Lecture 2: Reviews on DID

Naijia Liu

Jan 25, 2024

Figure: Please fill out our section survey, if you are under the "TBA" section, or wish to switch sections.

Difference in Difference

- Before and after difference of control group to infer what would have happened to treatment group without treatment.

Difference in Difference

- Before and after difference of control group to infer what would have happened to treatment group without treatment.
- We want to estimate:

$$
\underbrace{\left(\bar{Y}_{\text {treated }}^{\text {after }}-\bar{Y}_{\text {treated }}^{\text {before }}\right)}_{\text {trend in treated group }}-\underbrace{\left(\bar{Y}_{\text {control }}^{\text {after }}-\bar{Y}_{\text {control }}^{\text {before }}\right)}_{\text {trend in control group }}
$$

Parallel Trend

Parallel Trend

Assumption

$$
\mathbb{E}\left(Y_{i 1}(0)-Y_{i 0}(1) \mid T_{i}=1\right)=\mathbb{E}\left(Y_{i 1}(0)-Y_{i 0}(0) \mid T_{i}=0\right)
$$

treated and control group will share same difference, if the treated were not to be treated at $t=1$.

Parallel Trend

Assumption

$$
\mathbb{E}\left(Y_{i 1}(0)-Y_{i 0}(1) \mid T_{i}=1\right)=\mathbb{E}\left(Y_{i 1}(0)-Y_{i 0}(0) \mid T_{i}=0\right)
$$

treated and control group will share same difference, if the treated were not to be treated at $t=1$.

We are interested in:

$$
\mathbb{E}\left(Y_{i 1}(1)-Y_{i 1}(0) \mid T_{i}=1\right)
$$

For the treated at $t=1$, what if they were not treated?

Proof

$$
\mathbb{E}\left(Y_{i 1}(0)-Y_{i 0}(1) \mid T_{i}=1\right)=\mathbb{E}\left(Y_{i 1}(0)-Y_{i 0}(0) \mid T_{i}=0\right) ; \quad(A s s n)
$$

Proof

$\mathbb{E}\left(Y_{i 1}(0)-Y_{i 0}(1) \mid T_{i}=1\right)=\mathbb{E}\left(Y_{i 1}(0)-Y_{i 0}(0) \mid T_{i}=0\right) ; \quad(A s s n)$
$\mathbb{E}\left(Y_{i 0}(1)-Y_{i 1}(0) \mid T_{i}=1\right)=\mathbb{E}\left(Y_{i 0}(0)-Y_{i 1}(0) \mid T_{i}=0\right) ; \quad(\times-1)$

Proof

$\mathbb{E}\left(Y_{i 1}(0)-Y_{i 0}(1) \mid T_{i}=1\right)=\mathbb{E}\left(Y_{i 1}(0)-Y_{i 0}(0) \mid T_{i}=0\right) ; \quad($ Assn $)$
$\mathbb{E}\left(Y_{i 0}(1)-Y_{i 1}(0) \mid T_{i}=1\right)=\mathbb{E}\left(Y_{i 0}(0)-Y_{i 1}(0) \mid T_{i}=0\right) ; \quad(\times-1)$
$\mathbb{E}\left(-Y_{i 1}(0) \mid T_{i}=1\right)=\mathbb{E}\left(-Y_{i 0}(1) \mid T_{i}=1\right)$

$$
+\mathbb{E}\left(Y_{i 0}(0)-Y_{i 1}(0) \mid T_{i}=0\right) ;
$$

(move $Y_{i 0}(1)$)

Proof

$\mathbb{E}\left(Y_{i 1}(0)-Y_{i 0}(1) \mid T_{i}=1\right)=\mathbb{E}\left(Y_{i 1}(0)-Y_{i 0}(0) \mid T_{i}=0\right) ; \quad($ Assn $)$
$\mathbb{E}\left(Y_{i 0}(1)-Y_{i 1}(0) \mid T_{i}=1\right)=\mathbb{E}\left(Y_{i 0}(0)-Y_{i 1}(0) \mid T_{i}=0\right) ; \quad(\times-1)$
$\mathbb{E}\left(-Y_{i 1}(0) \mid T_{i}=1\right)=\mathbb{E}\left(-Y_{i 0}(1) \mid T_{i}=1\right)$

$$
+\mathbb{E}\left(Y_{i 0}(0)-Y_{i 1}(0) \mid T_{i}=0\right)
$$

(move $Y_{i 0}(1)$)
$\mathbb{E}\left(Y_{i 1}(1)-Y_{i 1}(0) \mid T_{i}=1\right)=\mathbb{E}\left(Y_{i 1}(1)-Y_{i 0}(1) \mid T_{i}=1\right)$

$$
+\mathbb{E}\left(Y_{i 0}(0)-Y_{i 1}(0) \mid T_{i}=0\right) ;
$$

$\left(a d d Y_{i 1}(1)\right)$

Proof

$\mathbb{E}\left(Y_{i 1}(0)-Y_{i 0}(1) \mid T_{i}=1\right)=\mathbb{E}\left(Y_{i 1}(0)-Y_{i 0}(0) \mid T_{i}=0\right) ; \quad($ Assn $)$
$\mathbb{E}\left(Y_{i 0}(1)-Y_{i 1}(0) \mid T_{i}=1\right)=\mathbb{E}\left(Y_{i 0}(0)-Y_{i 1}(0) \mid T_{i}=0\right) ; \quad(\times-1)$
$\mathbb{E}\left(-Y_{i 1}(0) \mid T_{i}=1\right)=\mathbb{E}\left(-Y_{i 0}(1) \mid T_{i}=1\right)$

$$
+\mathbb{E}\left(Y_{i 0}(0)-Y_{i 1}(0) \mid T_{i}=0\right)
$$

(move $\left.Y_{i 0}(1)\right)$
$\mathbb{E}\left(Y_{i 1}(1)-Y_{i 1}(0) \mid T_{i}=1\right)=\mathbb{E}\left(Y_{i 1}(1)-Y_{i 0}(1) \mid T_{i}=1\right)$

$$
+\mathbb{E}\left(Y_{i 0}(0)-Y_{i 1}(0) \mid T_{i}=0\right) ;
$$

(add $\left.Y_{i 1}(1)\right)$
$\mathbb{E}\left(Y_{i 1}(1)-Y_{i 1}(0) \mid T_{i}=1\right)=$
$\underbrace{\mathbb{E}\left(Y_{i 1}(1)-Y_{i 0}(1) \mid T_{i}=1\right)-\mathbb{E}\left(Y_{i 1}(0)-Y_{i 0}(0) \mid T_{i}=0\right) ;}$
Difference in Difference estimator that we can obtain from data

