Lecture 16: Bag of Words and More

Naijia Liu

March 26 2024

Final Project Poster

- More info on course website: poster samples and resources.
- Gov 51 final poster session will happen on 4/23 Tuesday usual class time, with light refreshment
- Workshop on 4/4 (attendance is required, contents are optional)
 I will record myself for a 40 min coding session.
 James will give a lecture on regression discontinuity in person.

 RD is widely applied and will be super super super helpful for final project and / or thesis.

• Measuring agenda setting in interactive political communication (Rossiter, 2022)

- Measuring agenda setting in interactive political communication (Rossiter, 2022)
- Within interactions, such as debates, deliberations, and discussions, actors can set the agenda by shifting others' attention to their preferred topics.

With non-text data, we can (maybe) study it by variables such as speaking duration in a debate, votes and etc.

- Measuring agenda setting in interactive political communication (Rossiter, 2022)
- Within interactions, such as debates, deliberations, and discussions, actors can set the agenda by shifting others' attention to their preferred topics.

With non-text data, we can (maybe) study it by variables such as speaking duration in a debate, votes and etc.

• By analyzing the transcript of debates, we can locate where topic shifts occur within an interaction in order to measure the relative agenda-setting power of actors.

- Measuring agenda setting in interactive political communication (Rossiter, 2022)
- Within interactions, such as debates, deliberations, and discussions, actors can set the agenda by shifting others' attention to their preferred topics.

With non-text data, we can (maybe) study it by variables such as speaking duration in a debate, votes and etc.

- By analyzing the transcript of debates, we can locate where topic shifts occur within an interaction in order to measure the relative agenda-setting power of actors.
- Successfully setting the agenda can shape an interaction's outcomes.

Example from 2016 Presidential Debate

Holt: We are at—we are at the final question.

Clinton: Well, one thing. One thing, Lester.

Holt: Very quickly, because we're at the final question now.

Clinton: You know, he tried to switch from looks to stamina. But this is a man who has called women pigs, slobs and dogs, and someone who has said pregnancy is an inconvenience to employers, who has said...

• Data generating process of texts:

We have a topic in mind, which determines the probability distribution of vocabularies. And to speak, we randomly draw words from the vocabularies with such probabilities.

• Data generating process of texts:

We have a topic in mind, which determines the probability distribution of vocabularies. And to speak, we randomly draw words from the vocabularies with such probabilities.

 Food: Pasta (high probability), Coke (high probability), Rain, Good, Bad, Temperature, Warm.

• Data generating process of texts:

We have a topic in mind, which determines the probability distribution of vocabularies. And to speak, we randomly draw words from the vocabularies with such probabilities.

- Food: Pasta (high probability), Coke (high probability), Rain, Good, Bad, Temperature, Warm.
- Weather: Pasta, Coke, Rain (high probability), Good, Bad, Temperature (high probability), Warm.

• Data generating process of texts:

We have a topic in mind, which determines the probability distribution of vocabularies. And to speak, we randomly draw words from the vocabularies with such probabilities.

- Food: Pasta (high probability), Coke (high probability), Rain, Good, Bad, Temperature, Warm.
- Weather: Pasta, Coke, Rain (high probability), Good, Bad, Temperature (high probability), Warm.
- If we believe in such generating process, we will be able to back off each topics from the transcripts.

• Data generating process of texts:

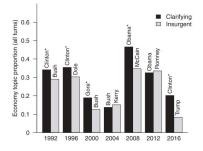
We have a topic in mind, which determines the probability distribution of vocabularies. And to speak, we randomly draw words from the vocabularies with such probabilities.

- Food: Pasta (high probability), Coke (high probability), Rain, Good, Bad, Temperature, Warm.
- Weather: Pasta, Coke, Rain (high probability), Good, Bad, Temperature (high probability), Warm.
- If we believe in such generating process, we will be able to back off each topics from the transcripts.
- Then, author was able to measure topic changes throughout the document.

Candidates Behave Differently

Clarifying candidates tend to switch to economic topics.

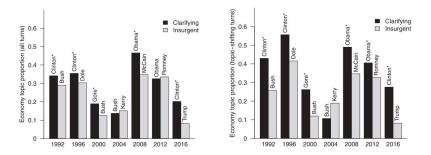
Figure: Left: All turns; Right: Topic changing turns



Candidates Behave Differently

Clarifying candidates tend to switch to economic topics.

Figure: Left: All turns; Right: Topic changing turns



• Does public opinion affect: (Hager and Hilbig, 2020, AJPS)

- Does public opinion affect: (Hager and Hilbig, 2020, AJPS)
 - what topics politicians address

- Does public opinion affect: (Hager and Hilbig, 2020, AJPS)
 - what topics politicians address
 - what positions they endorse

- Does public opinion affect: (Hager and Hilbig, 2020, AJPS)
 - what topics politicians address
 - what positions they endorse
- German government declassified public opinion research to its cabinet members.

- Does public opinion affect: (Hager and Hilbig, 2020, AJPS)
 - what topics politicians address
 - what positions they endorse
- German government declassified public opinion research to its cabinet members.
- Linguistic similarity as a measure of congruence

- Does public opinion affect: (Hager and Hilbig, 2020, AJPS)
 - what topics politicians address
 - what positions they endorse
- German government declassified public opinion research to its cabinet members.
- Linguistic similarity as a measure of congruence
- Exposure to public opinion research leads politicians to markedly change their speech

• Cosine similarity to measure linguistic similarity.

- We will support labor unions.
- Labor unions should be supported.
- Model:

Cosine Sim = $\beta_0 + \beta_1 \cdot \text{Exposure} + \beta X + \epsilon$

• More details + a very smart RD design. Take a look at the paper if interested!

Exposure Leads to Higher Similarity

Figure: Speeches follow public opinion.

	Cosine S	Cosine Similarity				
	(1)	(2)				
Exposure	0.0137**	0.0128				
	(0.0066)	(0.0057)				
Covariates	No	Yes				
Observations	5,684	5,684				
Mean of DV	0.12	263				
SD of DV	0.09	976				
Effect size in SD	0.1413	0.1319				

Gov 51, Spring 2024	Text as Data	9 / 24

• To achieve above studies, we need to transform text data into something simpler.

- To achieve above studies, we need to transform text data into something simpler.
- The bag-of-words model is a simple and widely used approach to analyze textual data

- To achieve above studies, we need to transform text data into something simpler.
- The bag-of-words model is a simple and widely used approach to analyze textual data
- The bag-of-words model represents a text as a collection of words, ignoring the order and structure of the sentences

- To achieve above studies, we need to transform text data into something simpler.
- The bag-of-words model is a simple and widely used approach to analyze textual data
- The bag-of-words model represents a text as a collection of words, ignoring the order and structure of the sentences
- Assumption: the frequency of words in a text can provide valuable information about the content of the text

• The bag-of-words model involves the following steps:

- The bag-of-words model involves the following steps:
 - 1. Tokenization: dividing a text into individual words or tokens

- The bag-of-words model involves the following steps:
 - 1. Tokenization: dividing a text into individual words or tokens
 - 2. Counting: counting the frequency of each word in the text

- The bag-of-words model involves the following steps:
 - 1. Tokenization: dividing a text into individual words or tokens
 - 2. Counting: counting the frequency of each word in the text
 - 3. Vectorization: representing the text as a vector of word frequencies

Example of Bag-of-Words Model

- Suppose we have the following two sentences:
 - Sentence 1: The great fox loves the lazy dog
 - Sentence 2: The lazy dog sleeps all day

Example of Bag-of-Words Model

- Suppose we have the following two sentences:
 - Sentence 1: The great fox loves the lazy dog
 - Sentence 2: The lazy dog sleeps all day
- The bag-of-words representation of these two sentences would be:

	the	great	fox	loves	lazy	dog	sleeps	all	day
1	2	1	1	1	1	1	0	0	0
2	1	0	0	0	1	1	1	1	1

Example of Bag-of-Words Model

- Suppose we have the following two sentences:
 - Sentence 1: The great fox loves the lazy dog
 - Sentence 2: The lazy dog sleeps all day
- The bag-of-words representation of these two sentences would be:

	the	great	fox	loves	lazy	dog	sleeps	all	day
1	2	1	1	1	1	1	0	0	0
2	1	0	0	0	1	1	1	1	1

• End up with a N (number of documents) by P (unique vocabulary) document term matrix.

Applications of the Bag-of-Words Model

• The bag-of-words model can be used for a variety of applications such as

Applications of the Bag-of-Words Model

- The bag-of-words model can be used for a variety of applications such as
 - Topic modeling: identifying the topics or themes present in a collection of texts

Applications of the Bag-of-Words Model

- The bag-of-words model can be used for a variety of applications such as
 - Topic modeling: identifying the topics or themes present in a collection of texts
 - Sentiment analysis: determining the sentiment of a text, such as positive or negative

Applications of the Bag-of-Words Model

- The bag-of-words model can be used for a variety of applications such as
 - Topic modeling: identifying the topics or themes present in a collection of texts
 - Sentiment analysis: determining the sentiment of a text, such as positive or negative
 - Text classification: classifying a text into predefined categories based on its content

Table: Text Data

	the	great	fox	loves	lazy	dog	sleeps	all	day
1	2	1	1	1	1	1	0	0	0
2	1	0	0	0	1	1	1	1	1

• Imagine a dictionary with following words and labels.

Table: Text Data

	the	great	fox	loves	lazy	dog	sleeps	all	day
1	2	1	1	1	1	1	0	0	0
2	1	0	0	0	1	1	1	1	1

- Imagine a dictionary with following words and labels.
 - Positive: great, love

Table: Text Data

	the	great	fox	loves	lazy	dog	sleeps	all	day
1	2	1	1	1	1	1	0	0	0
2	1	0	0	0	1	1	1	1	1

- Imagine a dictionary with following words and labels.
 - Positive: great, love
 - Negative: lazy

Table: Text Data

	the	great	fox	loves	lazy	dog	sleeps	all	day
1	2	1	1	1	1	1	0	0	0
2	1	0	0	0	1	1	1	1	1

- Imagine a dictionary with following words and labels.
 - Positive: great, love
 - Negative: lazy
 - Neutral: rest of the words.

Table: Text Data

	the	great	fox	loves	lazy	dog	sleeps	all	day
1	2	1	1	1	1	1	0	0	0
2	1	0	0	0	1	1	1	1	1

- Imagine a dictionary with following words and labels.
 - Positive: great, love
 - Negative: lazy
 - ► Neutral: rest of the words.
- We can calculate sentiment score for each sentence above.

Table: Text Data

_		the	great	fox	loves	lazy	dog	sleeps	all	day
_	1	2	1	1	1	1	1	0	0	0
	2	1	0	0	0	1	1	1	1	1

- Sentence 1: 1 * 1 + 1 * 1 + (-1) * 1 = 1
- Sentence 2: (-1) * 1 = -1

• Sentence 1 is more positive than sentence 2.

- Sentence 1 is more positive than sentence 2.
- Dictionary method is cheap and fast. (more to come on Thursday)

- Sentence 1 is more positive than sentence 2.
- Dictionary method is cheap and fast. (more to come on Thursday)
- Weighing every word equally.

unimpressive, bad, terrible, bizarre.

- Sentence 1 is more positive than sentence 2.
- Dictionary method is cheap and fast. (more to come on Thursday)
- Weighing every word equally.

unimpressive, bad, terrible, bizarre.

• We lose the order and structure of sentences.

It is not bad.

 \rightsquigarrow will have a negative sentiment score!

Table: Text Data

	the	great	fox	loves	lazy	dog	sleeps	all	day
1	2	1	1	1	1	1	0	0	0
2	1	0	0	0	1	1	1	1	1

- Dictionary method has its limitations, hence we want to bring in human coders!
- Coders will be able to label the sentences for us:
 - Sentence 1: Positive
 - Sentence 2: Negative

• We use this info to train a prediction model:

Sentiment = $\beta_0 + \beta_1 \cdot \text{the} + \beta_1 \cdot \text{great} + \beta_1 \cdot \text{fox} + \dots + \epsilon$

• We use this info to train a prediction model:

Sentiment = $\beta_0 + \beta_1 \cdot \text{the} + \beta_1 \cdot \text{great} + \beta_1 \cdot \text{fox} + \dots + \epsilon$

• We input the count of each word as the value of the variable.

• We use this info to train a prediction model:

 $\mathsf{Sentiment} = \beta_0 + \beta_1 \cdot \mathsf{the} + \beta_1 \cdot \mathsf{great} + \beta_1 \cdot \mathsf{fox} + \dots + \epsilon$

- We input the count of each word as the value of the variable.
- Say now we have a new sentence: The lazy dog loves his owner.

• We use this info to train a prediction model:

Sentiment = $\beta_0 + \beta_1 \cdot \text{the} + \beta_1 \cdot \text{great} + \beta_1 \cdot \text{fox} + \dots + \epsilon$

- We input the count of each word as the value of the variable.
- Say now we have a new sentence: The lazy dog loves his owner.

	the	great	fox	loves	lazy	dog	sleeps	all	day
1	1	0	0	1	1	1	0	0	0

First, we tokenize and vectorize it:

• We use this info to train a prediction model:

First, we tokenize and vectorize it:

Sentiment = $\beta_0 + \beta_1 \cdot \text{the} + \beta_1 \cdot \text{great} + \beta_1 \cdot \text{fox} + \dots + \epsilon$

- We input the count of each word as the value of the variable.
- Say now we have a new sentence: The lazy dog loves his owner.

	the	great	fox	loves	lazy	dog	sleeps	all	day
1	1	0	0	1	1	1	0	0	0

Then, we use the trained model to predict the sentiment of it by plugging in values for the variables.

• Real world text data contains thousands of unique vocabularies.

- Real world text data contains thousands of unique vocabularies.
- Some of the words are not useful in predicting sentiments.
 → the, is, and

- Real world text data contains thousands of unique vocabularies.
- Some of the words are not useful in predicting sentiments.
 → the, is, and
- We can use Lasso to select variables for the following model:

Sentiment = $\beta_0 + \beta_1 \cdot \text{the} + \beta_1 \cdot \text{great} + \beta_1 \cdot \text{fox} + \dots + \epsilon$

- Real world text data contains thousands of unique vocabularies.
- Some of the words are not useful in predicting sentiments. \rightsquigarrow the, is, and
- We can use Lasso to select variables for the following model:

Sentiment = $\beta_0 + \beta_1 \cdot \text{the} + \beta_1 \cdot \text{great} + \beta_1 \cdot \text{fox} + \dots + \epsilon$

 Lasso will select for us the variables (vocabularies) with a substantively large enough coefficient in predicting the sentiment.

- Human coders understand better the context of the words.
- Supervised learning is more costly and slower.
- Models cannot work with new vocabularies that are not covered in the training data.
 - ► The lazy dog loves his owner.

Limitations of the Bag-of-Words Model

- The bag-of-words model has several limitations, including:
 - It ignores the order and structure of words in a sentence, which can result in the loss of important information
 - It treats all words as equally important, even though some words may be more informative than others
 - It does not capture the meaning of words, only their frequency in a text
- Despite these limitations, the bag-of-words model is still a useful and widely used approach to analyze textual data

N-gram Tokenization

• We want to preserve the order and structure better.

N-gram Tokenization

- We want to preserve the order and structure better.
- Take bi-gram as an example:

It is not very bad.

 \rightsquigarrow It is, is not, not very, very bad.

N-gram Tokenization

- We want to preserve the order and structure better.
- Take bi-gram as an example:

It is not very bad.

 \rightsquigarrow It is, is not, not very, very bad.

• Then let's go with tri-gram:

It is not very bad.

 \rightsquigarrow It is not, is not very, not very bad.

Common Practices

- Pre-processing
 - Get rid of the most / least frequent words.
 - Stemming of the words.
- Pre-processing decisions have profound effects on the results of real models for real data. (Denny and Spirling, 2018, Political Analysis)

Bag-of-Words Model

- Vectorization of words is the foundation of all most all text analysis methods.
- We will try a simple text analysis together on Thursday.
- We will discuss un-supervised learning next week.

We don't have an outcome variable of interest, but just to summarize the text data.