implies $\mathbb{E}[X]$ exists and is finite.

• The probability of an event is equal to the expectation of its indicator:

$$\mathbb{P}(A) = \mathbb{E}[\mathbb{I}(A)]$$

• The probability of an event is equal to the expectation of its indicator:

```
\mathbb{P}(A) = \mathbb{E}[\mathbb{I}(A)]
```

• Fundamental bridge between probability and expectation

• The probability of an event is equal to the expectation of its indicator:

$$\mathbb{P}(A) = \mathbb{E}[\mathbb{I}(A)]$$

- Fundamental bridge between probability and expectation
- Makes it easy to prove probability results like **Bonferroni's** inequality

$$\mathbb{P}(A_1 \cup \dots \cup A_n) \le \mathbb{P}(A_1) + \dots + \mathbb{P}(A_n)$$

• The probability of an event is equal to the expectation of its indicator:

$$\mathbb{P}(A) = \mathbb{E}[\mathbb{I}(A)]$$

- Fundamental bridge between probability and expectation
- Makes it easy to prove probability results like **Bonferroni's** inequality

$$\mathbb{P}(A_1 \cup \cdots \cup A_n) \le \mathbb{P}(A_1) + \cdots + \mathbb{P}(A_n)$$

• Use the fact that $\mathbb{I}(A_1 \cup \cdots \cup A_n) \leq \mathbb{I}(A_1) + \cdots + \mathbb{I}(A_n)$ and then take expectations.

Bonferroni's Inequality: For any finite set of events A_1, A_2, \ldots, A_n , we have:

$$P(A_1 \cup A_2 \cup \dots \cup A_n) \le P(A_1) + P(A_2) + \dots + P(A_n)$$

Proof: Using indicator variables.

• Define the indicator random variable for each event:

$$I(A_i) = \begin{cases} 1, & \text{if } A_i \text{ occurs} \\ 0, & \text{otherwise} \end{cases}$$

$$I(A_i) = egin{cases} 1, & ext{if } A_i ext{ occurs} \ 0, & ext{otherwise} \end{cases}$$

• Consider the indicator for the union:

 $I(A_1 \cup A_2 \cup \cdots \cup A_n) \le I(A_1) + I(A_2) + \cdots + I(A_n)$

$$I(A_i) = egin{cases} 1, & ext{if } A_i ext{ occurs} \ 0, & ext{otherwise} \end{cases}$$

• Consider the indicator for the union:

 $I(A_1 \cup A_2 \cup \cdots \cup A_n) \le I(A_1) + I(A_2) + \cdots + I(A_n)$

• Taking expectations on both sides:

 $E[I(A_1 \cup A_2 \cup \dots \cup A_n)] \le E[I(A_1)] + E[I(A_2)] + \dots + E[I(A_n)]$

$$I(A_i) = egin{cases} 1, & ext{if } A_i ext{ occurs} \ 0, & ext{otherwise} \end{cases}$$

• Consider the indicator for the union:

 $I(A_1 \cup A_2 \cup \dots \cup A_n) \le I(A_1) + I(A_2) + \dots + I(A_n)$

• Taking expectations on both sides:

 $E[I(A_1 \cup A_2 \cup \dots \cup A_n)] \le E[I(A_1)] + E[I(A_2)] + \dots + E[I(A_n)]$

• Since
$$E[I(A_i)] = P(A_i)$$
, we get:

 $P(A_1 \cup A_2 \cup \dots \cup A_n) \le P(A_1) + P(A_2) + \dots + P(A_n)$

Using indicators to find expectations

• Suppose we are assigning *n* units to *k* treatments and all possibilities are equally likely. What is the expected number of treatment conditions without any units?

Using indicators to find expectations

- Suppose we are assigning *n* units to *k* treatments and all possibilities are equally likely. What is the expected number of treatment conditions without any units?
- Use indicators! $I_j = 1$ if *j*th condition is empty. So $I_1 + \cdots + I_k$ is the number of empty conditions.

$$\mathbb{E}[I_j] = \mathbb{P}(\text{cond } j \text{ empty})$$

= $\mathbb{P}(\{\text{unit 1 not in cond } j\} \cap \dots \cap \{\text{unit } n \text{ not in cond } j\})$
= $\mathbb{P}(\{\text{unit 1 not in cond } j\}) \dots \mathbb{P}(\{\text{unit } n \text{ not in cond } j\})$
= $\left(1 - \frac{1}{k}\right)^n$

Using indicators to find expectations

- Suppose we are assigning *n* units to *k* treatments and all possibilities are equally likely. What is the expected number of treatment conditions without any units?
- Use indicators! $I_j = 1$ if *j*th condition is empty. So $I_1 + \cdots + I_k$ is the number of empty conditions.

$$\mathbb{E}[I_j] = \mathbb{P}(\text{cond } j \text{ empty})$$

= $\mathbb{P}(\{\text{unit } 1 \text{ not in cond } j\} \cap \dots \cap \{\text{unit } n \text{ not in cond } j\})$
= $\mathbb{P}(\{\text{unit } 1 \text{ not in cond } j\}) \dots \mathbb{P}(\{\text{unit } n \text{ not in cond } j\})$
= $\left(1 - \frac{1}{k}\right)^n$

• Thus, we have :

$$\mathbb{E}\left[\sum_{j} I_{j}\right] = k\left(1 - \frac{1}{k}\right)^{n}.$$

$$\mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

• The variance measures the spread of the distribution:

$$\mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

• Could also use $\mathbb{E}[|X - \mathbb{E}[X]|]$ but more clunky as a function.

$$\mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

- Could also use $\mathbb{E}[|X \mathbb{E}[X]|]$ but more clunky as a function.
- Weighted average of the squared distances from the mean.

$$\mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

- Could also use $\mathbb{E}[|X \mathbb{E}[X]|]$ but more clunky as a function.
- Weighted average of the squared distances from the mean.
 - ▶ Larger deviations (+ or −) → higher variance.

$$\mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

- Could also use $\mathbb{E}[|X \mathbb{E}[X]|]$ but more clunky as a function.
- Weighted average of the squared distances from the mean.
 - ▶ Larger deviations (+ or −) → higher variance.
- The **standard deviation** is the (positive) square root of the variance:

$$SD(X) = \sqrt{\mathbb{V}[X]}$$

• The variance measures the spread of the distribution:

$$\mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

- Could also use $\mathbb{E}[|X \mathbb{E}[X]|]$ but more clunky as a function.
- Weighted average of the squared distances from the mean.
 - ▶ Larger deviations (+ or −) → higher variance.
- The **standard deviation** is the (positive) square root of the variance:

$$SD(X) = \sqrt{\mathbb{V}[X]}$$

• Useful equivalent representation of the variance:

$$\mathbb{V}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

• How do we calculate $\mathbb{E}[X^2]$ since it's nonlinear?

Definition

The **Law of the Unconscious Statistician**, or LOTUS, states that if g(X) is a function of a discrete random variable, then

$$\mathbb{E}[g(X)] = \sum_{x} g(x)\mathbb{P}(X=x)$$

• How do we calculate $\mathbb{E}[X^2]$ since it's nonlinear?

Definition

The **Law of the Unconscious Statistician**, or LOTUS, states that if g(X) is a function of a discrete random variable, then

$$\mathbb{E}[g(X)] = \sum_{x} g(x)\mathbb{P}(X=x)$$

• Example:
$$\mathbb{E}[X^2]$$
 where $X \sim Bin(n, p)$.

$$\mathbb{E}[X] = \sum_{k=0}^{n} k \binom{n}{k} p^k (1-p)^{n-k}$$

• How do we calculate $\mathbb{E}[X^2]$ since it's nonlinear?

Definition

The **Law of the Unconscious Statistician**, or LOTUS, states that if g(X) is a function of a discrete random variable, then

$$\mathbb{E}[g(X)] = \sum_{x} g(x)\mathbb{P}(X=x)$$

• Example:
$$\mathbb{E}[X^2]$$
 where $X \sim Bin(n, p)$.

$$\mathbb{E}[X] = \sum_{k=0}^{n} k \binom{n}{k} p^k (1-p)^{n-k}$$

• How do we calculate $\mathbb{E}[X^2]$ since it's nonlinear?

Definition

The **Law of the Unconscious Statistician**, or LOTUS, states that if g(X) is a function of a discrete random variable, then

$$\mathbb{E}[g(X)] = \sum_{x} g(x)\mathbb{P}(X=x)$$

• Example: $\mathbb{E}[X^2]$ where $X \sim Bin(n, p)$.

$$\mathbb{E}[X] = \sum_{k=0}^{n} k \binom{n}{k} p^k (1-p)^{n-k}$$
$$\mathbb{E}[X^2] = \sum_{k=0}^{n} k^2 \binom{n}{k} p^k (1-p)^{n-k}$$

Example - number of treated units

• Use LOTUS to calculate the variance for a discrete r.v.:

$$\mathbb{V}[X] = \sum_{j=1}^{k} (x_j - \mathbb{E}[X])^2 \mathbb{P}(X = x_j)$$

$$\frac{x \mid p_X(x) \mid x - \mathbb{E}[X] \mid (x - \mathbb{E}[X])^2}{\begin{array}{c|c|c|c|c|c|c|}\hline 0 & 1/8 & -1.5 & 2.25\\ 1 & 3/8 & -0.5 & 0.25\\ 2 & 3/8 & 0.5 & 0.25\\ 3 & 1/8 & 1.5 & 2.25\end{array}$$

Example - number of treated units

• Use LOTUS to calculate the variance for a discrete r.v.:

$$\mathbb{V}[X] = \sum_{j=1}^{k} (x_j - \mathbb{E}[X])^2 \mathbb{P}(X = x_j)$$

$$\frac{x \mid p_X(x) \mid x - \mathbb{E}[X] \mid (x - \mathbb{E}[X])^2}{\begin{array}{c|c|c|c|c|c|c|}\hline 0 & 1/8 & -1.5 & 2.25 \\ 1 & 3/8 & -0.5 & 0.25 \\ 2 & 3/8 & 0.5 & 0.25 \\ 3 & 1/8 & 1.5 & 2.25 \end{array}$$

• Let's go back to the number of treated units to figure out the variance of the number of treated units:

$$\mathbb{V}[X] = \sum_{j=1}^{n} (x_j - \mathbb{E}[X])^2 p_X(x_j)$$

= $(-1.5)^2 \times \frac{1}{8} + (-0.5)^2 \times \frac{3}{8} + (0.5)^2 \times \frac{3}{8} + (1.5)^2 \times \frac{1}{8}$
= $2.25 \times \frac{1}{8} + 0.25 \times \frac{3}{8} + 0.25 \times \frac{3}{8} + 2.25 \times \frac{1}{8} = 0.75$

1. $\mathbb{V}[X+c] = \mathbb{V}[X]$ for any constant c.

- 1. $\mathbb{V}[X+c] = \mathbb{V}[X]$ for any constant c.
- 2. If a is a constant, $\mathbb{V}[aX] = a^2 \mathbb{V}[X]$.

- 1. $\mathbb{V}[X+c] = \mathbb{V}[X]$ for any constant c.
- 2. If a is a constant, $\mathbb{V}[aX] = a^2 \mathbb{V}[X]$.
- 3. If X and Y are **independent**, then $\mathbb{V}[X + Y] = \mathbb{V}[X] + \mathbb{V}[Y]$.

- 1. $\mathbb{V}[X+c] = \mathbb{V}[X]$ for any constant c.
- 2. If a is a constant, $\mathbb{V}[aX] = a^2 \mathbb{V}[X]$.
- 3. If X and Y are **independent**, then $\mathbb{V}[X + Y] = \mathbb{V}[X] + \mathbb{V}[Y]$.

But this doesn't hold for dependent r.v.s.

- 1. $\mathbb{V}[X+c] = \mathbb{V}[X]$ for any constant c.
- 2. If a is a constant, $\mathbb{V}[aX] = a^2 \mathbb{V}[X]$.
- 3. If X and Y are **independent**, then $\mathbb{V}[X + Y] = \mathbb{V}[X] + \mathbb{V}[Y]$.

But this doesn't hold for dependent r.v.s.

4. $\mathbb{V}[X] \ge 0$ with equality holding only if X is a constant, $\mathbb{P}(X = b) = 1$.

• Clunky to use LOTUS to calculate variances. Other ways?

- Clunky to use LOTUS to calculate variances. Other ways?
 - Use stories and indicator variables!

- Clunky to use LOTUS to calculate variances. Other ways?
 - Use stories and indicator variables!
- $X \sim Bin(n, p)$ is equivalent to $X_1 + \cdots + X_n$ where $X_i \sim Bern(p)$.

- Clunky to use LOTUS to calculate variances. Other ways?
 - Use stories and indicator variables!
- $X \sim Bin(n, p)$ is equivalent to $X_1 + \cdots + X_n$ where $X_i \sim Bern(p)$.
- Variance of a Bernoulli:

$$V[X_i] = \mathbb{E}[X_i^2] - (\mathbb{E}[X_i])^2 = p - p^2 = p(1-p)$$

- Clunky to use LOTUS to calculate variances. Other ways?
 - Use stories and indicator variables!
- $X \sim Bin(n, p)$ is equivalent to $X_1 + \cdots + X_n$ where $X_i \sim Bern(p)$.
- Variance of a Bernoulli:

$$V[X_i] = \mathbb{E}[X_i^2] - (\mathbb{E}[X_i])^2 = p - p^2 = p(1-p)$$

• (Used
$$X_i^2 = X_i$$
 for indicator variables)

- Clunky to use LOTUS to calculate variances. Other ways?
 - Use stories and indicator variables!
- $X \sim Bin(n, p)$ is equivalent to $X_1 + \cdots + X_n$ where $X_i \sim Bern(p)$.
- Variance of a Bernoulli:

$$V[X_i] = \mathbb{E}[X_i^2] - (\mathbb{E}[X_i])^2 = p - p^2 = p(1-p)$$

• (Used
$$X_i^2 = X_i$$
 for indicator variables)

• Binomials are the sum of independent Bernoulli r.v.s so:

$$V[X] = V[X_1 + \dots + X_n] = V[X_1] + \dots + V[X_n] = np(1-p)$$

Variance of the sample mean

• Let X_1, \ldots, X_n be i.i.d. with $\mathbb{E}[X_i] = \mu$ and $V[X_i] = \sigma^2$.
- Let X_1, \ldots, X_n be i.i.d. with $\mathbb{E}[X_i] = \mu$ and $V[X_i] = \sigma^2$.
 - Earlier we saw that $\mathbb{E}[\bar{X}_n] = \mu$, what about $V[\bar{X}_n]$?

• Let X_1, \ldots, X_n be i.i.d. with $\mathbb{E}[X_i] = \mu$ and $V[X_i] = \sigma^2$.

• Earlier we saw that $\mathbb{E}[\bar{X}_n] = \mu$, what about $V[\bar{X}_n]$?

• We can apply the rules of variances:

$$V[\bar{X}_n] = V\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n^2}\sum_{i=1}^n V[X_i] = \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}$$

• Let X_1, \ldots, X_n be i.i.d. with $\mathbb{E}[X_i] = \mu$ and $V[X_i] = \sigma^2$.

• Earlier we saw that $\mathbb{E}[\bar{X}_n] = \mu$, what about $V[\bar{X}_n]$?

• We can apply the rules of variances:

$$V[\bar{X}_n] = V\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n^2}\sum_{i=1}^n V[X_i] = \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}$$

Note: we needed independence and identical distribution for this.

• Let X_1, \ldots, X_n be i.i.d. with $\mathbb{E}[X_i] = \mu$ and $V[X_i] = \sigma^2$.

• Earlier we saw that $\mathbb{E}[\bar{X}_n] = \mu$, what about $V[\bar{X}_n]$?

• We can apply the rules of variances:

$$V[\bar{X}_n] = V\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n^2}\sum_{i=1}^n V[X_i] = \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}$$

Note: we needed independence and identical distribution for this.

•
$$SD(X_n) = \sigma/\sqrt{n}$$
.

• Let X_1, \ldots, X_n be i.i.d. with $\mathbb{E}[X_i] = \mu$ and $V[X_i] = \sigma^2$.

• Earlier we saw that $\mathbb{E}[\bar{X}_n] = \mu$, what about $V[\bar{X}_n]$?

• We can apply the rules of variances:

$$V[\bar{X}_n] = V\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n^2}\sum_{i=1}^n V[X_i] = \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}$$

Note: we needed independence and identical distribution for this.

•
$$SD(\bar{X}_n) = \sigma/\sqrt{n}$$
.

• Under i.i.d. sampling we know the expectation and variance of \bar{X}_n without any other assumptions about the distribution of the X_i !

• Let X_1, \ldots, X_n be i.i.d. with $\mathbb{E}[X_i] = \mu$ and $V[X_i] = \sigma^2$.

• Earlier we saw that $\mathbb{E}[\bar{X}_n] = \mu$, what about $V[\bar{X}_n]$?

• We can apply the rules of variances:

$$V[\bar{X}_n] = V\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n^2}\sum_{i=1}^n V[X_i] = \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}$$

▶ Note: we needed independence and identical distribution for this.

•
$$SD(\bar{X}_n) = \sigma/\sqrt{n}$$
.

- Under i.i.d. sampling we know the expectation and variance of \bar{X}_n without any other assumptions about the distribution of the X_i !
 - We don't know what distribution it takes though!

• Bounds are very important in establishing unknown probabilities.

- Bounds are very important in establishing unknown probabilities.
 - Also very helpful in establishing limit results later on.

• Bounds are very important in establishing unknown probabilities.

Also very helpful in establishing limit results later on.

• Remember that $\mathbb{E}[a + bX] = a + b\mathbb{E}[X]$ is linear, but $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$ for nonlinear functions.

• Bounds are very important in establishing unknown probabilities.

Also very helpful in establishing limit results later on.

- Remember that $\mathbb{E}[a + bX] = a + b\mathbb{E}[X]$ is linear, but $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$ for nonlinear functions.
- Can we relate those? Yes, for convex and concave functions.

Convex and Concave

Definition (Convex Function). A function $f : \mathbb{R}^n \to \mathbb{R}$ is said to be *convex* if for all $x, y \in \mathbb{R}^n$ and for all $\lambda \in [0, 1]$, we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

This means that the line segment connecting any two points on the graph of f lies above or on the graph.

Convex and Concave

Definition (Concave Function). A function $g : \mathbb{R}^n \to \mathbb{R}$ is said to be *concave* if for all $x, y \in \mathbb{R}^n$ and for all $\lambda \in [0, 1]$, we have

$$g(\lambda x + (1 - \lambda)y) \ge \lambda g(x) + (1 - \lambda)g(y).$$

This means that the line segment connecting any two points on the graph of g lies below or on the graph.

Jensen's inequality

Let X be a r.v. Then, we have

 $\mathbb{E}[g(X)] \geq g(\mathbb{E}[X]) \quad \text{if } g \text{ is convex}$

 $\mathbb{E}[g(X)] \leq g(\mathbb{E}[X]) \quad \text{if } g \text{ is concave}$

with equality only holding if g is linear.

• Makes proving variance positive simple.

Jensen's inequality

Let X be a r.v. Then, we have

 $\mathbb{E}[g(X)] \ge g(\mathbb{E}[X])$ if g is convex

 $\mathbb{E}[g(X)] \leq g(\mathbb{E}[X]) \quad \text{if } g \text{ is concave}$

with equality only holding if g is linear.

• Makes proving variance positive simple.

•
$$g(x) = x^2$$
 is convex, so $\mathbb{E}[X^2] \ge (\mathbb{E}[X])^2$.

Jensen's inequality

Let X be a r.v. Then, we have

 $\mathbb{E}[g(X)] \geq g(\mathbb{E}[X]) \quad \text{if g is convex}$

 $\mathbb{E}[g(X)] \leq g(\mathbb{E}[X]) \quad \text{if } g \text{ is concave}$

with equality only holding if g is linear.

• Makes proving variance positive simple.

•
$$g(x) = x^2$$
 is convex, so $\mathbb{E}[X^2] \ge (\mathbb{E}[X])^2$.

• Allows us to easily reason about complicated functions:

Jensen's inequality

Let X be a r.v. Then, we have

 $\mathbb{E}[g(X)] \ge g(\mathbb{E}[X])$ if g is convex

 $\mathbb{E}[g(X)] \leq g(\mathbb{E}[X]) \quad \text{if g is concave}$

with equality only holding if g is linear.

• Makes proving variance positive simple.

• $g(x) = x^2$ is convex, so $\mathbb{E}[X^2] \ge (\mathbb{E}[X])^2$.

• Allows us to easily reason about complicated functions:

 $\blacktriangleright \mathbb{E}[|X|] \ge |\mathbb{E}[X]|$

Jensen's inequality

Let X be a r.v. Then, we have

 $\mathbb{E}[g(X)] \ge g(\mathbb{E}[X])$ if g is convex

 $\mathbb{E}[g(X)] \leq g(\mathbb{E}[X]) \quad \text{if g is concave}$

with equality only holding if g is linear.

• Makes proving variance positive simple.

• $g(x) = x^2$ is convex, so $\mathbb{E}[X^2] \ge (\mathbb{E}[X])^2$.

- Allows us to easily reason about complicated functions:
 - $\blacktriangleright \mathbb{E}[|X|] \ge |\mathbb{E}[X]|$
 - $\blacktriangleright \mathbb{E}[1/X] \ge 1/\mathbb{E}[X]$

Jensen's inequality

Let X be a r.v. Then, we have

 $\mathbb{E}[g(X)] \ge g(\mathbb{E}[X])$ if g is convex

 $\mathbb{E}[g(X)] \leq g(\mathbb{E}[X]) \quad \text{if g is concave}$

with equality only holding if g is linear.

• Makes proving variance positive simple.

• $g(x) = x^2$ is convex, so $\mathbb{E}[X^2] \ge (\mathbb{E}[X])^2$.

- Allows us to easily reason about complicated functions:
 - $\blacktriangleright \ \mathbb{E}[|X|] \ge |\mathbb{E}[X]|$
 - $\blacktriangleright \mathbb{E}[1/X] \ge 1/\mathbb{E}[X]$
 - $\blacktriangleright \mathbb{E}[\log(X)] \le \log(\mathbb{E}[X])$

Poisson

Definition

An r.v. *X* has the **Poisson distribution** with parameter $\lambda > 0$, written $X \sim \text{Pois}(\lambda)$ if the p.m.f. of *X* is:

$$\mathbb{P}(X=k) = \frac{e^{-\lambda}\lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

• One more discrete distribution is very popular, especially for counts.

Poisson

Definition

An r.v. *X* has the **Poisson distribution** with parameter $\lambda > 0$, written $X \sim \text{Pois}(\lambda)$ if the p.m.f. of *X* is:

$$\mathbb{P}(X=k) = \frac{e^{-\lambda}\lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

- One more discrete distribution is very popular, especially for counts.
 - Number of contributions a candidate for office receives in a day.

Poisson

Definition

An r.v. *X* has the **Poisson distribution** with parameter $\lambda > 0$, written $X \sim \text{Pois}(\lambda)$ if the p.m.f. of *X* is:

$$\mathbb{P}(X=k) = \frac{e^{-\lambda}\lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

• One more discrete distribution is very popular, especially for counts.

Number of contributions a candidate for office receives in a day.

• Key calculus fact that makes this a valid p.m.f.: $\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{\lambda}$.

Poisson properties

• A Poisson r.v. $X \sim \text{Pois}(\lambda)$ has an unusual property:

$$\mathbb{E}[X] = \mathbb{V}[X] = \lambda$$

Poisson properties

• A Poisson r.v. $X \sim \text{Pois}(\lambda)$ has an unusual property:

$$\mathbb{E}[X] = \mathbb{V}[X] = \lambda$$

• The sum of independent Poisson r.v.s is Poisson:

$$X \sim \mathsf{Pois}(\lambda_1) \quad Y \sim \mathsf{Pois}(\lambda_2) \quad \Rightarrow \quad X + Y \sim \mathsf{Pois}(\lambda_1 + \lambda_2)$$

Poisson properties

• A Poisson r.v. $X \sim \text{Pois}(\lambda)$ has an unusual property:

$$\mathbb{E}[X] = \mathbb{V}[X] = \lambda$$

• The sum of independent Poisson r.v.s is Poisson:

$$X \sim \mathsf{Pois}(\lambda_1) \quad Y \sim \mathsf{Pois}(\lambda_2) \quad \Rightarrow \quad X + Y \sim \mathsf{Pois}(\lambda_1 + \lambda_2)$$

• If $X \sim Bin(n, p)$ with n large and p small, then X is approximately Pois(np).

Poisson Distribution as a Limiting Case of Binomial

Claim: If $X_n \sim Bin(n, p_n)$ with $n \to \infty$ and $p_n \to 0$ such that $np_n = \lambda$, then:

$$\lim_{n \to \infty} P(X_n = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k = 0, 1, 2, \dots$$

which is the **Poisson** distribution $X \sim \text{Pois}(\lambda)$.

Proof:

• The binomial probability mass function (p.m.f.) is:

$$P(X_n = k) = \binom{n}{k} p_n^k (1 - p_n)^{n-k}$$

Poisson Distribution as a Limiting Case of Binomial

Claim: If $X_n \sim Bin(n, p_n)$ with $n \to \infty$ and $p_n \to 0$ such that $np_n = \lambda$, then:

$$\lim_{n \to \infty} P(X_n = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k = 0, 1, 2, \dots$$

which is the **Poisson** distribution $X \sim \text{Pois}(\lambda)$.

Proof:

• The binomial probability mass function (p.m.f.) is:

$$P(X_n = k) = \binom{n}{k} p_n^k (1 - p_n)^{n-k}$$

• Using the factorial form:

$$P(X_n = k) = \frac{n!}{k!(n-k)!} p_n^k (1-p_n)^{n-k}$$

• Approximate the terms as $n \to \infty$:

$$\frac{n!}{(n-k)!} \approx n^k$$

• Approximate the terms as $n \to \infty$:

$$\frac{n!}{(n-k)!} \approx n^k$$

• Using $p_n = \lambda/n$, rewrite the p.m.f.:

$$P(X_n = k) \approx \frac{n^k}{k!} \left(\frac{\lambda}{n}\right)^k (1 - \lambda/n)^{n-k}$$

• Approximate the terms as $n \to \infty$:

$$\frac{n!}{(n-k)!} \approx n^k$$

• Using $p_n = \lambda/n$, rewrite the p.m.f.:

$$P(X_n = k) \approx \frac{n^k}{k!} \left(\frac{\lambda}{n}\right)^k (1 - \lambda/n)^{n-k}$$

• Taking the limit as $n \to \infty$:

$$\lim_{n \to \infty} (1 - \lambda/n)^{n-k} = e^{-\lambda}$$

• Approximate the terms as $n \to \infty$:

$$\frac{n!}{(n-k)!} \approx n^k$$

• Using $p_n = \lambda/n$, rewrite the p.m.f.:

$$P(X_n = k) \approx \frac{n^k}{k!} \left(\frac{\lambda}{n}\right)^k (1 - \lambda/n)^{n-k}$$

• Taking the limit as
$$n \to \infty$$
:

$$\lim_{n \to \infty} (1 - \lambda/n)^{n-k} = e^{-\lambda}$$

• Therefore, the binomial probability simplifies to:

$$P(X_n = k) \to \frac{\lambda^k e^{-\lambda}}{k!}$$

• Approximate the terms as $n \to \infty$:

$$\frac{n!}{(n-k)!} \approx n^k$$

• Using $p_n = \lambda/n$, rewrite the p.m.f.:

$$P(X_n = k) \approx \frac{n^k}{k!} \left(\frac{\lambda}{n}\right)^k (1 - \lambda/n)^{n-k}$$

• Taking the limit as
$$n \to \infty$$
:

$$\lim_{n \to \infty} (1 - \lambda/n)^{n-k} = e^{-\lambda}$$

• Therefore, the binomial probability simplifies to:

$$P(X_n = k) \to \frac{\lambda^k e^{-\lambda}}{k!}$$

• Thus, X_n converges to a Poisson(λ) random variable.

Gov 2001

Claim: If $X \sim \text{Pois}(\lambda)$, then its expectation is:

$$E[X] = \lambda.$$

Proof:

• The expectation of *X* is given by:

$$E[X] = \sum_{k=0}^{\infty} kP(X=k).$$

Claim: If $X \sim \text{Pois}(\lambda)$, then its expectation is:

$$E[X] = \lambda.$$

Proof:

• The expectation of *X* is given by:

$$E[X] = \sum_{k=0}^{\infty} kP(X=k).$$

• Using the Poisson p.m.f.:

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k = 0, 1, 2, \dots$$

Claim: If $X \sim \text{Pois}(\lambda)$, then its expectation is:

$$E[X] = \lambda.$$

Proof:

• The expectation of X is given by:

$$E[X] = \sum_{k=0}^{\infty} kP(X=k).$$

• Using the Poisson p.m.f.:

$$P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k = 0, 1, 2, \dots$$

• Substituting:

$$E[X] = \sum_{k=1}^{\infty} k \frac{\lambda^k e^{-\lambda}}{k!}.$$

• Since
$$k = k!/(k-1)!$$
, rewrite:

$$E[X] = \sum_{k=1}^{\infty} \frac{\lambda^k e^{-\lambda}}{(k-1)!}.$$

• Since
$$k = k!/(k-1)!$$
, rewrite:
 $E[X] = \sum_{k=1}^{\infty} \frac{\lambda^k e^{-\lambda}}{(k-1)!}.$

• Changing the index of summation by setting j = k - 1:

$$E[X] = \sum_{j=0}^{\infty} \frac{\lambda^{j+1} e^{-\lambda}}{j!}.$$
Expectation of a Poisson Distribution

• Since
$$k = k!/(k-1)!$$
, rewrite:
 $E[X] = \sum_{k=1}^{\infty} \frac{\lambda^k e^{-\lambda}}{(k-1)!}.$

• Changing the index of summation by setting j = k - 1:

$$E[X] = \sum_{j=0}^{\infty} \frac{\lambda^{j+1} e^{-\lambda}}{j!}.$$

• Factor out
$$\lambda$$
:

$$E[X] = \lambda e^{-\lambda} \sum_{j=0}^{\infty} \frac{\lambda^j}{j!}.$$

Expectation of a Poisson Distribution

• Recognizing the power series for e^{λ} :

$$\sum_{j=0}^{\infty} \frac{\lambda^j}{j!} = e^{\lambda}.$$

• Thus, we obtain:

$$E[X] = \lambda e^{-\lambda} \cdot e^{\lambda} = \lambda.$$

• **Conclusion:** The mean of a Poisson-distributed random variable is *λ*.