# Lecture 8: Regression 

Naijia Liu

Feb. 15, 2024

## Notations

- $Y_{i}$ : Outcome Variable / Dependent Variable
- $X_{i}$ : Independent Variables
- $\beta$ : Coefficient for IVs
- $\beta_{0}$ : Coefficient for Intercept
- $\epsilon_{i}$ : Error term


## Linear Regression: A Model for the Mean

Assume a model for an observed simple random sample $Y_{i}$ :


## Linear Regression: A Model for the Mean

Assume a model for an observed simple random sample $Y_{i}$ :


How to choose $\widehat{\beta}_{0}$ ?

$$
\widehat{\beta}_{0}=\underset{\widetilde{\beta}_{0}}{\operatorname{argmin}} \mathcal{L}\left(\widetilde{\beta}_{0}\right)
$$

We want $\widehat{\beta}_{0}$ to be the one to minimize some type of error, in predicting $Y_{i}$.
And $\mathcal{L}\left(\widetilde{\beta}_{0}\right)$ is a loss function.

## Commonly Encountered Loss Functions

- Criterion of Least Squares (OLS): We want to minimize the sum of squared error between true data and our predictions.

$$
\widehat{\beta}_{0}=\underset{\widetilde{\beta}_{0}}{\operatorname{argmin}} \sum_{i=1}^{N}\left(Y_{i}-\widetilde{\beta}_{0}\right)^{2}
$$

## Commonly Encountered Loss Functions

- Criterion of Least Squares (OLS): We want to minimize the sum of squared error between true data and our predictions.

$$
\widehat{\beta}_{0}=\underset{\widetilde{\beta}_{0}}{\operatorname{argmin}} \sum_{i=1}^{N}\left(Y_{i}-\widetilde{\beta}_{0}\right)^{2}
$$

- Criteron of Least Absolute Deviation: We want to minimize the sum of absolute error between true data and our predictions.

$$
\widehat{\beta}_{0}=\underset{\widetilde{\beta}_{0}}{\operatorname{argmin}} \sum_{i=1}^{N}\left|Y_{i}-\widetilde{\beta}_{0}\right|
$$

## Commonly Encountered Loss Functions

- Criterion of Least Squares (OLS): We want to minimize the sum of squared error between true data and our predictions.

$$
\widehat{\beta}_{0}=\underset{\widetilde{\beta}_{0}}{\operatorname{argmin}} \sum_{i=1}^{N}\left(Y_{i}-\widetilde{\beta}_{0}\right)^{2}
$$

- Criteron of Least Absolute Deviation: We want to minimize the sum of absolute error between true data and our predictions.

$$
\widehat{\beta}_{0}=\underset{\widetilde{\beta}_{0}}{\operatorname{argmin}} \sum_{i=1}^{N}\left|Y_{i}-\widetilde{\beta}_{0}\right|
$$

- Penalized Least Squares: We want to minimize the sum of squared error between true data and our predictions, plus something else (later).

$$
\widehat{\beta}_{0}=\underset{\widetilde{\beta}_{0}}{\operatorname{argmin}} \sum_{i=1}^{N}\left(Y_{i}-\widetilde{\beta}_{0}\right)^{2}+\lambda \widetilde{\beta}_{0}^{2}
$$

## Review on Taking Derivatives

For a function:

$$
f(x)=(x+a)^{2}
$$

The first derivative of it is:

$$
f^{\prime}(x)=\frac{d}{d x} f(x)=2(x+a)
$$

## Review on Taking Derivatives

For a function:

$$
f(x)=(x+a)^{2}
$$

The first derivative of it is:

$$
f^{\prime}(x)=\frac{d}{d x} f(x)=2(x+a)
$$

The second derivative of it is:

$$
f^{\prime \prime}(x)=2
$$

## Review on Taking Derivatives

For a function:

$$
f(x)=(x+a)^{2}
$$

The first derivative of it is:

$$
f^{\prime}(x)=\frac{d}{d x} f(x)=2(x+a)
$$

The second derivative of it is:

$$
f^{\prime \prime}(x)=2
$$

If we want to find the point that minimizes the function, we want to set first derivative to 0 .
In this case we have:

$$
x=-a
$$

## OLS Solution

$$
\widehat{\beta}_{0}=\underset{\widetilde{\beta}_{0}}{\operatorname{argmin}} \sum_{i=1}^{N}\left(Y_{i}-\widetilde{\beta}_{0}\right)^{2}
$$

## OLS Solution

$$
\begin{aligned}
\widehat{\beta}_{0} & =\underset{\widetilde{\beta}_{0}}{\operatorname{argmin}} \sum_{i=1}^{N}\left(Y_{i}-\widetilde{\beta}_{0}\right)^{2} \\
\left.\Rightarrow \frac{\partial \mathcal{L}\left(\widetilde{\beta}_{0}\right)}{\partial \widetilde{\beta}_{0}}\right|_{\widetilde{\beta}_{0}=\widehat{\beta}_{0}} & =0 \\
\frac{\partial}{\partial \widetilde{\beta}_{0}} \sum_{i=1}^{N}\left(Y_{i}-\widetilde{\beta}_{0}\right)^{2} & =0 \\
\sum_{i=1}^{N} \frac{\partial}{\partial \widetilde{\beta}_{0}}\left(Y_{i}-\widetilde{\beta}_{0}\right)^{2} & =0 \\
\sum_{i=1}^{N}-2 \cdot\left(Y_{i}-\widehat{\beta}_{0}\right) & =0
\end{aligned}
$$

## OLS Solution

$$
\begin{aligned}
& \widehat{\beta}_{0}=\underset{\widetilde{\beta}_{0}}{\operatorname{argmin}} \sum_{i=1}^{N}\left(Y_{i}-\widetilde{\beta}_{0}\right)^{2} \\
& \left.\Rightarrow \frac{\partial \mathcal{L}\left(\widetilde{\beta}_{0}\right)}{\partial \widetilde{\beta}_{0}}\right|_{\widetilde{\beta}_{0}=\widehat{\beta}_{0}}=0 \\
& \frac{\partial}{\partial \widetilde{\beta}_{0}} \sum_{i=1}^{N}\left(Y_{i}-\widetilde{\beta}_{0}\right)^{2}=0 \\
& \sum_{i=1}^{N} \frac{\partial}{\partial \widetilde{\beta}_{0}}\left(Y_{i}-\widetilde{\beta}_{0}\right)^{2}=0 \\
& \sum_{i=1}^{N}-2 \cdot\left(Y_{i}-\widehat{\beta}_{0}\right)=0 \\
& \sum_{i=1}^{N}\left(Y_{i}-\widehat{\beta}_{0}\right)=0 \\
& \sum_{i=1}^{N} Y_{i}=\sum_{i=1}^{N} \widehat{\beta}_{0} \\
& \sum_{i=1}^{N} Y_{i}=N \widehat{\beta}_{0} \\
& \frac{1}{N} \sum_{i=1}^{N} Y_{i}=\bar{Y}_{i}=\widehat{\beta}_{0}
\end{aligned}
$$

## Least Absolute Deviation Solution (optional)

$$
\begin{array}{cc}
\widehat{\beta}_{0}=\underset{\widetilde{\beta}_{0}}{\operatorname{argmin}} \sum_{i=1}^{N}\left|Y_{i}-\widetilde{\beta}_{0}\right| \\
\left.\Rightarrow \frac{\partial \mathcal{L}\left(\widetilde{\beta}_{0}\right)}{\partial \widetilde{\beta}_{0}}\right|_{\widetilde{\beta}_{0}=\widehat{\beta}_{0}}=0 & \sum_{i=1}^{N} \frac{\partial}{\partial \widetilde{\beta}_{0}}\left|Y_{i}-\widetilde{\beta}_{0}\right|=0 \\
\frac{\partial}{\partial \widetilde{\beta}_{0}}\left\{\sum_{i=1}^{N}\left|Y_{i}-\widetilde{\beta}_{0}\right|\right\}=0 & \sum_{i=1}^{N} \operatorname{sgn}\left(Y_{i}-\widehat{\beta}_{0}\right)=0 \\
\Rightarrow \widetilde{Y}=\widehat{\beta}_{0}
\end{array}
$$

- If we rank all observations from small to large:

$$
Y_{(1)}=\min \left(Y_{i}\right) ; Y_{(N)}=\max \left(Y_{i}\right)
$$

## Least Absolute Deviation Solution (optional)

$$
\begin{array}{cc}
\widehat{\beta}_{0}=\underset{\widetilde{\beta}_{0}}{\operatorname{argmin}} \sum_{i=1}^{N}\left|Y_{i}-\widetilde{\beta}_{0}\right| \\
\left.\Rightarrow \frac{\partial \mathcal{L}\left(\widetilde{\beta}_{0}\right)}{\partial \widetilde{\beta}_{0}}\right|_{\widetilde{\beta}_{0}=\widehat{\beta}_{0}}=0 & \sum_{i=1}^{N} \frac{\partial}{\partial \widetilde{\beta}_{0}}\left|Y_{i}-\widetilde{\beta}_{0}\right|=0 \\
\frac{\partial}{\partial \widetilde{\beta}_{0}}\left\{\sum_{i=1}^{N}\left|Y_{i}-\widetilde{\beta}_{0}\right|\right\}=0 & \sum_{i=1}^{N} \operatorname{sgn}\left(Y_{i}-\widehat{\beta}_{0}\right)=0 \\
\Rightarrow \widetilde{Y}=\widehat{\beta}_{0}
\end{array}
$$

- If we rank all observations from small to large:

$$
Y_{(1)}=\min \left(Y_{i}\right) ; Y_{(N)}=\max \left(Y_{i}\right)
$$

- Median value of $Y_{i}: Y_{(N+1) / 2}$.


## Least Absolute Deviation Solution (optional)

$$
\begin{array}{cc}
\widehat{\beta}_{0}=\underset{\widetilde{\beta}_{0}}{\operatorname{argmin}} \sum_{i=1}^{N}\left|Y_{i}-\widetilde{\beta}_{0}\right| \\
\left.\Rightarrow \frac{\partial \mathcal{L}\left(\widetilde{\beta}_{0}\right)}{\partial \widetilde{\beta}_{0}}\right|_{\widetilde{\beta}_{0}=\widehat{\beta}_{0}}=0 & \sum_{i=1}^{N} \frac{\partial}{\partial \widetilde{\beta}_{0}}\left|Y_{i}-\widetilde{\beta}_{0}\right|=0 \\
\frac{\partial}{\partial \widetilde{\beta}_{0}}\left\{\sum_{i=1}^{N}\left|Y_{i}-\widetilde{\beta}_{0}\right|\right\}=0 & \sum_{i=1}^{N} \operatorname{sgn}\left(Y_{i}-\widehat{\beta}_{0}\right)=0 \\
\Rightarrow \widetilde{Y}=\widehat{\beta}_{0}
\end{array}
$$

- If we rank all observations from small to large:

$$
Y_{(1)}=\min \left(Y_{i}\right) ; Y_{(N)}=\max \left(Y_{i}\right)
$$

- Median value of $Y_{i}: Y_{(N+1) / 2}$.
- Median more robust to extreme values than mean.


## A toy example

- Five observations:

$$
Y_{1}=-2, Y_{2}=-1, Y_{3}=0, Y_{4}=1, Y_{5}=2000
$$

- Mean as 399.6 , median as 0



## A toy example

- Five observations:

$$
Y_{1}=-2, Y_{2}=-1, Y_{3}=0, Y_{4}=1, Y_{5}=2000
$$

- Mean as 399.6, median as 0



## A toy example

- Five observations:

$$
Y_{1}=-2, Y_{2}=-1, Y_{3}=0, Y_{4}=1, Y_{5}=2000
$$

- Mean as 399.6 , median as 0



## Linear Regression Model

- A model for a linear relationship between two variables

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

- X: Independent (explanatory) variable
- $Y$ : Dependent (outcome, response) variable
- $\epsilon$ : error (disturbance) term


## Linear Regression Model

- A model for a linear relationship between two variables

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

- X: Independent (explanatory) variable
- $Y$ : Dependent (outcome, response) variable
- $\epsilon$ : error (disturbance) term
- Given a value of $X$, the model predicts the average of $Y$
- Abuse of regression: extrapolation, causal misinterpretation Correlation is not causation!


## Regression

Regression analysis answers:

1. What is the best line that describes an outcome variable (aka dependent variable) in terms of an independent variable?

## Regression

Regression analysis answers:

1. What is the best line that describes an outcome variable (aka dependent variable) in terms of an independent variable?
2. Given a value of the independent variable, what is my best guess for the dependent variable?

## Regression

Regression analysis answers:

1. What is the best line that describes an outcome variable (aka dependent variable) in terms of an independent variable?
2. Given a value of the independent variable, what is my best guess for the dependent variable?
3. How close is the line to the data?

Loss function of choice

## Estimating GDP

Given GDP growth rate in 2007, how can we estimate GDP growth rate in 2008?

- Assume: GDP growth in 2008 is GDP growth in 2007 times a constant plus an intercept

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}
$$

## Estimating GDP

Given GDP growth rate in 2007, how can we estimate GDP growth rate in 2008?

- Assume: GDP growth in 2008 is GDP growth in 2007 times a constant plus an intercept

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}
$$

- Do we expect the coefficient estimate of GDP 2007 on GDP 2008 to be positive or negative?


## Which Line to Choose

GDP Growth Rates, 2007-2008


## How far is a point from the line?

The distance from one point to the line, called the residual
GDP Growth Rates, 2007-2008


## How far are all of the points from the line?

The total distances from the data to the line (residuals)
GDP Growth Rates, 2007-2008


## Determining the line of best fit

Determining the line of best fit (aka the line of least squares)

- $Y_{i}$ : 2008 GDP growth rate for country $i$
- $X_{i}$ : 2007 GDP growth rate for country $i$

GDP Growth Rates, 2007-2008


Growth Rate, 2007

## How far are all of the points from the line?

To allow for some difference between $Y_{i}$ and $\beta_{0}+X_{i} \beta_{1}$, we say

$$
Y_{i}=\beta_{0}+X_{i} \beta_{1}+\epsilon_{i}
$$

This is our assumed model

## How far are all of the points from the line?

To allow for some difference between $Y_{i}$ and $\beta_{0}+X_{i} \beta_{1}$, we say

$$
Y_{i}=\beta_{0}+X_{i} \beta_{1}+\epsilon_{i}
$$

This is our assumed model
After we see our data, we are going to estimate a model,

$$
\widehat{Y}_{i}=\widehat{\beta}_{0}+X_{i} \widehat{\beta}_{1}
$$

This is our fitted model or estimated model

## How far are all of the points from the line?

To allow for some difference between $Y_{i}$ and $\beta_{0}+X_{i} \beta_{1}$, we say

$$
Y_{i}=\beta_{0}+X_{i} \beta_{1}+\epsilon_{i}
$$

This is our assumed model
After we see our data, we are going to estimate a model,

$$
\widehat{Y}_{i}=\widehat{\beta}_{0}+X_{i} \widehat{\beta}_{1}
$$

This is our fitted model or estimated model
The fitted model varies from sample to sample (like in a survey). The assumed model does not necessarily.

## Assumptions

- Linearity among variables and error terms. age and age square, income


## Assumptions

- Linearity among variables and error terms. age and age square, income
- Error terms have a mean of zero


## Assumptions

- Linearity among variables and error terms. age and age square, income
- Error terms have a mean of zero
- Error terms are uncorrelated with each other.

One observation of the error term should not predict the next observation

## Components of Sums of Squares

Regression Line and Mean Line


## Components of Sums of Squares

Fitted Value


## Components of Sums of Squares

Components of Sums of Squares


## Sums of Squares

- Total Sum of Squares-how much variance in $Y_{i}$ is there to explain?

$$
T S S: \sum_{i=1}^{N}\left(Y_{i}-\bar{Y}_{i}\right)^{2}
$$

- Estimated Sum of Squares-how much of this variance do we explain?

$$
E S S: \sum_{i=1}^{N}\left(\widehat{Y}_{i}-\bar{Y}_{i}\right)^{2}
$$

- Residual Sum of Squares-how much variance is unexplained?

$$
R S S: \sum_{i=1}^{N}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}
$$

## Geometric Projection

When $\widehat{Y}_{i}$ are the fitted value from a linear regression, the total variance to explain equals the explained variance plus the unexplained variance.

$$
\underbrace{\sum_{i=1}^{N}\left(Y_{i}-\bar{Y}_{i}\right)^{2}}_{T S S}=\underbrace{\sum_{i=1}^{N}\left(\widehat{Y}_{i}-\bar{Y}_{i}\right)^{2}}_{E S S}+\underbrace{\sum_{i=1}^{N}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}}_{R S S}
$$

- This is a simple ANOVA (ANalysis Of VAriance) decomposition

Derivation: Use put-and-take

$$
\begin{aligned}
& \sum_{i=1}^{N}\left(Y_{i}-\bar{Y}_{i}\right)^{2}=\sum_{i=1}^{N}\left(Y_{i}-\widehat{Y}_{i}+\widehat{Y}_{i}-\bar{Y}_{i}\right)^{2} \\
& =\sum_{i=1}^{N}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}+\sum_{i=1}^{N}\left(\widehat{Y}_{i}-\bar{Y}_{i}\right)^{2}+2 \sum_{i=1}^{N}\left(Y_{i}-\widehat{Y}_{i}\right)\left(\widehat{Y}_{i}-\bar{Y}_{i}\right) \\
& =\sum_{i=1}^{N}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}+\sum_{i=1}^{N}\left(\widehat{Y}_{i}-\bar{Y}_{i}\right)^{2}+2 \sum_{i=1}^{N} \widehat{\epsilon}_{i}\left(\widehat{Y}_{i}-\bar{Y}_{i}\right) \\
& =\sum_{i=1}^{N}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}+\sum_{i=1}^{N}\left(\widehat{Y}_{i}-\bar{Y}_{i}\right)^{2}+2 \underbrace{\sum_{i=1}^{N} \widehat{\epsilon}_{i} \widehat{Y}_{i}}_{=0}-2 \sum_{i=1}^{N} \widehat{\epsilon}_{i} \bar{Y}_{i} \\
& =\sum_{i=1}^{N}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}+\sum_{i=1}^{N}\left(\widehat{Y}_{i}-\bar{Y}_{i}\right)^{2}-2 \bar{Y}_{i} \underbrace{\sum_{i=1}^{N}}_{=0} \widehat{\epsilon}_{i}
\end{aligned}
$$

## Sums of Squares Identity



## $R^{2}$ : The Coefficient of Determination

Motivation:

$$
T S S=E S S+R S S \Rightarrow 1=\frac{E S S}{T S S}+\frac{R S S}{T S S}
$$

$R^{2}$ : What proportion of the total variation in $Y_{i}$ are we explaining with $\widehat{Y}_{i}$ ?

$$
R^{2}=\frac{\sum_{i=1}^{N}\left(\widehat{Y}_{i}-\bar{Y}_{i}\right)^{2}}{\sum_{i=1}^{N}\left(Y_{i}-\bar{Y}_{i}\right)^{2}}=\frac{E S S}{T S S}=1-\frac{R S S}{T S S}
$$

## Variance of Simple Least Squares Coefficient

What we will need:

1. $\operatorname{Var}\left(\beta_{0}\right)=\operatorname{Var}\left(X_{i} \beta_{1}\right)=0$. Why?
2. $\operatorname{Var}\left(Y_{i}\right)=\operatorname{Var}\left(\beta_{0}+X_{i} \beta_{1}+\epsilon_{i}\right)=\operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}$.
3. $\operatorname{Cov}\left(\epsilon_{i}, \epsilon_{i^{\prime}}\right)=0$
4. For constant $a, \operatorname{var}\left(a Y_{i}\right)=a^{2} \operatorname{Var}\left(Y_{i}\right)=a^{2} \sigma^{2}$

$$
\begin{aligned}
\operatorname{Var}\left(\hat{\beta}_{1}\right) & =\operatorname{Var}\left(\frac{\sum_{i=1}^{N}\left(Y_{i}-\bar{Y}_{i}\right)\left(X_{i}-\bar{X}_{i}\right)}{\sum_{i=1}^{N}\left(X_{i}-\bar{X}_{i}\right)^{2}}\right) \\
& =\left(\frac{1}{\sum_{i=1}^{N}\left(X_{i}-\bar{X}_{i}\right)^{2}}\right)^{2} \operatorname{Var}\left(\sum_{i=1}^{N}\left(Y_{i}-\bar{Y}_{i}\right)\left(X_{i}-\bar{X}_{i}\right)\right) \\
& =\left(\frac{1}{\sum_{i=1}^{N}\left(X_{i}-\bar{X}_{i}\right)^{2}}\right)^{2} \sum_{i=1}^{N} \operatorname{Var}\left(\left(Y_{i}-\bar{Y}_{i}\right)\left(X_{i}-\bar{X}_{i}\right)\right) \\
& =\left(\frac{1}{\sum_{i=1}^{N}\left(X_{i}-\bar{X}_{i}\right)^{2}}\right)^{2} \sum_{i=1}^{N}\left(X_{i}-\bar{X}_{i}\right)^{2} \operatorname{Var}\left(Y_{i}-\bar{Y}_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{1}{\sum_{i=1}^{N}\left(X_{i}-\bar{X}_{i}\right)^{2}}\right)^{2} \sum_{i=1}^{N}\left(X_{i}-\bar{X}_{i}\right)^{2} \sigma^{2} \\
& =\frac{\sigma^{2}}{\sum_{i=1}^{N}\left(X_{i}-\bar{X}_{i}\right)^{2}}
\end{aligned}
$$

## Inference on Slope

Feasible estimator:

$$
\begin{aligned}
& \widehat{\sigma}^{2}=\frac{\sum_{i=1}^{N}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}}{N-2} \Rightarrow \\
& \widehat{\operatorname{Var}}(\widehat{\beta})=\frac{\widehat{\sigma}^{2}}{\sum_{i=1}^{N}\left(X_{i}-\bar{X}_{i}\right)^{2}}
\end{aligned}
$$

Inference
$\mathrm{CI}:\left[\widehat{\beta}-c_{1-\alpha / 2} \sqrt{\widehat{\operatorname{Var}}(\widehat{\beta})}, \widehat{\beta}-c_{\alpha / 2} \sqrt{\widehat{\operatorname{Var}}(\widehat{\beta})}\right]$

$$
\frac{\widehat{\beta}}{\sqrt{\widehat{\operatorname{Var}}(\widehat{\beta})}} \sim t_{N-2}
$$

