Lecture 7: Regression

Naijia Liu

Feb. 13, 2024

Questions?

P-set I due on Thursday 11:59pm.
Utilize OHs and Slack channel.
Tidyverse and base R both fine!
We only accept compiled rmd filds and pdf!

OLS Regression

- Review of OLS linear regression.

OLS Regression

- Review of OLS linear regression.
- In the view of DID, IV and Matching.

OLS Regression

- Review of OLS linear regression.
- In the view of DID, IV and Matching.
- Variable selection using penalization.

OLS Regression

- Review of OLS linear regression.
- In the view of DID, IV and Matching.
- Variable selection using penalization.
- Heterogenous treatment effect using penalized regression.

Notations

- Y_{i} : Outcome Variable / Dependent Variable
- X_{i} : Independent Variables
- β : Coefficient for IVs
- β_{0} : Coefficient for Intercept
- ϵ_{i} : Error term

Linear Regression: A Model for the Mean

Assume a model for an observed simple random sample Y_{i} :

Linear Regression: A Model for the Mean

Assume a model for an observed simple random sample Y_{i} :

How to choose $\widehat{\beta}_{0}$?

$$
\widehat{\beta}_{0}=\underset{\widetilde{\beta}_{0}}{\operatorname{argmin}} \mathcal{L}\left(\widetilde{\beta}_{0}\right)
$$

We want $\widehat{\beta}_{0}$ to be the one to minimize some type of error, in predicting Y_{i}.
And $\mathcal{L}\left(\widetilde{\beta}_{0}\right)$ is a loss function.

Commonly Encountered Loss Functions

- Criterion of Least Squares (OLS): We want to minimize the sum of squared error between true data and our predictions.

$$
\widehat{\beta}_{0}=\underset{\widetilde{\beta}_{0}}{\operatorname{argmin}} \sum_{i=1}^{N}\left(Y_{i}-\widetilde{\beta}_{0}\right)^{2}
$$

Commonly Encountered Loss Functions

- Criterion of Least Squares (OLS): We want to minimize the sum of squared error between true data and our predictions.

$$
\widehat{\beta}_{0}=\underset{\widetilde{\beta}_{0}}{\operatorname{argmin}} \sum_{i=1}^{N}\left(Y_{i}-\widetilde{\beta}_{0}\right)^{2}
$$

- Criteron of Least Absolute Deviation: We want to minimize the sum of absolute error between true data and our predictions.

$$
\widehat{\beta}_{0}=\underset{\widehat{\beta}_{0}}{\operatorname{argmin}} \sum_{i=1}^{N}\left|Y_{i}-\widetilde{\beta}_{0}\right|
$$

Commonly Encountered Loss Functions

- Criterion of Least Squares (OLS): We want to minimize the sum of squared error between true data and our predictions.

$$
\widehat{\beta}_{0}=\underset{\widehat{\beta}_{0}}{\operatorname{argmin}} \sum_{i=1}^{N}\left(Y_{i}-\widetilde{\beta}_{0}\right)^{2}
$$

- Criteron of Least Absolute Deviation: We want to minimize the sum of absolute error between true data and our predictions.

$$
\widehat{\beta}_{0}=\underset{\widehat{\beta}_{0}}{\operatorname{argmin}} \sum_{i=1}^{N}\left|Y_{i}-\widetilde{\beta}_{0}\right|
$$

- Penalized Least Squares: We want to minimize the sum of squared error between true data and our predictions, plus something else (later).

$$
\widehat{\beta}_{0}=\underset{\widetilde{\beta}_{0}}{\operatorname{argmin}} \sum_{i=1}^{N}\left(Y_{i}-\widetilde{\beta}_{0}\right)^{2}+\lambda \widetilde{\beta}_{0}^{2}
$$

Review on Taking Derivatives

For a function:

$$
f(x)=(x+a)^{2}
$$

The first derivative of it is:

$$
f^{\prime}(x)=\frac{d}{d x} f(x)=2(x+a)
$$

Review on Taking Derivatives

For a function:

$$
f(x)=(x+a)^{2}
$$

The first derivative of it is:

$$
f^{\prime}(x)=\frac{d}{d x} f(x)=2(x+a)
$$

The second derivative of it is:

$$
f^{\prime \prime}(x)=2
$$

Review on Taking Derivatives

For a function:

$$
f(x)=(x+a)^{2}
$$

The first derivative of it is:

$$
f^{\prime}(x)=\frac{d}{d x} f(x)=2(x+a)
$$

The second derivative of it is:

$$
f^{\prime \prime}(x)=2
$$

If we want to find the point that minimizes the function, we want to set first derivative to 0 .
In this case we have:

$$
x=-a
$$

OLS Solution

$$
\widehat{\beta}_{0}=\underset{\widetilde{\beta}_{0}}{\operatorname{argmin}} \sum_{i=1}^{N}\left(Y_{i}-\widetilde{\beta}_{0}\right)^{2}
$$

OLS Solution

$$
\begin{aligned}
\widehat{\beta}_{0} & =\underset{\widetilde{\beta}_{0}}{\operatorname{argmin}} \sum_{i=1}^{N}\left(Y_{i}-\widetilde{\beta}_{0}\right)^{2} \\
\left.\Rightarrow \frac{\partial \mathcal{L}\left(\widetilde{\beta}_{0}\right)}{\partial \widetilde{\beta}_{0}}\right|_{\widetilde{\beta}_{0}=\widehat{\beta}_{0}} & =0 \\
\frac{\partial}{\partial \widetilde{\beta}_{0}} \sum_{i=1}^{N}\left(Y_{i}-\widetilde{\beta}_{0}\right)^{2} & =0 \\
\sum_{i=1}^{N} \frac{\partial}{\partial \widetilde{\beta}_{0}}\left(Y_{i}-\widetilde{\beta}_{0}\right)^{2} & =0 \\
\sum_{i=1}^{N}-2 \cdot\left(Y_{i}-\widehat{\beta}_{0}\right) & =0
\end{aligned}
$$

OLS Solution

$$
\begin{array}{rlr}
\widehat{\beta}_{0} & =\underset{\widetilde{\beta}_{0}}{\operatorname{argmin}} \sum_{i=1}^{N}\left(Y_{i}-\widetilde{\beta}_{0}\right)^{2} \\
\left.\Rightarrow \frac{\partial \mathcal{L}\left(\widetilde{\beta}_{0}\right)}{\partial \widetilde{\beta}_{0}}\right|_{\widetilde{\beta}_{0}=\widehat{\beta}_{0}}=0 & \sum_{i=1}^{N}\left(Y_{i}-\widehat{\beta}_{0}\right)=0 \\
\frac{\partial}{\partial \widetilde{\beta}_{0}} \sum_{i=1}^{N}\left(Y_{i}-\widetilde{\beta}_{0}\right)^{2}=0 & \sum_{i=1}^{N} Y_{i}=\sum_{i=1}^{N} \widehat{\beta}_{0} \\
\sum_{i=1}^{N} \frac{\partial}{\partial \widetilde{\beta}_{0}}\left(Y_{i}-\widetilde{\beta}_{0}\right)^{2}=0 & \sum_{i=1}^{N} Y_{i}=N \widehat{\beta}_{0} \\
\sum_{i=1}^{N}-2 \cdot\left(Y_{i}-\widehat{\beta}_{0}\right)=0 & \frac{1}{N} \sum_{i=1}^{N} Y_{i}=\bar{Y}_{i}=\widehat{\beta}_{0}
\end{array}
$$

Least Absolute Deviation Solution (optional)

$$
\begin{array}{cc}
\widehat{\beta}_{0}=\underset{\widetilde{\beta}_{0}}{\operatorname{argmin}} \sum_{i=1}^{N}\left|Y_{i}-\widetilde{\beta}_{0}\right| \\
\left.\Rightarrow \frac{\partial \mathcal{L}\left(\widetilde{\beta}_{0}\right)}{\partial \widetilde{\beta}_{0}}\right|_{\widetilde{\beta}_{0}=\widehat{\beta}_{0}}=0 & \sum_{i=1}^{N} \frac{\partial}{\partial \widetilde{\beta}_{0}}\left|Y_{i}-\widetilde{\beta}_{0}\right|=0 \\
\frac{\partial}{\partial \widetilde{\beta}_{0}}\left\{\sum_{i=1}^{N}\left|Y_{i}-\widetilde{\beta}_{0}\right|\right\}=0 & \sum_{i=1}^{N} \operatorname{sgn}\left(Y_{i}-\widehat{\beta}_{0}\right)=0 \\
\Rightarrow \widetilde{Y}=\widehat{\beta}_{0}
\end{array}
$$

- If we rank all observations from small to large:

$$
Y_{(1)}=\min \left(Y_{i}\right) ; Y_{(N)}=\max \left(Y_{i}\right)
$$

Least Absolute Deviation Solution (optional)

$$
\begin{array}{cc}
\widehat{\beta}_{0}=\underset{\widetilde{\beta}_{0}}{\operatorname{argmin}} \sum_{i=1}^{N}\left|Y_{i}-\widetilde{\beta}_{0}\right| \\
\left.\Rightarrow \frac{\partial \mathcal{L}\left(\widetilde{\beta}_{0}\right)}{\partial \widetilde{\beta}_{0}}\right|_{\widetilde{\beta}_{0}=\widehat{\beta}_{0}}=0 & \sum_{i=1}^{N} \frac{\partial}{\partial \widetilde{\beta}_{0}}\left|Y_{i}-\widetilde{\beta}_{0}\right|=0 \\
\frac{\partial}{\partial \widetilde{\beta}_{0}}\left\{\sum_{i=1}^{N}\left|Y_{i}-\widetilde{\beta}_{0}\right|\right\}=0 & \sum_{i=1}^{N} \operatorname{sgn}\left(Y_{i}-\widehat{\beta}_{0}\right)=0 \\
\Rightarrow \widetilde{Y}=\widehat{\beta}_{0}
\end{array}
$$

- If we rank all observations from small to large:
$Y_{(1)}=\min \left(Y_{i}\right) ; Y_{(N)}=\max \left(Y_{i}\right)$
- Median value of $Y_{i}: Y_{(N+1) / 2}$.

Least Absolute Deviation Solution (optional)

$$
\begin{array}{cc}
\widehat{\beta}_{0}=\underset{\widetilde{\beta}_{0}}{\operatorname{argmin}} \sum_{i=1}^{N}\left|Y_{i}-\widetilde{\beta}_{0}\right| \\
\left.\Rightarrow \frac{\partial \mathcal{L}\left(\widetilde{\beta}_{0}\right)}{\partial \widetilde{\beta}_{0}}\right|_{\widetilde{\beta}_{0}=\widehat{\beta}_{0}}=0 & \sum_{i=1}^{N} \frac{\partial}{\partial \widetilde{\beta}_{0}}\left|Y_{i}-\widetilde{\beta}_{0}\right|=0 \\
\frac{\partial}{\partial \widetilde{\beta}_{0}}\left\{\sum_{i=1}^{N}\left|Y_{i}-\widetilde{\beta}_{0}\right|\right\}=0 & \sum_{i=1}^{N} \operatorname{sgn}\left(Y_{i}-\widehat{\beta}_{0}\right)=0 \\
& \Rightarrow \widetilde{Y}=\widehat{\beta}_{0}
\end{array}
$$

- If we rank all observations from small to large:
$Y_{(1)}=\min \left(Y_{i}\right) ; Y_{(N)}=\max \left(Y_{i}\right)$
- Median value of $Y_{i}: Y_{(N+1) / 2}$.
- Median more robust to extreme values than mean.

A toy example

- Five observations:

$$
Y_{1}=-2, Y_{2}=-1, Y_{3}=0, Y_{4}=1, Y_{5}=2000
$$

- Mean as 399.6, median as 0

A toy example

- Five observations:

$$
Y_{1}=-2, Y_{2}=-1, Y_{3}=0, Y_{4}=1, Y_{5}=2000
$$

- Mean as 399.6, median as 0

A toy example

- Five observations:

$$
Y_{1}=-2, Y_{2}=-1, Y_{3}=0, Y_{4}=1, Y_{5}=2000
$$

- Mean as 399.6, median as 0

Linear Regression Model

- A model for a linear relationship between two variables

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

- X : Independent (explanatory) variable
- Y : Dependent (outcome, response) variable
- ϵ : error (disturbance) term

Linear Regression Model

- A model for a linear relationship between two variables

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

- X : Independent (explanatory) variable
- Y : Dependent (outcome, response) variable
- ϵ : error (disturbance) term
- Given a value of X, the model predicts the average of Y
- Abuse of regression: extrapolation, causal misinterpretation

Correlation is not causation!

Regression

Regression analysis answers:

1. What is the best line that describes an outcome variable (aka dependent variable) in terms of an independent variable?

Regression

Regression analysis answers:

1. What is the best line that describes an outcome variable (aka dependent variable) in terms of an independent variable?
2. Given a value of the independent variable, what is my best guess for the dependent variable?

Regression

Regression analysis answers:

1. What is the best line that describes an outcome variable (aka dependent variable) in terms of an independent variable?
2. Given a value of the independent variable, what is my best guess for the dependent variable?
3. How close is the line to the data?

Loss function of choice

Estimating GDP

Given GDP growth rate in 2007, how can we estimate GDP growth rate in 2008?

- Assume: GDP growth in 2008 is GDP growth in 2007 times a constant plus an intercept

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}
$$

Estimating GDP

Given GDP growth rate in 2007, how can we estimate GDP growth rate in 2008?

- Assume: GDP growth in 2008 is GDP growth in 2007 times a constant plus an intercept

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}
$$

- Do we expect the coefficient estimate of GDP 2007 on GDP 2008 to be positive or negative?

Which Line to Choose

GDP Growth Rates, 2007-2008

How far is a point from the line?

The distance from one point to the line, called the residual

GDP Growth Rates, 2007-2008

How far are all of the points from the line?

The total distances from the data to the line (residuals)
GDP Growth Rates, 2007-2008

Determining the line of best fit

Determining the line of best fit (aka the line of least squares)

- Y_{i} : 2008 GDP growth rate for country i
- X_{i} : 2007 GDP growth rate for country i

GDP Growth Rates, 2007-2008

Growth Rate, 2007

How far are all of the points from the line?

To allow for some difference between Y_{i} and $\beta_{0}+X_{i} \beta_{1}$, we say

$$
Y_{i}=\beta_{0}+X_{i} \beta_{1}+\epsilon_{i}
$$

This is our assumed model

How far are all of the points from the line?

To allow for some difference between Y_{i} and $\beta_{0}+X_{i} \beta_{1}$, we say

$$
Y_{i}=\beta_{0}+X_{i} \beta_{1}+\epsilon_{i}
$$

This is our assumed model
After we see our data, we are going to estimate a model,

$$
\widehat{Y}_{i}=\widehat{\beta}_{0}+X_{i} \widehat{\beta}_{1}
$$

This is our fitted model or estimated model

How far are all of the points from the line?

To allow for some difference between Y_{i} and $\beta_{0}+X_{i} \beta_{1}$, we say

$$
Y_{i}=\beta_{0}+X_{i} \beta_{1}+\epsilon_{i}
$$

This is our assumed model
After we see our data, we are going to estimate a model,

$$
\widehat{Y}_{i}=\widehat{\beta}_{0}+X_{i} \widehat{\beta}_{1}
$$

This is our fitted model or estimated model
The fitted model varies from sample to sample (like in a survey).
The assumed model does not necessarily.

Assumptions

- Linearity among variables and error terms. age and age square, income

Assumptions

- Linearity among variables and error terms. age and age square, income
- Error terms have a mean of zero

Assumptions

- Linearity among variables and error terms. age and age square, income
- Error terms have a mean of zero
- Error terms are uncorrelated with each other.

One observation of the error term should not predict the next observation

Regression in Observational Causal Inference

Regression and Difference in Difference
$Y_{i}=\beta_{0}+\beta_{1} \cdot$ period $+\beta_{2} \cdot$ treatment $+\beta_{3} \cdot$ period \cdot treatment $+\epsilon_{i}$

Regression in Observational Causal Inference

Regression and Difference in Difference
$Y_{i}=\beta_{0}+\beta_{1} \cdot$ period $+\beta_{2} \cdot$ treatment $+\beta_{3} \cdot$ period \cdot treatment $+\epsilon_{i}$

	Period $=0$	Period $=1$
Treatment $=0$	$Y_{i}=\beta_{0}+\epsilon_{i}$	$Y_{i}=\beta_{0}+\beta_{1}+\epsilon_{i}$
Treatment $=1$	$Y_{i}=\beta_{0}+\beta_{2}+\epsilon_{i}$	$Y_{i}=\beta_{0}+\beta_{1}+\beta_{2}+\beta_{3}+\epsilon_{i}$

The DID estimator would be:

$$
\begin{gathered}
\underbrace{\left(\beta_{0}+\beta_{1}+\beta_{2}+\beta_{3}+\epsilon_{i}\right)}_{\text {Period 1, treated }}-\underbrace{\left(\beta_{0}+\beta_{2}+\epsilon_{i}\right)}_{\text {Period 0, treated }} \\
- \\
\underbrace{\left(\beta_{0}+\beta_{1}+\epsilon_{i}\right)}_{\text {Period 1, control }}-\underbrace{\left(\beta_{0}+\epsilon_{i}\right)}_{\text {Period 0, control }})
\end{gathered}
$$

Which yields: β_{3}

Regression in Observational Causal Inference

- Regression and Instrumental Variables

This video (link) explains why two stage least square regression gives us the IV estimator.

Regression in Observational Causal Inference

- Regression and Instrumental Variables

This video (link) explains why two stage least square regression gives us the IV estimator.

- Regression vs Matching

Regression in Observational Causal Inference

- Regression and Instrumental Variables

This video (link) explains why two stage least square regression gives us the IV estimator.

- Regression vs Matching
- Regression without matching: $Y_{i}=\beta_{0}+\beta_{1} \cdot T_{i}+\beta \cdot X+\epsilon_{i}$

Regression in Observational Causal Inference

- Regression and Instrumental Variables

This video (link) explains why two stage least square regression gives us the IV estimator.

- Regression vs Matching
- Regression without matching: $Y_{i}=\beta_{0}+\beta_{1} \cdot T_{i}+\beta \cdot X+\epsilon_{i}$
- With matching

