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Midterm

March 7th, Thursday. In class and closed book.

Gradescope: 11:50am - 1:15pm

Location: Sever Hall 103 or your own location.

» We can answer clarification question on Slack and in Sever.

» Strongly recommend you to come in person.

Concept questions + coding tasks.

Gov 51, Spring 2024 Logistics and P-set 1 2/27



Final Project

e Form your own group!

Find your interest / personality aligned classmates, at most 4, at
least 2.

e 1 page write up due on April 5th.
Research question + Introduce the data.
e First poster draft due on April 12th, Friday
| will provide you with more examples of how to make a poster.

e Poster final draft deadline on April 18th(non-negotiable, no late
submission)
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Final Project

e Form your own group!

Find your interest / personality aligned classmates, at most 4, at
least 2.

e 1 page write up due on April 5th.
Research question + Introduce the data.
e First poster draft due on April 12th, Friday
| will provide you with more examples of how to make a poster.

e Poster final draft deadline on April 18th(non-negotiable, no late
submission)

e Poster Session on April 23rd, Tuesday (usual lecture time).
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A World Full of Data

e |t is important to prevent political violence.
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A World Full of Data

e |t is important to prevent political violence.
e Newspaper data everyday everywhere.

e Can we predict political violence using Newspaper data? ( Mueller
and Rauh, APSR, 2017)

e Within-country variation of newspaper topics is a good predictor
of conflict.

e What are the topics / aspects of newspaper data that we want to
use???
violence = By + 3 - newspaper features + ¢
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Data

e All articles on 185 countries from the New York Times (NYT),
the Washington Post (WP), and the Economist for all available
years since 1975. (700,000 articles in total)
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Data

e All articles on 185 countries from the New York Times (NYT),
the Washington Post (WP), and the Economist for all available
years since 1975. (700,000 articles in total)

e Summarize articles by their topics. (We will discuss how to do
this later in the semester!)
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Data

e All articles on 185 countries from the New York Times (NYT),
the Washington Post (WP), and the Economist for all available
years since 1975. (700,000 articles in total)

e Summarize articles by their topics. (We will discuss how to do
this later in the semester!)

e Use topics to predict political violence / wars.
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Topics from newspapers
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Language Change Across Years

People use different
languages to describe
conflicts.

Both Years Only 1995 Only 2015
forc unit bomb
militari serb american
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We have too much data?!

violence = By + B - newspaper and country features + ¢

e Country features, such as GDP and previous conflicts.
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We have too much data?!

violence = By + B - newspaper and country features + ¢

e Country features, such as GDP and previous conflicts.
e 700,000 articles, and each contain multiple topics.
e What should we put in the newspaper features list?

Entertainment, food, sports, economy, and etc
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We have too much data?!

violence = By + B - newspaper and country features + ¢

Country features, such as GDP and previous conflicts.

700,000 articles, and each contain multiple topics.

What should we put in the newspaper features list?
Entertainment, food, sports, economy, and etc

How do we decide?
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Lasso can decide for us!

e least absolute shrinkage and selection operator.

e A slightly different loss function:

Gov 51, Spring 2024 LASSO 10 / 27



Lasso can decide for us!

e least absolute shrinkage and selection operator.

e A slightly different loss function:

. 1 ~ N2 ~
ﬂzargmin§Z<Yi—BX> + A8
B =1

The % is just a standardizing constant.
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Lasso can decide for us!

e least absolute shrinkage and selection operator.

e A slightly different loss function:

. 1 ~ N2 ~
ﬂzargznin§Z<Yi—BX> + A8
B =1

The % is just a standardizing constant.

e The added term will shrink the original OLS coefficient:
» To zero if it is smaller than a certain threshold.

» To a smaller number in absolute value if it is greater than a certain
threshold.
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How does Lasso work?

. 1 - N\2 -
ﬁ:arggﬂnQZ(Yi—ﬁX) + A3

=1
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How does Lasso work?
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When 3 > 0,
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When 3 > 0, When 3 < 0,
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. A A
/Blasso = (/BOLS - SgnBOLS ' E) 1 (|BOLS| > E)

e Assume we have (g s to begin with.
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N A A
Biasso = <5OL5 —S8Ngy. 1—3) 1 (|50Ls| > E’)

e Assume we have (g s to begin with.

e Researcher can select ).

e If the original BpLs has an absolute value smaller than %,, LASSO
will “ditch” the variable.
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N A A
Biasso = </BOLS —S8Ngy. 1—3) 1 (|50Ls| > E’)

Assume we have (8o s to begin with.

Researcher can select \.

If the original BoLs has an absolute value smaller than %,, LASSO
will “ditch” the variable.

Otherwise, LASSO will shrink the value of Sg 5 by %.
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Reading between the lines (Mueller and Rauh, 2017)

e We don't want to include too many variables.

e.g. A topic about PBJ will add more noise (if not bias) to
the estimate.
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e We don't want to include too many variables.

e.g. A topic about PBJ will add more noise (if not bias) to
the estimate.

e We don't want to include too few variables.
Omitted variable bias!

e It is hard for human to decide, given the amount of topics and
texts.

Gov 51, Spring 2024 Application 14 /27



Reading between the lines (Mueller and Rauh, 2017)

e We don't want to include too many variables.

e.g. A topic about PBJ will add more noise (if not bias) to
the estimate.

e We don't want to include too few variables.
Omitted variable bias!

e It is hard for human to decide, given the amount of topics and
texts.

e Lasso can help!
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Results

ISelectivity Level

Mild

Regular

Civil war onset next year

Very

Mild Regular Very

Armed conflict onset next year

Topic shares
conflictt

conflict2
justice

international relations2
civic life2

asia

sports

politics

business

economics

|Other variables
25+ battle death

democracy score
partial autocracy

partial dem. with factionalism
partial dem. w/o factionalism
full democracy

4+ neighbouring conflicts
child mortality rate

In (child mortality rate)

9% pop. discriminated

% pop. excluded from power
Country fixed effects
Observations

R-squared

Number of countries
% topics in model

(1

0.0366
(0.0685)

(0.0396)

0.00707

yes
4,561
0.039
140
56%
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A Natural Experiment

e Parental leave policy leads to gender stereotypes.
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A Natural Experiment

e Parental leave policy leads to gender stereotypes.
e Having a father's leave policy could reduce sexist attitudes.
e Estonia prolonged father's leave after July 1st 2020.

e Parents who gave birth on June 30th and July 1st are almost
randomly assigned into treatment and control group.

Nature (or God) determines whether the baby is born
before or after July 1st, if the mother’s due date is close to
that date.
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What are the useful variables to control for?

Sexist attitudes = By + [Sitreatment + [socio-economic covariates + ¢;

e What should we include in the socio-economic covariates?

Age, educaton, income, marriage status, employment, race and
ethnicity and etc.
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What are the useful variables to control for?

Sexist attitudes = By + [Sitreatment + [socio-economic covariates + ¢;

e What should we include in the socio-economic covariates?

Age, educaton, income, marriage status, employment, race and
ethnicity and etc.

e Lasso can help us!

e Authors show results both with and without Lasso selection.
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Increase support of gender equality after treatment

Figure 1: Effect of fathers’ leave reform on gender-equal attitudes, Study 1
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Mothers and fathers responded similarly

Figure 2: Effect of fathers’ leave reform on gender-equal attitudes for mothers

and fathers, Study 1
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Results

e Compared to unaffected parents, increased support of equality.

e Mothers and fathers responded similarly, even though the policy
only prolonged father’s leave.

e Slight difference between all covariates vs Lasso selected
covariates.
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Details and Critique

e )\ is always greater or equal to zero.
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Details and Critique

e )\ is always greater or equal to zero.
e Researchers can decide how selective LASSO model is.
» Parameter tuning / cross validation.

e LASSO improves prediction performance, at the cost of a biased
coefficient.
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Wald Estimator

Under one sided compliance, we can simplify Wald Estimator as:

E(Yi|Zi = 1) — B(Y;|Z; = 0)
E(T)|Z; = 1)

This is true because E(T;|Z; = 0) is zero for both compliers and
never-takers.
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Let's then take a closer look at the numerator.

E(Yi|Z: = 1) — E(Yi|Zi = 0)
= B(Yi|Z = 1) — B(Y:0)|Z: = 0)
one-sided compliance

E(Yi()|Z =1, Ty = VP(T; = 1|Zi = 1)
+ E(YZ(O)|Z1 =1, Ty = 0)P(T; = 0| Z = 1) — B(Y(0)|Z = 0)
E(Y:(1)|Z: = =)P(Ti=1]Z; =1)

(mw, TflﬂTF:HZ:l)

)

+ BE(Yi(0)|Z; = = 1)P(Ti =1|Z = 1)+ E(Yi(0)|Z; =1, T; = 0) P(T;

E(Yi(0)|Z=1)
=EY:(D)|Z=1,T:=1)P(T: =1Z; = 1)
,Ti=1)P(T; =1|Z; = 1)
) — B(Yi(0)|Zi = 0)

=0 due to randomization
E(Y:(1) - Yi(0)|Z:; =1, Ts =1)P(Ts = 1|Z; = 1)
= E(Yi(1) — Y;(0)| T = 1)E(T4|Z; = 1) exclusion restriction
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Thus we have:

E(Yi|Z;=1)— E(Y4Z; =0)
E(T|Z;=1)

= E(Yi(1) = Yi(0)| T = 1)
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