Lecture 12: Uncertainty and Inference

Naijia Liu

Feb 29, 2024

Midterm Week Plan

- Tuesday lecture: Review.
- Thursday lecture: Exam.
- Conceptual questions: Closed-book test.
- Coding questions: Semi closed-book
- Embedded manual of R-studio: ?function-name
- Previous coding tasks and pset.

Uncertainty for the OLS coefficient

- We assume OLS error term has a mean zero.

$$
\mathbb{E}\left(\epsilon_{i} \mid X\right)=0
$$

Uncertainty for the OLS coefficient

- We assume OLS error term has a mean zero.

$$
\mathbb{E}\left(\epsilon_{i} \mid X\right)=0
$$

- First, we want to show $\hat{\beta}$ is unbiased for true β.

Uncertainty for the OLS coefficient

- We assume OLS error term has a mean zero.

$$
\mathbb{E}\left(\epsilon_{i} \mid X\right)=0
$$

- First, we want to show $\hat{\beta}$ is unbiased for true β.
- Then, we will take a look at how certain we can be for it.

Unbiasedness

$$
\begin{aligned}
\hat{\beta} & =\frac{\sum X_{i} Y_{i}}{\sum X_{i}^{2}} \\
& =\frac{\sum X_{i}\left(\beta X_{i}+\epsilon_{i}\right)}{\sum X_{i}^{2}} \\
& =\frac{\beta \sum X_{i}^{2}+\sum X_{i} \epsilon_{i}}{\sum X_{i}^{2}} \\
& =\beta+\frac{\sum X_{i} \epsilon_{i}}{\sum X_{i}^{2}}
\end{aligned}
$$

So we have:

$$
\hat{\beta}-\beta=\frac{\sum X_{i} \epsilon_{i}}{\sum X_{i}^{2}}
$$

Unbiasedness

$$
\begin{aligned}
\mathbb{E}(\hat{\beta}-\beta \mid X) & =\mathbb{E}\left(\left.\frac{\sum X_{i} \epsilon_{i}}{\sum X_{i}^{2}} \right\rvert\, X\right) \\
& =\frac{1}{\sum X_{i}^{2}} \sum\left(\mathbb{E}\left(\epsilon_{i} \mid X\right) X_{i}\right) \\
& =0
\end{aligned}
$$

In expectation, OLS can give us an unbiased estimate of the coefficient.

Homoskedasticity

- Error not dependent on covariates.

$$
V\left(\epsilon_{i} \mid X\right)=V\left(\epsilon_{i}\right)
$$

- ϵ_{i} and ϵ_{j} are independent, conditional on X

Variance of OLS coefficient

$$
\begin{aligned}
V(\hat{\beta} \mid X) & =V\left(\left.\frac{\sum X_{i} Y_{i}}{\sum X_{i}^{2}} \right\rvert\, X\right) \\
& =V\left(\left.\frac{\sum X_{i}\left(\beta X_{i}+\epsilon_{i}\right)}{\sum X_{i}^{2}} \right\rvert\, X\right) \\
& =V\left(\left.\frac{\beta \sum X_{i}^{2}}{\sum X_{i}^{2}} \right\rvert\, X\right)+V\left(\left.\frac{\sum X_{i} \epsilon_{i}}{\sum X_{i}^{2}} \right\rvert\, X\right) \\
& =V(\beta \mid X)+\frac{1}{\left(\sum X_{i}^{2}\right)^{2}} V\left(\sum \epsilon_{i} X_{i} \mid X\right) \\
& =0+\frac{B}{A} V\left(\epsilon_{i}\right)
\end{aligned}
$$

homoskedastic error assumption

Brainstorm question

Please show

$$
\hat{\beta}=\frac{\sum_{i=1}^{N} X_{i}\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{N} X_{i}\left(X_{i}-\bar{X}\right)}=\frac{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}}
$$

Brainstorm question

Please show

$$
\hat{\beta}=\frac{\sum_{i=1}^{N} X_{i}\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{N} X_{i}\left(X_{i}-\bar{X}\right)}=\frac{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}}
$$

Furthermore, can you show the unbiased-ness using this form of $\hat{\beta}$?

