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Notations

• Yi: Outcome Variable / Dependent Variable
• Xi: Independent Variables
• β: Coefficient for IVs
• β0: Coefficient for Intercept
• ϵi: Error term

Gov 51, Spring 2024 naijialiu@fas.harvard.edu 2 / 31



Linear Regression: A Model for the Mean

Assume a model for an observed simple random sample Yi:

Yi︸︷︷︸
Outcome

= β0︸︷︷︸
Mean or intercept

+ ϵi︸︷︷︸
Residual, error term

How to choose β̂0?

β̂0 = argmin
β̃0

L
(
β̃0

)
We want β̂0 to be the one to minimize some type of error, in
predicting Yi.

And L
(
β̃0

)
is a loss function.
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Commonly Encountered Loss Functions
• Criterion of Least Squares (OLS): We want to minimize the

sum of squared error between true data and our predictions.

β̂0 = argmin
β̃0

N∑
i=1

(
Yi − β̃0

)2

• Criteron of Least Absolute Deviation: We want to minimize the
sum of absolute error between true data and our predictions.

β̂0 = argmin
β̃0

N∑
i=1

∣∣Yi − β̃0
∣∣

• Penalized Least Squares: We want to minimize the sum of
squared error between true data and our predictions, plus
something else (later).

β̂0 = argmin
β̃0

N∑
i=1

(
Yi − β̃0

)2
+ λβ̃2

0
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Review on Taking Derivatives
For a function:

f(x) = (x + a)2

The first derivative of it is:

f′(x) = d
dxf(x) = 2(x + a)

The second derivative of it is:

f′′(x) = 2

If we want to find the point that minimizes the function, we want to
set first derivative to 0.
In this case we have:

x = −a
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OLS Solution

β̂0 = argmin
β̃0

N∑
i=1

(
Yi − β̃0

)2

⇒ ∂L(β̃0)
∂β̃0

∣∣∣∣
β̃0=β̂0

= 0

∂

∂β̃0

N∑
i=1

(
Yi − β̃0

)2
= 0

N∑
i=1

∂

∂β̃0

(
Yi − β̃0

)2
= 0

N∑
i=1

−2 ·
(

Yi − β̂0

)
= 0

N∑
i=1

(
Yi − β̂0

)
= 0

N∑
i=1

Yi =
N∑

i=1

β̂0

N∑
i=1

Yi = Nβ̂0

1

N

N∑
i=1

Yi = Yi = β̂0
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Least Absolute Deviation Solution (optional)

β̂0 = argmin
β̃0

N∑
i=1

|Yi − β̃0|

⇒ ∂L(β̃0)
∂β̃0

∣∣∣∣
β̃0=β̂0

= 0

∂

∂β̃0

{ N∑
i=1

|Yi − β̃0|

}
= 0

N∑
i=1

∂

∂β̃0
|Yi − β̃0| = 0

N∑
i=1

sgn(Yi − β̂0) = 0

⇒ Ỹ = β̂0

• If we rank all observations from small to large:
Y(1) = min(Yi); Y(N) = max(Yi)

• Median value of Yi: Y(N+1)/2.
• Median more robust to extreme values than mean.
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A toy example
• Five observations:

Y1 = −2,Y2 = −1,Y3 = 0,Y4 = 1,Y5 = 2000

• Mean as 399.6, median as 0

1 2 3 4 5

−
20

00
−

10
00

0
10

00
20

00

Index

y
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Linear Regression Model

• A model for a linear relationship between two variables

Yi = β0 + β1Xi + ϵi

• X: Independent (explanatory) variable
• Y: Dependent (outcome, response) variable
• ϵ: error (disturbance) term

• Given a value of X, the model predicts the average of Y
• Abuse of regression: extrapolation, causal misinterpretation

Correlation is not causation!

Gov 51, Spring 2024 naijialiu@fas.harvard.edu 11 / 31



Linear Regression Model

• A model for a linear relationship between two variables

Yi = β0 + β1Xi + ϵi

• X: Independent (explanatory) variable
• Y: Dependent (outcome, response) variable
• ϵ: error (disturbance) term

• Given a value of X, the model predicts the average of Y
• Abuse of regression: extrapolation, causal misinterpretation

Correlation is not causation!

Gov 51, Spring 2024 naijialiu@fas.harvard.edu 11 / 31



Regression

Regression analysis answers:

1. What is the best line that describes an outcome variable (aka
dependent variable) in terms of an independent variable?

2. Given a value of the independent variable, what is my best guess
for the dependent variable?

3. How close is the line to the data?
Loss function of choice
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Estimating GDP

Given GDP growth rate in 2007, how can we estimate GDP growth
rate in 2008?

• Assume: GDP growth in 2008 is GDP growth in 2007 times a
constant plus an intercept

Yi = β0 + β1Xi

• Do we expect the coefficient estimate of GDP 2007 on GDP 2008
to be positive or negative?
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Which Line to Choose
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How far is a point from the line?
The distance from one point to the line, called the residual
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How far are all of the points from the line?
The total distances from the data to the line (residuals)
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Determining the line of best fit
Determining the line of best fit (aka the line of least squares)
• Yi: 2008 GDP growth rate for country i
• Xi: 2007 GDP growth rate for country i
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How far are all of the points from the line?

To allow for some difference between Yi and β0 + Xiβ1, we say

Yi = β0 + Xiβ1 + ϵi

This is our assumed model

After we see our data, we are going to estimate a model,

Ŷi = β̂0 + Xiβ̂1

This is our fitted model or estimated model

The fitted model varies from sample to sample (like in a survey). The
assumed model does not necessarily.
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Assumptions

• Linearity among variables and error terms.
age and age square, income

• Error terms have a mean of zero
• Error terms are uncorrelated with each other.

One observation of the error term should not predict the
next observation
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Components of Sums of Squares

●
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Components of Sums of Squares

●
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Components of Sums of Squares

●
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Sums of Squares

• Total Sum of Squares–how much variance in Yi is there to
explain?

TSS :

N∑
i=1

(Yi − Yi)
2

• Estimated Sum of Squares–how much of this variance do we
explain?

ESS :

N∑
i=1

(Ŷi − Yi)
2

• Residual Sum of Squares–how much variance is unexplained?

RSS :

N∑
i=1

(Yi − Ŷi)
2
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Geometric Projection

When Ŷi are the fitted value from a linear regression, the total variance
to explain equals the explained variance plus the unexplained variance.

N∑
i=1

(Yi − Yi)
2

︸ ︷︷ ︸
TSS

=

N∑
i=1

(Ŷi − Yi)
2

︸ ︷︷ ︸
ESS

+

N∑
i=1

(Yi − Ŷi)
2

︸ ︷︷ ︸
RSS

• This is a simple ANOVA (ANalysis Of VAriance) decomposition
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Derivation: Use put-and-take
N∑

i=1

(Yi − Yi)
2 =

N∑
i=1

(Yi − Ŷi + Ŷi − Yi)
2

=
N∑

i=1

(Yi − Ŷi)
2 +

N∑
i=1

(Ŷi − Yi)
2 + 2

N∑
i=1

(Yi − Ŷi)(Ŷi − Yi)

=

N∑
i=1

(Yi − Ŷi)
2 +

N∑
i=1

(Ŷi − Yi)
2 + 2

N∑
i=1

ϵ̂i(Ŷi − Yi)

=

N∑
i=1

(Yi − Ŷi)
2 +

N∑
i=1

(Ŷi − Yi)
2 + 2

N∑
i=1

ϵ̂iŶi︸ ︷︷ ︸
=0

−2

N∑
i=1

ϵ̂iYi

=

N∑
i=1

(Yi − Ŷi)
2 +

N∑
i=1

(Ŷi − Yi)
2 − 2Yi

N∑
i=1

ϵ̂i︸ ︷︷ ︸
=0
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Sums of Squares Identity
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R2: The Coefficient of Determination

Motivation:

TSS = ESS + RSS ⇒ 1 =
ESS
TSS +

RSS
TSS

R2: What proportion of the total variation in Yi are we explaining
with Ŷi?

R2 =

∑N
i=1(Ŷi − Yi)2∑N
i=1(Yi − Yi)2

=
ESS
TSS = 1− RSS

TSS
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Variance of Simple Least Squares Coefficient

What we will need:
1. Var(β0) = Var(Xiβ1) = 0. Why?
2. Var(Yi) = Var(β0 + Xiβ1 + ϵi) = Var(ϵi) = σ2.
3. Cov(ϵi, ϵi′) = 0

4. For constant a, var(aYi) = a2Var(Yi) = a2σ2
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Var(β̂1) = Var
(∑N

i=1(Yi − Yi)(Xi − Xi)∑N
i=1(Xi − Xi)2

)

=

(
1∑N

i=1(Xi − Xi)2

)2

Var
( N∑

i=1

(Yi − Yi)(Xi − Xi)

)

=

(
1∑N

i=1(Xi − Xi)2

)2 N∑
i=1

Var
(
(Yi − Yi)(Xi − Xi)

)
=

(
1∑N

i=1(Xi − Xi)2

)2 N∑
i=1

(Xi − Xi)
2Var

(
Yi − Yi

)
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=

(
1∑N

i=1(Xi − Xi)2

)2 N∑
i=1

(Xi − Xi)
2σ2

=
σ2∑N

i=1(Xi − Xi)2
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Inference on Slope

Feasible estimator:

σ̂2 =

∑N
i=1(Yi − Ŷi)2

N − 2
⇒

V̂ar(β̂) = σ̂2∑N
i=1(Xi − Xi)2

Inference
CI:
[
β̂ − c1−α/2

√
V̂ar(β̂), β̂ − cα/2

√
V̂ar(β̂)

]
β̂√

V̂ar(β̂)
∼ tN−2
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