#### **Lecture 7: Regression**

Naijia Liu

Feb. 13, 2024

#### **Questions?**

P-set I due on Thursday 11:59pm.

Utilize OHs and Slack channel.

Tidyverse and base R both fine!

We only accept compiled rmd filds and pdf!

• Review of OLS linear regression.

- · Review of OLS linear regression.
- In the view of DID, IV and Matching.

- Review of OLS linear regression.
- In the view of DID, IV and Matching.
- Variable selection using penalization.

- Review of OLS linear regression.
- In the view of DID, IV and Matching.
- Variable selection using penalization.
- Heterogenous treatment effect using penalized regression.

#### **Notations**

- Yi: Outcome Variable / Dependent Variable
- X<sub>i</sub>: Independent Variables
- β: Coefficient for IVs
- $\beta_0$ : Coefficient for Intercept
- $\epsilon_i$ : Error term

## **Linear Regression: A Model for the Mean**

Assume a model for an observed simple random sample  $Y_i$ :

$$Y_i = \beta_0 + \epsilon_i$$
Outcome Mean or intercept Residual, error term

# **Linear Regression: A Model for the Mean**

Assume a model for an observed simple random sample  $Y_i$ :

$$Y_i = \beta_0 + \epsilon_i$$
Outcome Mean or intercept Residual, error term

How to choose  $\widehat{\beta}_0$ ?

$$\widehat{\beta}_0 = \operatorname*{argmin}_{\widetilde{\beta}_0} \mathcal{L}\left(\widetilde{\beta}_0\right)$$

We want  $\widehat{\beta}_0$  to be the one to minimize some type of error, in predicting  $Y_i$ .

And  $\mathcal{L}\left(\widetilde{\beta}_{0}\right)$  is a loss function.

## **Commonly Encountered Loss Functions**

 Criterion of Least Squares (OLS): We want to minimize the sum of squared error between true data and our predictions.

$$\widehat{\beta}_0 = \underset{\widetilde{\beta}_0}{\operatorname{argmin}} \sum_{i=1}^N \left( Y_i - \widetilde{\beta}_0 \right)^2$$

## **Commonly Encountered Loss Functions**

 Criterion of Least Squares (OLS): We want to minimize the sum of squared error between true data and our predictions.

$$\widehat{\beta}_0 = \underset{\widetilde{\beta}_0}{\operatorname{argmin}} \sum_{i=1}^N \left( Y_i - \widetilde{\beta}_0 \right)^2$$

 Criteron of Least Absolute Deviation: We want to minimize the sum of absolute error between true data and our predictions.

$$\widehat{\beta}_0 = \underset{\widetilde{\beta}_0}{\operatorname{argmin}} \sum_{i=1}^N |Y_i - \widetilde{\beta}_0|$$

## **Commonly Encountered Loss Functions**

 Criterion of Least Squares (OLS): We want to minimize the sum of squared error between true data and our predictions.

$$\widehat{\beta}_0 = \underset{\widetilde{\beta}_0}{\operatorname{argmin}} \sum_{i=1}^N \left( Y_i - \widetilde{\beta}_0 \right)^2$$

 Criteron of Least Absolute Deviation: We want to minimize the sum of absolute error between true data and our predictions.

$$\widehat{\beta}_0 = \underset{\widetilde{\beta}_0}{\operatorname{argmin}} \sum_{i=1}^N \left| Y_i - \widetilde{\beta}_0 \right|$$

 Penalized Least Squares: We want to minimize the sum of squared error between true data and our predictions, plus something else (later).

$$\widehat{\beta}_0 = \underset{\widetilde{\beta}_0}{\operatorname{argmin}} \sum_{i=1}^N \left( Y_i - \widetilde{\beta}_0 \right)^2 + \lambda \widetilde{\beta}_0^2$$

## **Review on Taking Derivatives**

For a function:

$$f(x) = (x+a)^2$$

The first derivative of it is:

$$f'(x) = \frac{d}{dx}f(x) = 2(x+a)$$

# **Review on Taking Derivatives**

For a function:

$$f(x) = (x+a)^2$$

The first derivative of it is:

$$f'(x) = \frac{d}{dx}f(x) = 2(x+a)$$

The second derivative of it is:

$$f''(x) = 2$$

## **Review on Taking Derivatives**

For a function:

$$f(x) = (x+a)^2$$

The first derivative of it is:

$$f'(x) = \frac{d}{dx}f(x) = 2(x+a)$$

The second derivative of it is:

$$f''(x) = 2$$

If we want to find the point that minimizes the function, we want to set first derivative to 0.

In this case we have:

$$x = -a$$

#### **OLS Solution**

$$\widehat{\beta}_0 = \operatorname*{argmin}_{\widetilde{\beta}_0} \sum_{i=1}^N \left( Y_i - \widetilde{\beta}_0 \right)^2$$

#### **OLS Solution**

$$\widehat{\beta}_0 = \operatorname*{argmin}_{\widetilde{\beta}_0} \sum_{i=1}^N \left( Y_i - \widetilde{\beta}_0 \right)^2$$

$$\Rightarrow \frac{\partial \mathcal{L}(\widetilde{\beta}_0)}{\partial \widetilde{\beta}_0} \bigg|_{\widetilde{\beta}_0 = \widehat{\beta}_0} = 0$$

$$\frac{\partial}{\partial \widetilde{\beta}_0} \sum_{i=1}^N \left( Y_i - \widetilde{\beta}_0 \right)^2 = 0$$

$$\sum_{i=1}^N \frac{\partial}{\partial \widetilde{\beta}_0} \left( Y_i - \widetilde{\beta}_0 \right)^2 = 0$$

$$\sum_{i=1}^N -2 \cdot \left( Y_i - \widehat{\beta}_0 \right) = 0$$

#### **OLS Solution**

$$\widehat{\beta}_0 = \underset{\widetilde{\beta}_0}{\operatorname{argmin}} \sum_{i=1}^N \left( Y_i - \widetilde{\beta}_0 \right)^2$$

$$\Rightarrow \frac{\partial \mathcal{L}(\widetilde{\beta}_{0})}{\partial \widetilde{\beta}_{0}} \Big|_{\widetilde{\beta}_{0} = \widehat{\beta}_{0}} = 0$$

$$\sum_{i=1}^{N} \left( Y_{i} - \widehat{\beta}_{0} \right)^{2} = 0$$

$$\sum_{i=1}^{N} \frac{\partial}{\partial \widetilde{\beta}_{0}} \left( Y_{i} - \widetilde{\beta}_{0} \right)^{2} = 0$$

$$\sum_{i=1}^{N} Y_{i} = \sum_{i=1}^{N} \widehat{\beta}_{0}$$

$$\sum_{i=1}^{N} Y_{i} = N\widehat{\beta}_{0}$$

# **Least Absolute Deviation Solution (optional)**

$$\widehat{\beta}_0 = \underset{\widetilde{\beta}_0}{\operatorname{argmin}} \sum_{i=1}^N |Y_i - \widetilde{\beta}_0|$$

$$\Rightarrow \frac{\partial \mathcal{L}(\widetilde{\beta}_{0})}{\partial \widetilde{\beta}_{0}} \Big|_{\widetilde{\beta}_{0} = \widehat{\beta}_{0}} = 0 \qquad \qquad \sum_{i=1}^{N} \frac{\partial}{\partial \widetilde{\beta}_{0}} |Y_{i} - \widetilde{\beta}_{0}| = 0$$

$$\frac{\partial}{\partial \widetilde{\beta}_{0}} \left\{ \sum_{i=1}^{N} |Y_{i} - \widetilde{\beta}_{0}| \right\} = 0 \qquad \qquad \sum_{i=1}^{N} sgn(Y_{i} - \widehat{\beta}_{0}) = 0$$

$$\Rightarrow \widetilde{Y} = \widehat{\beta}_{0}$$

If we rank all observations from small to large:

$$Y_{(1)} = \min(Y_i); Y_{(N)} = \max(Y_i)$$

# **Least Absolute Deviation Solution (optional)**

$$\widehat{\beta}_0 = \underset{\widetilde{\beta}_0}{\operatorname{argmin}} \sum_{i=1}^N |Y_i - \widetilde{\beta}_0|$$

$$\Rightarrow \frac{\partial \mathcal{L}(\widetilde{\beta}_{0})}{\partial \widetilde{\beta}_{0}} \Big|_{\widetilde{\beta}_{0} = \widehat{\beta}_{0}} = 0 \qquad \sum_{i=1}^{N} \frac{\partial}{\partial \widetilde{\beta}_{0}} |Y_{i} - \widetilde{\beta}_{0}| = 0$$

$$\frac{\partial}{\partial \widetilde{\beta}_{0}} \left\{ \sum_{i=1}^{N} |Y_{i} - \widetilde{\beta}_{0}| \right\} = 0 \qquad \sum_{i=1}^{N} sgn(Y_{i} - \widehat{\beta}_{0}) = 0$$

$$\Rightarrow \widetilde{Y} = \widehat{\beta}_{0}$$

• If we rank all observations from small to large:

$$Y_{(1)} = \min(Y_i); Y_{(N)} = \max(Y_i)$$

• Median value of  $Y_i$ :  $Y_{(N+1)/2}$ .

# **Least Absolute Deviation Solution (optional)**

$$\widehat{\beta}_0 = \operatorname*{argmin}_{\widetilde{\beta}_0} \sum_{i=1}^N |Y_i - \widetilde{\beta}_0|$$

$$\Rightarrow \frac{\partial \mathcal{L}(\widetilde{\beta}_{0})}{\partial \widetilde{\beta}_{0}} \Big|_{\widetilde{\beta}_{0} = \widehat{\beta}_{0}} = 0 \qquad \qquad \sum_{i=1}^{N} \frac{\partial}{\partial \widetilde{\beta}_{0}} |Y_{i} - \widetilde{\beta}_{0}| = 0$$

$$\frac{\partial}{\partial \widetilde{\beta}_{0}} \left\{ \sum_{i=1}^{N} |Y_{i} - \widetilde{\beta}_{0}| \right\} = 0 \qquad \qquad \sum_{i=1}^{N} sgn(Y_{i} - \widehat{\beta}_{0}) = 0$$

$$\Rightarrow \widetilde{Y} = \widehat{\beta}_{0}$$

• If we rank all observations from small to large:

$$Y_{(1)} = \min(Y_i); Y_{(N)} = \max(Y_i)$$

- Median value of  $Y_i$ :  $Y_{(N+1)/2}$ .
- Median more robust to extreme values than mean.

#### A toy example

Five observations:

$$Y_1 = -2, Y_2 = -1, Y_3 = 0, Y_4 = 1, Y_5 = 2000$$

Mean as 399.6, median as 0



#### A toy example

Five observations:

$$Y_1 = -2, Y_2 = -1, Y_3 = 0, Y_4 = 1, Y_5 = 2000$$

Mean as 399.6, median as 0



#### A toy example

Five observations:

$$Y_1 = -2, Y_2 = -1, Y_3 = 0, Y_4 = 1, Y_5 = 2000$$

Mean as 399.6, median as 0



## **Linear Regression Model**

A model for a linear relationship between two variables

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- X: Independent (explanatory) variable
- Y: Dependent (outcome, response) variable
- $\epsilon$ : error (disturbance) term

## **Linear Regression Model**

A model for a linear relationship between two variables

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- *X*: Independent (explanatory) variable
- Y: Dependent (outcome, response) variable
- $\epsilon$ : error (disturbance) term
- Given a value of X, the model predicts the average of Y
- Abuse of regression: extrapolation, causal misinterpretation
   Correlation is not causation!

#### Regression

#### Regression analysis answers:

1. What is the **best** line that describes an outcome variable (aka dependent variable) in terms of an independent variable?

## Regression

#### Regression analysis answers:

- 1. What is the **best** line that describes an outcome variable (aka dependent variable) in terms of an independent variable?
- 2. Given a value of the independent variable, what is my best guess for the dependent variable?

## Regression

#### Regression analysis answers:

- 1. What is the **best** line that describes an outcome variable (aka dependent variable) in terms of an independent variable?
- 2. Given a value of the independent variable, what is my best guess for the dependent variable?
- 3. How close is the line to the data?

Loss function of choice

## **Estimating GDP**

Given GDP growth rate in 2007, how can we estimate GDP growth rate in 2008?

 Assume: GDP growth in 2008 is GDP growth in 2007 times a constant plus an intercept

$$Y_i = \beta_0 + \beta_1 X_i$$

## **Estimating GDP**

Given GDP growth rate in 2007, how can we estimate GDP growth rate in 2008?

 Assume: GDP growth in 2008 is GDP growth in 2007 times a constant plus an intercept

$$Y_i = \beta_0 + \beta_1 X_i$$

 Do we expect the coefficient estimate of GDP 2007 on GDP 2008 to be positive or negative?

#### **Which Line to Choose**





## How far is a point from the line?

The distance from one point to the line, called the residual





## How far are all of the points from the line?

The total distances from the data to the line (residuals)





# Determining the line of best fit

Determining the line of best fit (aka the line of least squares)

- Y<sub>i</sub>: 2008 GDP growth rate for country i
- X<sub>i</sub>: 2007 GDP growth rate for country i

GDP Growth Rates, 2007-2008



#### How far are all of the points from the line?

To allow for some difference between  $Y_i$  and  $\beta_0 + X_i\beta_1$ , we say

$$Y_i = \beta_0 + X_i \beta_1 + \epsilon_i$$

This is our assumed model

## How far are all of the points from the line?

To allow for some difference between  $Y_i$  and  $\beta_0 + X_i\beta_1$ , we say

$$Y_i = \beta_0 + X_i \beta_1 + \epsilon_i$$

This is our assumed model

After we see our data, we are going to estimate a model,

$$\widehat{Y}_i = \widehat{\beta}_0 + X_i \widehat{\beta}_1$$

This is our fitted model or estimated model

#### How far are all of the points from the line?

To allow for some difference between  $Y_i$  and  $\beta_0 + X_i\beta_1$ , we say

$$Y_i = \beta_0 + X_i \beta_1 + \epsilon_i$$

This is our assumed model

After we see our data, we are going to estimate a model,

$$\widehat{Y}_i = \widehat{\beta}_0 + X_i \widehat{\beta}_1$$

This is our fitted model or estimated model

The fitted model varies from sample to sample (like in a survey). The assumed model does not necessarily.

## **Assumptions**

Linearity among variables and error terms.

age and age square, income

# **Assumptions**

- Linearity among variables and error terms.
   age and age square, income
- Error terms have a mean of zero

# **Assumptions**

- Linearity among variables and error terms.
   age and age square, income
- Error terms have a mean of zero
- Error terms are uncorrelated with each other.

One observation of the error term should not predict the next observation

#### Regression and Difference in Difference

$$Y_i = \beta_0 + \beta_1 \cdot \mathsf{period} + \beta_2 \cdot \mathsf{treatment} + \beta_3 \cdot \mathsf{period} \cdot \mathsf{treatment} + \epsilon_i$$

#### Regression and Difference in Difference

$$Y_i = \beta_0 + \beta_1 \cdot \mathsf{period} + \beta_2 \cdot \mathsf{treatment} + \beta_3 \cdot \mathsf{period} \cdot \mathsf{treatment} + \epsilon_i$$

|               | Period= 0                              | Period= 1                                                  |
|---------------|----------------------------------------|------------------------------------------------------------|
| Treatment = 0 | $Y_i = \beta_0 + \epsilon_i$           | $Y_i = \beta_0 + \beta_1 + \epsilon_i$                     |
| Treatment = 1 | $Y_i = \beta_0 + \beta_2 + \epsilon_i$ | $Y_i = \beta_0 + \beta_1 + \beta_2 + \beta_3 + \epsilon_i$ |

#### The DID estimator would be:

$$\underbrace{(\beta_0+\beta_1+\beta_2+\beta_3+\epsilon_i)}_{\text{Period 1, treated}} - \underbrace{(\beta_0+\beta_2+\epsilon_i)}_{\text{Period 0, treated}} - \underbrace{((\beta_0+\beta_1+\epsilon_i)-(\beta_0+\epsilon_i))}_{\text{Period 1, control}}$$

Which yields:  $\beta_3$ 

Regression and Instrumental Variables
 This video (link) explains why two stage least square regression gives us the IV estimator.

- Regression and Instrumental Variables
   This video (link) explains why two stage least square regression gives us the IV estimator.
- · Regression vs Matching

- Regression and Instrumental Variables
   This video (link) explains why two stage least square regression gives us the IV estimator.
- · Regression vs Matching
  - ▶ Regression without matching:  $Y_i = \beta_0 + \beta_1 \cdot T_i + \beta \cdot X + \epsilon_i$

- Regression and Instrumental Variables
   This video (link) explains why two stage least square regression gives us the IV estimator.
- · Regression vs Matching
  - ▶ Regression without matching:  $Y_i = \beta_0 + \beta_1 \cdot T_i + \beta \cdot X + \epsilon_i$
  - With matching