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Final Project Poster

e More info on course website: poster samples and resources.

e Gov 51 final poster session will happen on 4/23 Tuesday usual
class time, with light refreshment

e Workshop on 4/4 (attendance is required, contents are optional)
| will record myself for a 40 min coding session.
James will give a lecture on regression discontinuity in person.

RD is widely applied and will be super super super helpful for final
project and / or thesis.
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A New Source of Data

e Measuring agenda setting in interactive political communication
(Rossiter, 2022)
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e Within interactions, such as debates, deliberations, and
discussions, actors can set the agenda by shifting others' attention
to their preferred topics.

With non-text data, we can (maybe) study it by variables such as
speaking duration in a debate, votes and etc.
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A New Source of Data

e Measuring agenda setting in interactive political communication
(Rossiter, 2022)

e Within interactions, such as debates, deliberations, and
discussions, actors can set the agenda by shifting others’ attention
to their preferred topics.

With non-text data, we can (maybe) study it by variables such as
speaking duration in a debate, votes and etc.

e By analyzing the transcript of debates, we can locate where topic
shifts occur within an interaction in order to measure the relative
agenda-setting power of actors.

e Successfully setting the agenda can shape an interaction's
outcomes.
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Example from 2016 Presidential Debate

Holt: We are at—we are at the final question.
Clinton: Well, one thing. One thing, Lester.
Holt: Very quickly, because we're at the final question now.

Clinton: You know, he tried to switch from looks to stamina. But this
is a man who has called women pigs, slobs and dogs, and someone who
has said pregnancy is an inconvenience to employers, who has said...
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Intuition Behind the Method

e Data generating process of texts:

We have a topic in mind, which determines the probability
distribution of vocabularies. And to speak, we randomly draw
words from the vocabularies with such probabilities.
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Good, Bad, Temperature, Warm.
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e If we believe in such generating process, we will be able to back
off each topics from the transcripts.
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Intuition Behind the Method

e Data generating process of texts:

We have a topic in mind, which determines the probability
distribution of vocabularies. And to speak, we randomly draw
words from the vocabularies with such probabilities.

» Food: Pasta (high probability), Coke (high probability), Rain,
Good, Bad, Temperature, Warm.

» Weather: Pasta, Coke, Rain (high probability), Good, Bad,
Temperature (high probability), Warm.

e If we believe in such generating process, we will be able to back
off each topics from the transcripts.

e Then, author was able to measure topic changes throughout the
document.
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Candidates Behave Differently

Clarifying candidates tend to switch to economic topics.

Figure: Left: All turns; Right: Topic changing turns
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Does public opinion affect political speech?

e Does public opinion affect: (Hager and Hilbig, 2020, AJPS)
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Does public opinion affect political speech?

e Does public opinion affect: (Hager and Hilbig, 2020, AJPS)
» what topics politicians address
» what positions they endorse

e German government declassified public opinion research to its
cabinet members.

e Linguistic similarity as a measure of congruence

e Exposure to public opinion research leads politicians to markedly
change their speech
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Does public opinion affect political speech?

e Cosine similarity to measure linguistic similarity.

» We will support labor unions.
» Labor unions should be supported.

e Model:
Cosine Sim = By + (1 - Exposure + X + €

e More details + a very smart RD design. Take a look at the paper
if interested!
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Exposure Leads to Higher Similarity

Figure: Speeches follow public opinion.

Cosine Similarity

(1) (2)
*k *k
Exposure 0.0137 0.0128
(0.0066) (0.0057)
Covariates Mo Yes
Observations 5,684 5,684
Mean of DV 0.1263
SD of DV 0.0976
Effect size in SD 0.1413 01319
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The Bag-of-Words Model

e To achieve above studies, we need to transform text data into
something simpler.
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The Bag-of-Words Model

e To achieve above studies, we need to transform text data into
something simpler.

e The bag-of-words model is a simple and widely used approach to
analyze textual data

e The bag-of-words model represents a text as a collection of
words, ignoring the order and structure of the sentences

e Assumption: the frequency of words in a text can provide valuable
information about the content of the text
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How the Bag-of-Words Model Works

e The bag-of-words model involves the following steps:
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How the Bag-of-Words Model Works

e The bag-of-words model involves the following steps:

1. Tokenization: dividing a text into individual words or tokens
2. Counting: counting the frequency of each word in the text

3. Vectorization: representing the text as a vector of word frequencies

Gov 51, Spring 2024 Bag of Words 11 /24



Example of Bag-of-Words Model
e Suppose we have the following two sentences:

» Sentence 1: The great fox loves the lazy dog
» Sentence 2: The lazy dog sleeps all day
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Example of Bag-of-Words Model

e Suppose we have the following two sentences:

» Sentence 1: The great fox loves the lazy dog
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e The bag-of-words representation of these two sentences would be:
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1]2 1 1 1 1 1 0 0 0
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Example of Bag-of-Words Model

e Suppose we have the following two sentences:

» Sentence 1: The great fox loves the lazy dog
» Sentence 2: The lazy dog sleeps all day

e The bag-of-words representation of these two sentences would be:

the great fox loves lazy dog sleeps all day

1]2 1 1 1 1 1 0 0 0

2|1 0 0 0 1 1 1 1 1

e End up with a N (number of documents) by P (unique
vocabulary) document term matrix.

Gov 51, Spring 2024 Bag of Words 12 /24



Applications of the Bag-of-Words Model

e The bag-of-words model can be used for a variety of applications
such as
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Applications of the Bag-of-Words Model

e The bag-of-words model can be used for a variety of applications
such as

» Topic modeling: identifying the topics or themes present in a
collection of texts

» Sentiment analysis: determining the sentiment of a text, such as
positive or negative

» Text classification: classifying a text into predefined categories
based on its content
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Sentiment Analysis: Dictionary Method

Table: Text Data

the great fox loves lazy dog sleeps all day

12 1 1 1 1 1 0 0 0

2|1 0 0 0 1 1 1 1 1

e Imagine a dictionary with following words and labels.
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Table: Text Data
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Sentiment Analysis: Dictionary Method

Table: Text Data

the great fox loves lazy dog sleeps all day

12 1 1 1 1 1 0 0 0

e Imagine a dictionary with following words and labels.

» Positive: great, love
> Negative: lazy

» Neutral: rest of the words.
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Sentiment Analysis: Dictionary Method

Table: Text Data

the great fox loves lazy dog sleeps all day

e Imagine a dictionary with following words and labels.

» Positive: great, love
> Negative: lazy
» Neutral: rest of the words.

e We can calculate sentiment score for each sentence above.
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Sentiment Analysis: Dictionary Method

Table: Text Data

the great fox loves lazy dog sleeps all day

1|2 1 1 1 1 1 0 0 0

2|1 0 0 0 1 1 1 1 1

e Sentence 1: 1x1+1x1+(-1)*x1=1
e Sentence 2: (—1)*x1=—1
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Sentiment Analysis: Dictionary Method

e Sentence 1 is more positive than sentence 2.
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e Sentence 1 is more positive than sentence 2.

e Dictionary method is cheap and fast. (more to come on
Thursday)
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Sentiment Analysis: Dictionary Method

e Sentence 1 is more positive than sentence 2.

e Dictionary method is cheap and fast. (more to come on
Thursday)

e Weighing every word equally.

unimpressive, bad, terrible, bizarre.
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Sentiment Analysis: Dictionary Method

e Sentence 1 is more positive than sentence 2.

e Dictionary method is cheap and fast. (more to come on
Thursday)

e Weighing every word equally.
unimpressive, bad, terrible, bizarre.

e We lose the order and structure of sentences.
It is not bad.

~ will have a negative sentiment score!
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Sentiment Analysis: Supervised Learning

Table: Text Data

the great fox loves lazy dog sleeps all day
112 1 1 1 1 1 0 0 0
2|1 0 0 0 1 1 1 1 1

e Dictionary method has its limitations, hence we want to bring in
human coders!

e Coders will be able to label the sentences for us:

» Sentence 1: Positive

» Sentence 2: Negative
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Sentiment Analysis: Supervised Learning

e We use this info to train a prediction model:

Sentiment = By + 31 - the + 51 - great + 81 - fox+ -+ - + ¢
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e We use this info to train a prediction model:
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Sentiment Analysis: Supervised Learning

e We use this info to train a prediction model:
Sentiment = [y + 31 - the + (51 - great + 31 - fox + -+ - + €
e We input the count of each word as the value of the variable.

e Say now we have a new sentence: The lazy dog loves his owner.

> First, we tokenize and vectorize it:

the great fox loves lazy dog sleeps all day

1|1 0 0 1 1 1 0 0 0

» Then, we use the trained model to predict the sentiment of it by
plugging in values for the variables.
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Sentiment Analysis: Supervised Learning

e Real world text data contains thousands of unique vocabularies.
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Sentiment Analysis: Supervised Learning

e Real world text data contains thousands of unique vocabularies.
e Some of the words are not useful in predicting sentiments.
~ the, is, and ....

e We can use Lasso to select variables for the following model:

Sentiment = By + (1 - the + (1 - great + 31 - fox + - -+ + €
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Sentiment Analysis: Supervised Learning

e Real world text data contains thousands of unique vocabularies.
e Some of the words are not useful in predicting sentiments.
~ the, is, and ....

e We can use Lasso to select variables for the following model:
Sentiment = By + (1 - the + (1 - great + 31 - fox + - -+ + €

e Lasso will select for us the variables (vocabularies) with a
substantively large enough coefficient in predicting the sentiment.
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Sentiment Analysis: Supervised Learning

e Human coders understand better the context of the words.
e Supervised learning is more costly and slower.

e Models cannot work with new vocabularies that are not covered
in the training data.

» The lazy dog loves his owner.
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Limitations of the Bag-of-Words Model

e The bag-of-words model has several limitations, including:

» |t ignores the order and structure of words in a sentence, which
can result in the loss of important information

» |t treats all words as equally important, even though some words
may be more informative than others

» |t does not capture the meaning of words, only their frequency in a
text

e Despite these limitations, the bag-of-words model is still a useful
and widely used approach to analyze textual data
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N-gram Tokenization

e We want to preserve the order and structure better.
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e We want to preserve the order and structure better.
e Take bi-gram as an example:
It is not very bad.

~> It is, is not, not very, very bad.
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N-gram Tokenization

e We want to preserve the order and structure better.
e Take bi-gram as an example:
It is not very bad.

~> It is, is not, not very, very bad.

e Then let’'s go with tri-gram:
It is not very bad.

~> It is not, is not very, not very bad.
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Common Practices

e Pre-processing
» Get rid of the most / least frequent words.
» Stemming of the words.

e Pre-processing decisions have profound effects on the results of
real models for real data. (Denny and Spirling, 2018, Political
Analysis)
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Bag-of-Words Model

e Vectorization of words is the foundation of all most all text
analysis methods.

o We will try a simple text analysis together on Thursday.
e We will discuss un-supervised learning next week.

We don’t have an outcome variable of interest, but just to
summarize the text data.
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