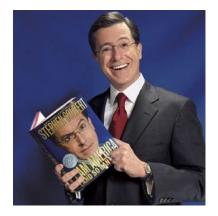
Lecture 5: Matching

Naijia Liu

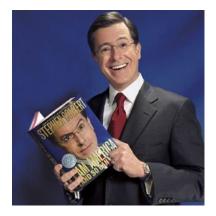
Feb. 6, 2024

Donation and Stephen Colbert



• **Colbert Bump**: Does a legislator's appearance on Stephen's show cause an increase in donations?

Donation and Stephen Colbert



- **Colbert Bump**: Does a legislator's appearance on Stephen's show cause an increase in donations?
- Appearances are not random.

Example: The Colbert Effect

- Does appearing on the Colbert Report cause an increase in donations? (Fowler, 2008)
- Colbert selects certain kinds of representatives.
- Potential ways to identify a **causal** effect:

Example: The Colbert Effect

- Does appearing on the Colbert Report cause an increase in donations? (Fowler, 2008)
- Colbert selects certain kinds of representatives.
- Potential ways to identify a **causal** effect:
 - Experiment: Randomly draw names to appear on the show.
 - DID: Assume parallel trend between selected and those who were left out.
 - ► IV: ???

Can we create a counterfactual case?

- Say Obama was invited to the show before 2008 election.
- We are interested in Colbert effect on Obama: what if he was not invited?
- A clone of Obama: **same** in every other aspects but the Colbert show appearance.

Can we create a counterfactual case?

- Say Obama was invited to the show before 2008 election.
- We are interested in Colbert effect on Obama: what if he was not invited?
- A clone of Obama: **same** in every other aspects but the Colbert show appearance.
- Same exercise for every other representative who appeared on the show.

$$\frac{\sum_{i}^{N} Y_{i}(\mathsf{Appeared})}{N} - \frac{\sum_{i}^{N} Y_{i}(\mathsf{Cloned})}{N}$$

Notation

- Treatment: T_i
- Potential Outcome: $Y_i(T_i)$
- Covariate: X_i

For now we only consider pre-treatment covariates, such as gender, age, income.

	Pre-treatment	Treatment	Potential	Outcomes
Unit	Covariate	Indicator	Treated	Control
1				
2				
3				
4				
:				
$\stackrel{\cdot}{N}$				

	Pre-treatment	Treatment	Potential	Outcomes
Unit	Covariate	Indicator	Treated	Control
1				
2				
3				
4				
:				
$\stackrel{\cdot}{N}$				

	Pre-treatment	Treatment	Potential	Outcomes
Unit	Covariate	Indicator	Treated	Control
1	X_1			
2	X_2			
3	X_3			
4	X_4			
:	:			
Ň	$\dot{X_N}$			

Eg: Gender of the Reps

	Pre-treatment	Treatment	Potential	Outcomes
Unit	Covariate	Indicator	Treated	Control
1	X_1	1		
2	X_2	0		
3	X_3	0		
4	X_4	1		
÷	÷			
N	X_N	1		

Appeared on the show: 1

	Pre-treatment	Treatment	Potential	Outcomes
Unit	Covariate	Indicator	Treated	Control
1	X_1	1	$Y_1(1)$	
2	X_2	0	?	
3	X_3	0	?	
4	X_4	1	$Y_4(1)$	
÷	:	÷	÷	
N	X_N	1	$Y_N(1)$	

Donation amount for those who appeared on the show.

	Pre-treatment	Treatment	Potential	Outcomes
Unit	Covariate	Indicator	Treated	Control
1	X_1	1	$Y_1(1)$?
2	X_2	0	?	$Y_{2}(0)$
3	X_3	0	?	$Y_{3}(0)$
4	X_4	1	$Y_4(1)$?
÷	:	:	÷	÷
N	X_N	1	$Y_N(1)$?

Donation amount for those who did not appear on the show.

Matching to Better Approximate Counterfactuals

• Instead of clones, we can find similar **matches** of those who appeared on the show.

Matching to Better Approximate Counterfactuals

- Instead of clones, we can find similar **matches** of those who appeared on the show.
- Authors matched on incumbency, party, and donations in the previous 20 days.
- Potential concerns?

More Notations

• Potential Outcome of the matched: $Y_i^M(T_i)$

The donation amount of the clone we found for representative i.

• Covariate of the matched: X_i^M

Gender the clone we found for representative i.

Start with all those who appeared on the show.

	Pre-treatment Covariates	Treatment	Observed	l Outcomes
Unit	Treated	Indicator	Treated	Matched
1	$X_1,$	1		
2	$X_2,$	1		
3	$X_3,$	1		
4	$X_4,$	1		
÷	:	:	÷	÷
N	$X_N,$	1		

Find matches among those who did not appear.

	Pre-treatment Covariates	Treatment	Observed	l Outcomes
Unit	Treated	Indicator	Treated	Matched
1	X_1, X_1^M	1 , 0		
2	$X_2, \mathbf{X_2^M}$	1 , 0		
3	X_{3}, X_{3}^{M}	1 , 0		
4	$X_4, \mathbf{X_4^M}$	1 , 0		
÷	:		÷	:
N	$X_N, \mathbf{X_N^M}$	1 , 0		

	Pre-treatment Covariates	Treatment	Observed	l Outcomes
Unit	Treated, Matched	Indicator	Treated	Matched
1	X_1, X_1^M	1, 0	$Y_1(1)$	$Y_1^M(0)$
2	$X_2, \mathbf{X_2^M}$	1, 0	$Y_{1}(1)$	$Y_{2}^{M}(0)$
3	$X_{3}, \ \mathbf{X_{3}^{M}}$	1, 0	$Y_{1}(1)$	$Y_{3}^{M}(0)$
4	$X_4, \mathbf{X_4^M}$	1, 0	$Y_{1}(1)$	$Y_4^{M}(0)$
:	:	:	:	
N	$X_N, \mathbf{X_N^M}$	1, 0	$Y_N(1)$	$Y_N^M(0)$

	Pre-treatment Covariates	Treatment	Observed	Outcomes
Unit	Treated, Matched	Indicator	Treated	Matched
1	X_1, X_1^M	1, 0	$Y_1(1)$	$Y_1^M(0)$
2	$X_2, \mathbf{X_2^M}$	1, 0	$Y_{1}(1)$	$Y_2^M(0)$
3	$X_3, \mathbf{X_3^M}$	1, 0	$Y_{1}(1)$	$Y_{3}^{M}(0)$
4	$X_4, \mathbf{X_4^M}$	1, 0	$Y_{1}(1)$	$Y_4^M(0)$
:	÷	÷	:	÷
N	$X_N, \mathbf{X_N^M}$	1, 0	$Y_N(1)$	$Y_N^M(0)$

Matching gives the Average Treatment Effect on the Treated (ATT)

	Pre-treatment Covariates	Treatment	Observed	Outcomes
Unit	Treated, Matched	Indicator	Treated	Matched
1	X_1, X_1^M	1, 0	$Y_1(1)$	$Y_1^M(0)$
2	$X_2, \ \mathbf{X_2^M}$	1, 0	$Y_{1}(1)$	$Y_2^M(0)$
3	$X_3, \mathbf{X_3^M}$	1, 0	$Y_{1}(1)$	$Y_{3}^{M}(0)$
4	$X_4, \mathbf{X_4^M}$	1, 0	$Y_{1}(1)$	$Y_4^M(0)$
÷	:	-	:	:
N	$X_N, \mathbf{X_N^M}$	1, 0	$Y_N(1)$	$Y_N^M(0)$

Matching gives the Average Treatment Effect on the Treated (ATT) Becase we used the "clones" for those treated.

When Does Matching Work?

The argument with matching:

• If $X_i \approx \mathbf{X_i^M}$, then $Y_i(0) \approx \mathbf{Y_i^M}(\mathbf{0})$

When Does Matching Work?

The argument with matching:

- If $X_i \approx \mathbf{X_i^M}$, then $Y_i(0) \approx \mathbf{Y_i^M}(\mathbf{0})$
- To estimate the treatment effect

$$\frac{1}{N}\sum_{i=1}^{N} \left\{ Y_{i}(1) - \underbrace{Y_{i}(0)}_{\text{Unobserved}} \right\} \approx \frac{1}{N}\sum_{i=1}^{N} \left\{ Y_{i}(1) - \mathbf{Y}_{i}^{\mathbf{M}}(\mathbf{0}) \right\}$$

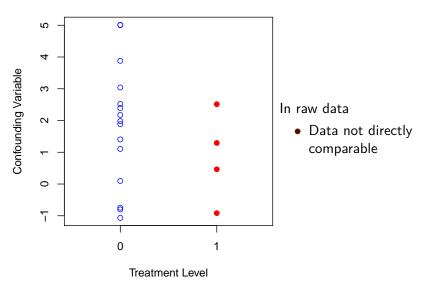
Since attendance on the Report is not fully at random

- Estimate the counterfactual with the matched subset of the data
- May not work exactly for each observation; may work on average over the matched subset

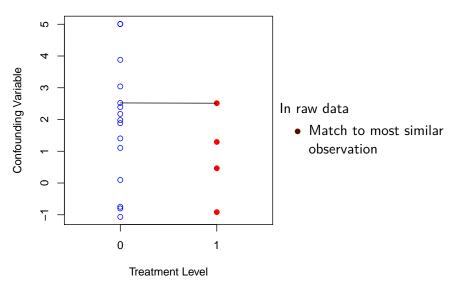
• Exact Match

- Exact Match
- Obama: African American, Democrats, in his 40s, male, law degree, married.
- Matched representative for Obama: African American, Democrats, in his 40s, male, law degree, married.

Matching on a Single Variable



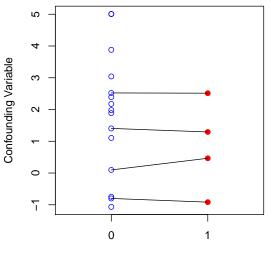
Matching on a Single Variable



Gov 51, Spring 2024

Concepts

Matching on a Single Variable



Treatment Level

In raw data

- Match to most similar observation
- Repeat
- Compare outcomes in matched subset

Gov 51, Spring 2024

Concepts

Exact Matching

• Almost perfect clones for the treated group.

Exact Matching

- Almost perfect clones for the treated group.
- Relies heavily on data quality.

Almost impossible to find a clone Obama in reality.

• Distance Matching

• Distance Matching

Definition of distance under a multivariate context.
Absolute value distance
Mahalanobis distance matching

• Distance Matching

Definition of distance under a multivariate context.
Absolute value distance

Mahalanobis distance matching

Pick a threshold

• Distance Matching

Definition of distance under a multivariate context.

Absolute value distance

Mahalanobis distance matching

- Pick a threshold
- Matched if the distance between treated unit and control unit is less or equal to the threshold.

Distance Matching

Unit	GPA	Age	Treatment
1	3	21	1
2	3.3	19	0
3	2.9	17	0

Absolute Distance Matching

• Distance between unit 1 and 2:

$$|3 - 3.3| + |21 - 19| = 0.3 + 2 = 2.3$$

• Distance between unit 1 and 3:

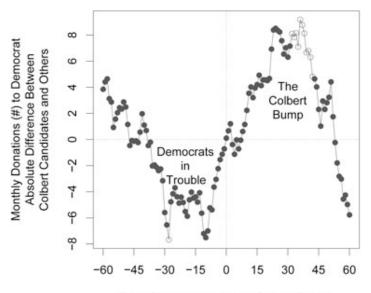
$$|3 - 2.9| + |21 - 17| = 0.1 + 4 = 4.1$$

• Unit 2 is a better match than unit 3.

Distance Matching

- More flexibility in finding matched units.
- What is the optimal distance measure + threshold?
 - Absolute distance is sensitive to outlier variables.
 - Mahalanobis distance is more well-utilized.

The Colbert Bounce?



Days Since Appearing on Colbert Report

Concepts

Assumptions

• Probabilistic treatment: Not deterministic that you will (or will never) be invited to the show.

$$0 < \Pr(T_i = 1 | X_i) < 1$$

See more of these reviews for lecture 1 slides.

Assumptions

• Probabilistic treatment: Not deterministic that you will (or will never) be invited to the show.

$$0 < \Pr(T_i = 1 | X_i) < 1$$

• Ignorability: If we were to know all covariates of candidates, invitation is almost randomly sent.

 $Y_i(1), Y_i(0) \perp T_i | X_i$

See more of these reviews for lecture 1 slides.

Assumptions

• Probabilistic treatment: Not deterministic that you will (or will never) be invited to the show.

$$0 < \Pr(T_i = 1 | X_i) < 1$$

• Ignorability: If we were to know all covariates of candidates, invitation is almost randomly sent.

$$Y_i(1), Y_i(0) \perp T_i | X_i$$

• SUTVA: Other people's donation does not affect your donation amount. One single version of treatment level.

$$Y_i(T_i, Y_i(T'_i)) = Y_i(T_i) \quad \forall i \neq i'$$

$$Y_i(T_i) = Y_i(T'_i) \text{ if } T_i = T'_i$$

See more of these reviews for lecture 1 slides.

Identifying assumptions

 Valid matched set: On average, donation for those invited would have been the same to those in the matched set (not invited), if they were not invited.

$$\underbrace{\mathbb{E}(Y_i(0)|T_i=1)}_{\text{unobserved}} = \mathbb{E}(Y_i(0)|T_i=0, i \in \mathcal{M})$$

More on Assumptions

• Critique on above assumptions.

More on Assumptions

- Critique on above assumptions.
 - What if observables are not enough?

Aside from incumbency, party, previous donations, what are other variables that might matter?

More on Assumptions

- Critique on above assumptions.
 - What if observables are not enough?

Aside from incumbency, party, previous donations, what are other variables that might matter?

Mediators?

Next Lecture