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Logistics

• Final project group assignment done.
• March 5th midterm review!
• March 7th midterm - usual lecture time.

▶ 50% Conceptual + 50% Coding.
▶ Week 1 to Week 5.
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Life is Uncertain

• Say we are interested in estimating a coefficient β.

Diabetes = β · sugar consumption + some constant

• We will never observe the true β.
• Instead, we observe a sample of data points: people’s sugar

consumption and whether they have diabetes.
• We can run a linear regression using these data to get an

estimated β̂.
• Is β̂ a good estimate of the true value? How certain are we ????
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Standard Error as a Measurement for Uncertainty
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Standard Error as a Measurement for Uncertainty
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Standard Error as a Measurement for Uncertainty
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Standard Error as a Measurement for Uncertainty

• Standard error tells us how “spread out” our data is.
• It’s not good or bad to have a high standard error.

▶ In some scenario, we want to a precise estimate.
▶ In other scenarios, we want to observe heterogeneity.
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Variance and Bias

• Say we are interested in estimating a coefficient β.

Diabetes = β · sugar consumption + some constant

• There are two ways to collect a sample:
▶ We look for 1000 people who are Asian, female, 25 years old, no

known illness, exercise twice per week, eat salad every day.

▶ We look for 1000 people who are across races, genders, age groups
and health conditions.
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Variance and Bias

• Say we are interested in estimating a coefficient β.

Diabetes = β · sugar consumption + some constant

• There are two ways to collect a sample:
▶ We look for 1000 people who are Asian, female, 25 years old, no

known illness, exercise twice per week, eat salad every day.
We will get a precise β̂, but probably biased from the true
value!

▶ We look for 1000 people who are across races, genders, age groups
and health conditions.
We will get a noisy β̂, but probably closer to the true value!
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Variance and Bias Trade-off
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Variance and Bias Trade-off

• Let’s take a closer look mean squared error, to mathematically
capture the trade off.

MSE = E
(
(β̂ − β)2
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Variance and Bias

• Let’s first take a look at the cross term.

• Notice that E(a constant) = a constant.
• So for example: E(E(β̂)) = E(β̂) because E(β̂) is a constant!

E
(
(β̂ − E(β̂))(E(β̂)− β)

)
= E

(
β̂E(β̂)− E(β̂)E(β̂)− β̂β + E(β̂)β

)
= E(β̂)E(β̂)− E(β̂)E(β̂)− βE(β̂) + βE(β̂)
= 0
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Variance and Bias

MSE = E
(
(β̂ − E(β̂))2

)
︸ ︷︷ ︸

variance

+E
(
E(β̂)− β)

)2

︸ ︷︷ ︸
bias2

= E
(
(β̂ − E(β̂))2

)
︸ ︷︷ ︸
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+
(
E(β̂)− β)

)2

︸ ︷︷ ︸
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Because E(β̂)− β) is a constant!
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Variance and Bias

• Mean squared error consists of variance and bias squared.
• If we want to be wrong to a certain level (keep MSE constant):

▶ We can use the Asian sample to reduce variance, at the cost of
bias.

▶ We can use the representative sample to reduce bias, at the cost of
high variance.

• We will see OLS estimator is unbaised, with a closed form
variance. (later)
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OLS Coefficients

Y = βX + β0 + ϵ

• Null Hypothesis:
β = 0

• P-value in a t-test:
β̂ − 0

std errorβ̂
P-value= 0.001 indicates that if null hypothesis were true,
we would get this value of β̂ with a probability of 0.001.

• Confidence: Thus, we can reject the null with a confidence of
0.999.
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Type of errors

Reject H0 Accept H0

H0 is true Correct
H0 is false Correct
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Type of errors

Reject H0 Accept H0

H0 is true Type I error Correct
H0 is false Correct

• Type I error: Reject the null hypothesis when it is true.
False negatives
▶ This is fine when we want the test to be aggressive.
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Type of errors

Reject H0 Accept H0

H0 is true Type I error Correct
H0 is false Correct Type II error

• Type I error: Reject the null hypothesis when it is true.
False negatives
▶ This is fine when we want the test to be aggressive.

• Type II error: Accept the null hypothesis when it is false.
False positives
▶ This is fine when we want the test to be conservative.
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Type or errors

• Diabetes test for patients

• Null hypothesis: No Diabetes
• Type I error: A healthy person diagnosed with Diabetes.
• Type II error: A Diabetes patient diagnosed as healthy.
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Do policy makers listen to experts?

• Do elected officials update their policy positions in response to
expert evidence? (Lee, 2021, APSR)

• Are policy makers biased? Motivated reasoning?
• National survey of local and state policy makers on different

issues.
690 policy makers from all 50 states

• Policy makers update their beliefs and preferences in the direction
of the evidence
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Hypotheses

• Directional Motivation Hypothesis
Policy makers will be less likely update their beliefs or preferences
in the direction of the evidence when the evidence is uncongenial.

• Accuracy Motivation Hypothesis
Policy makers will update their beliefs or preferences in the
direction of the expert evidence irrespective of the congeniality of
the evidence.
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Issues

• Needle exchange, GMOs, and rent control.
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Hypotheses Test

• Support on needle exchange program

Yi = β0+β1 ·Republican+β2 ·new info+β3 ·Republican ·new info

• Accuracy motivated reasoning:

β2 > 0

New or better info has an effect on support of the program.
• Directional motivated reasoning:

β3 > 0

Conditional on given new info, partisanship will still affect
support.
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Hypothesis Testing

• Mean squared error consists of variance and bias.

• OLS coefficients can be viewed as hypothesis tests.
• We could be wrong in two ways: type I or II error.
• Next lecture: we will take a closer look at uncertainty for OLS

coefficients.
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