Lecture 11: Uncertainty and Inference

Naijia Liu

Feb. 27 2024

Logistics

- Final project group assignment done.
- March 5th midterm review!
- March 7th midterm usual lecture time.
 - ► 50% Conceptual + 50% Coding.
 - ▶ Week 1 to Week 5.

• Say we are interested in estimating a coefficient β .

• Say we are interested in estimating a coefficient β .

 $\mathsf{Diabetes} = \beta \cdot \mathsf{sugar} \ \mathsf{consumption} + \mathsf{some} \ \mathsf{constant}$

• We will never observe the **true** β .

• Say we are interested in estimating a coefficient β .

- We will never observe the true β .
- Instead, we observe a sample of data points: people's sugar consumption and whether they have diabetes.

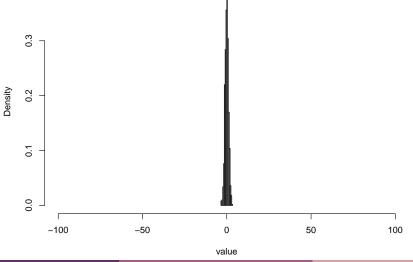
• Say we are interested in estimating a coefficient β .

- We will never observe the true β .
- Instead, we observe a sample of data points: people's sugar consumption and whether they have diabetes.
- We can run a linear regression using these data to get an estimated $\hat{\beta}$.

• Say we are interested in estimating a coefficient β .

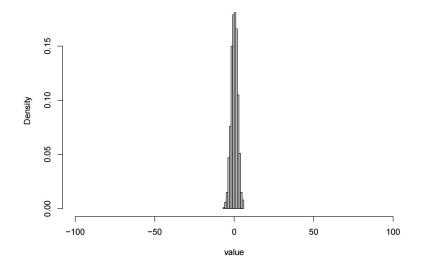
- We will never observe the true β .
- Instead, we observe a sample of data points: people's sugar consumption and whether they have diabetes.
- We can run a linear regression using these data to get an estimated $\hat{\beta}$.
- Is $\hat{\beta}$ a good estimate of the true value? How certain are we ????

Distribution (sd = 1)

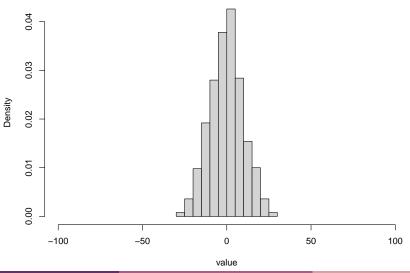


Gov 51, Spring 2024

Distribution (sd = 2)



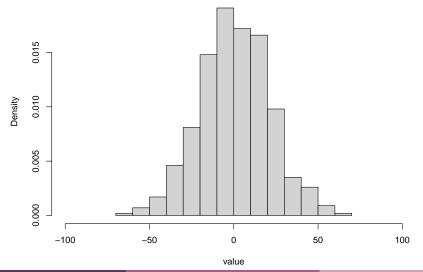
Distribution (sd = 10)



Gov 51, Spring 2024

Uncertainty

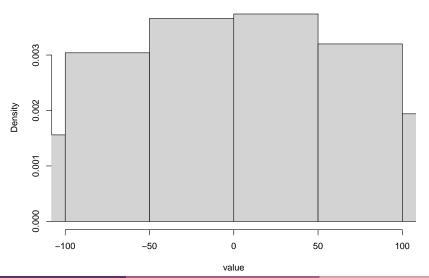
Distribution (sd = 20)



Gov 51, Spring 2024

7 / 27

Distribution (sd = 100)



Gov 51, Spring 2024

- Standard error tells us how "spread out" our data is.
- It's not good or bad to have a high standard error.
 - ▶ In some scenario, we want to a **precise** estimate.
 - ▶ In other scenarios, we want to observe heterogeneity.

• Say we are interested in estimating a coefficient β .

- There are two ways to collect a sample:
 - We look for 1000 people who are Asian, female, 25 years old, no known illness, exercise twice per week, eat salad every day.

• Say we are interested in estimating a coefficient β .

- There are two ways to collect a sample:
 - We look for 1000 people who are Asian, female, 25 years old, no known illness, exercise twice per week, eat salad every day.
 - We look for 1000 people who are across races, genders, age groups and health conditions.

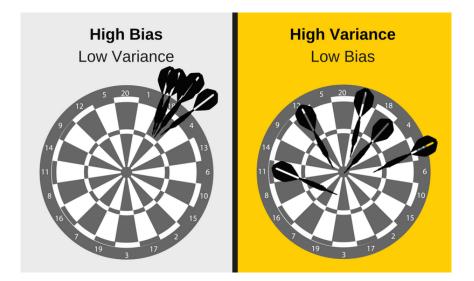
• Say we are interested in estimating a coefficient β .

 $\mathsf{Diabetes} = \beta \cdot \mathsf{sugar} \ \mathsf{consumption} + \mathsf{some} \ \mathsf{constant}$

- There are two ways to collect a sample:
 - We look for 1000 people who are Asian, female, 25 years old, no known illness, exercise twice per week, eat salad every day.
 We will get a precise β̂, but probably biased from the true value!
 - We look for 1000 people who are across races, genders, age groups and health conditions.

We will get a noisy $\hat{\beta}$, but probably closer to the true value!

Variance and Bias Trade-off



Variance and Bias Trade-off

• Let's take a closer look mean squared error, to mathematically capture the trade off.

Variance and Bias Trade-off

• Let's take a closer look mean squared error, to mathematically capture the trade off.

$$\begin{split} \mathsf{MSE} &= \mathbb{E}\left((\hat{\beta} - \beta)^2\right) \\ &= \mathbb{E}\left(\underbrace{(\hat{\beta} - \mathbb{E}(\hat{\beta}) + \mathbb{E}(\hat{\beta}) - \beta}_{B})^2\right) \\ &= \mathbb{E}\left(A^2 + B^2 + 2AB\right) \\ &= \underbrace{\mathbb{E}\left((\hat{\beta} - \mathbb{E}(\hat{\beta}))^2\right)}_{\mathsf{variance}} + \mathbb{E}\underbrace{\left(\mathbb{E}(\hat{\beta}) - \beta\right)}_{\mathsf{bias}^2}^2 + 2\mathbb{E}\left((\hat{\beta} - \mathbb{E}(\hat{\beta}))(\mathbb{E}(\hat{\beta}) - \beta)\right) \end{split}$$

• Let's first take a look at the cross term.

- Let's first take a look at the cross term.
- Notice that $\mathbb{E}(a \text{ constant}) = a \text{ constant}$.

- Let's first take a look at the cross term.
- Notice that $\mathbb{E}(a \text{ constant}) = a \text{ constant}$.
- So for example: $\mathbb{E}(\mathbb{E}(\hat{\beta})) = \mathbb{E}(\hat{\beta})$ because $\mathbb{E}(\hat{\beta})$ is a constant!

- Let's first take a look at the cross term.
- Notice that $\mathbb{E}(a \text{ constant}) = a \text{ constant}$.
- So for example: $\mathbb{E}(\mathbb{E}(\hat{\beta})) = \mathbb{E}(\hat{\beta})$ because $\mathbb{E}(\hat{\beta})$ is a constant!

- Let's first take a look at the cross term.
- Notice that $\mathbb{E}(a \text{ constant}) = a \text{ constant}$.
- So for example: $\mathbb{E}(\mathbb{E}(\hat{\beta})) = \mathbb{E}(\hat{\beta})$ because $\mathbb{E}(\hat{\beta})$ is a constant!

$$\mathbb{E}\left((\hat{\beta} - \mathbb{E}(\hat{\beta}))(\mathbb{E}(\hat{\beta}) - \beta)\right)$$

= $\mathbb{E}\left(\hat{\beta}\mathbb{E}(\hat{\beta}) - \mathbb{E}(\hat{\beta})\mathbb{E}(\hat{\beta}) - \hat{\beta}\beta + \mathbb{E}(\hat{\beta})\beta\right)$
= $\mathbb{E}(\hat{\beta})\mathbb{E}(\hat{\beta}) - \mathbb{E}(\hat{\beta})\mathbb{E}(\hat{\beta}) - \beta\mathbb{E}(\hat{\beta}) + \beta\mathbb{E}(\hat{\beta})$
= 0

$$\begin{split} \mathsf{MSE} &= \underbrace{\mathbb{E}\left((\hat{\beta} - \mathbb{E}(\hat{\beta}))^2\right)}_{\text{variance}} + \underbrace{\mathbb{E}\left(\underbrace{\mathbb{E}(\hat{\beta}) - \beta}\right)^2}_{\text{bias}^2} \\ &= \underbrace{\mathbb{E}\left((\hat{\beta} - \mathbb{E}(\hat{\beta}))^2\right)}_{\text{variance}} + \underbrace{\left(\underbrace{\mathbb{E}(\hat{\beta}) - \beta}\right)^2}_{\text{bias}^2} \end{split}$$

Because $\mathbb{E}(\hat{\beta}) - \beta$ is a constant!

- Mean squared error consists of variance and bias squared.
- If we want to be wrong to a certain level (keep MSE constant):
 - We can use the Asian sample to reduce variance, at the cost of bias.

- Mean squared error consists of variance and bias squared.
- If we want to be wrong to a certain level (keep MSE constant):
 - We can use the Asian sample to reduce variance, at the cost of bias.
 - We can use the representative sample to reduce bias, at the cost of high variance.

- Mean squared error consists of variance and bias squared.
- If we want to be wrong to a certain level (keep MSE constant):
 - We can use the Asian sample to reduce variance, at the cost of bias.
 - We can use the representative sample to reduce bias, at the cost of high variance.

- Mean squared error consists of variance and bias squared.
- If we want to be wrong to a certain level (keep MSE constant):
 - We can use the Asian sample to reduce variance, at the cost of bias.
 - We can use the representative sample to reduce bias, at the cost of high variance.
- We will see OLS estimator is unbaised, with a closed form variance. (later)

OLS Coefficients

$$Y = \beta X + \beta_0 + \epsilon$$

• Null Hypothesis:

$$\beta = 0$$

• P-value in a t-test:

$$\frac{\hat{\beta}-0}{\mathsf{std}\;\mathsf{error}\hat{\beta}}$$

P-value= 0.001 indicates that if null hypothesis were true, we would get this value of $\hat{\beta}$ with a probability of 0.001.

• Confidence: Thus, we can reject the null with a confidence of 0.999.

Type of errors

	Reject H_0	Accept H_0
H_0 is true		Correct
H_0 is false	Correct	

Type of errors

	Reject H_0	Accept H_0
	Type I error	Correct
H_0 is false	Correct	

- Type I error: Reject the null hypothesis when it is true. False negatives
 - This is fine when we want the test to be aggressive.

Type of errors

	Reject H_0	Accept H_0
H_0 is true	Type I error	Correct
H_0 is false	Correct	Type II error

- Type I error: Reject the null hypothesis when it is true. False negatives
 - This is fine when we want the test to be aggressive.
- Type II error: Accept the null hypothesis when it is false. False positives
 - This is fine when we want the test to be conservative.

• Diabetes test for patients

- Diabetes test for patients
- Null hypothesis: No Diabetes

- Diabetes test for patients
- Null hypothesis: No Diabetes
- Type I error: A healthy person diagnosed with Diabetes.

- Diabetes test for patients
- Null hypothesis: No Diabetes
- Type I error: A healthy person diagnosed with Diabetes.
- Type II error: A Diabetes patient diagnosed as healthy.

• Do elected officials update their policy positions in response to expert evidence? (Lee, 2021, APSR)

- Do elected officials update their policy positions in response to expert evidence? (Lee, 2021, APSR)
- Are policy makers biased? Motivated reasoning?

- Do elected officials update their policy positions in response to expert evidence? (Lee, 2021, APSR)
- Are policy makers biased? Motivated reasoning?
- National survey of local and state policy makers on different issues.

690 policy makers from all 50 states

- Do elected officials update their policy positions in response to expert evidence? (Lee, 2021, APSR)
- Are policy makers biased? Motivated reasoning?
- National survey of local and state policy makers on different issues.

690 policy makers from all 50 states

• Policy makers update their beliefs and preferences in the direction of the evidence

Hypotheses

• Directional Motivation Hypothesis

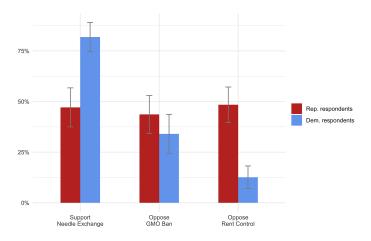
Policy makers will be less likely update their beliefs or preferences in the direction of the evidence when the evidence is uncongenial.

Hypotheses

- Directional Motivation Hypothesis Policy makers will be less likely update their beliefs or preferences in the direction of the evidence when the evidence is uncongenial.
- Accuracy Motivation Hypothesis Policy makers will update their beliefs or preferences in the direction of the expert evidence irrespective of the congeniality of the evidence.

Issues

• Needle exchange, GMOs, and rent control.



Hypotheses Test

• Support on needle exchange program

 $Y_i = \beta_0 + \beta_1 \cdot \text{Republican} + \beta_2 \cdot \text{new info} + \beta_3 \cdot \text{Republican} \cdot \text{new info}$

Hypotheses Test

• Support on needle exchange program

 $Y_i = \beta_0 + \beta_1 \cdot \text{Republican} + \beta_2 \cdot \text{new info} + \beta_3 \cdot \text{Republican} \cdot \text{new info}$

• Accuracy motivated reasoning:

 $\beta_2 > 0$

New or better info has an effect on support of the program.

Hypotheses Test

• Support on needle exchange program

 $Y_i = \beta_0 + \beta_1 \cdot \text{Republican} + \beta_2 \cdot \text{new info} + \beta_3 \cdot \text{Republican} \cdot \text{new info}$

• Accuracy motivated reasoning:

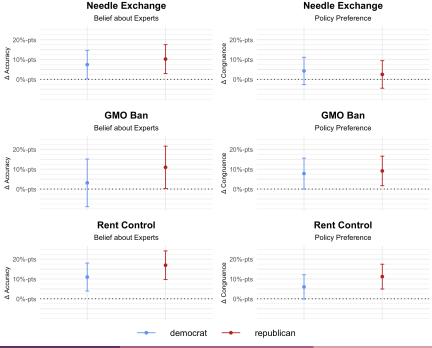
 $\beta_2 > 0$

New or better info has an effect on support of the program.

• Directional motivated reasoning:

 $\beta_3 > 0$

Conditional on given new info, partisanship will still affect support.



Gov 51, Spring 2024

Application

• Mean squared error consists of variance and bias.

- Mean squared error consists of variance and bias.
- OLS coefficients can be viewed as hypothesis tests.

- Mean squared error consists of variance and bias.
- OLS coefficients can be viewed as hypothesis tests.
- We could be wrong in two ways: type I or II error.

- Mean squared error consists of variance and bias.
- OLS coefficients can be viewed as hypothesis tests.
- We could be wrong in two ways: type I or II error.
- Next lecture: we will take a closer look at uncertainty for OLS coefficients.