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~—~ ~—~
Outcome variable for unit i Intercept  Slope Explanatory variable for unit i Error for uniti

» Notes on the foregoing equation

> Coefficients/parameters (3o, 51): true unknown intercept/slope of
the line of best fit.

» Chance error (¢;): for each unit, accounts for the fact that the line
doesn't perfectly fit the data.

» Each observation allowed to be off the regression line
» On average, chance errors assumed to be 0.

» Useful fiction: this model represents the data generating process
> Intercept (5): average value of Y when X is 0

> Slope (31): average change in Y when X increases by one unit.
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P Represents the best guess or predicted value of the outcome at x.

Line of Best Fit is a CONDITIONAL EXPECTATION FUNCTION!
E[Y|X]: S\/:Bo-‘f-BlX
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Regression is not magic

» People love to regress some variable on another, but that doesn’t
inherently mean anything. If you regress some continuous variable
(think income) on some binary variable (think treated vs. not
treated) your Sy and 31 are just describing the average value within
the treated group (x = 0) and the difference in the average values in
the treated and non-treated group. Why?
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» Main point to takeaway: Regression only yields a causally identified
effect in the coefficient on a treatment variable if you've controlled
for all possible confounding variables in your model such that
treatment is effectively random. We call this unconfoundedness:

Ti L{Yi(1), Yi(0)}iy | Xivx;
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Least squares

> We get our estimates of 3y, 51 by the least squares method.

» Minimize the sum of the squared residuals (SSR)

n n

SSR = Z(prediction error,-)2 = Z(Y, - (Bo + lei))2

i=1 i=1

(o, Br) = arg min S(Y; — (o + X))

Bo.Br =1

» Finds the line that minimizes the magnitude of the prediction errors!
> Least squares line always goes through (X, Y)!
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More on Regression & Model fit

» Estimated slope is related to correlation:

N ) o
3 = (correlation of x and y) x %
Ox

» Prediction error for regression: Sum of squared residuals

SSR = Zy 0% Z(Y (@ + Bx))°

i=1

» Benchmarking our predictions using the proportional reduction in
error:

reduction in prediction error using model

baseline prediction error
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More on Model fit

» Baseline prediction error without a regression is using the mean of Y
to predict. This is called the Total sum of squares:
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More on Model fit

» Baseline prediction error without a regression is using the mean of Y
to predict. This is called the Total sum of squares:

TSS=> (V- Y)?
i=1

» Combining SSR and TSS from earlier we get the coefficient of
determination, or R?:

_ TSS -SSR how much smaller LS prediction errors are vs mean

R2
TSS prediction error using the mean

» Can be very misleading! Does not guarantee linear model is ideal
for given data.
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Overfitting

» In-sample fit: how well your model predicts the data used to
estimate it.
» R? is one measure of in-sample fit

» OQut-of-sample fit: how well your model predicts new data.

» Overfitting: OLS optimizes in-sample fit; may do poorly out of
sample.
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Yi=a+5hXi+vZi+€

» Motivation for multiple regression:
> Better predictions (at least in-sample).

» Better interpretation as ceteris paribus relationships:
» Consider above expression
» (31 is the change in Y on average for a one unit increase in X,
holding constant Z (i.e.,ceteris paribus)

> Statistical control in a cross-sectional study.

» How do we estimate the coefficients? ~» The same way as before!
Minimize SSR.

SSR= (&) =D (Yi—(6+ X +4Z))
i=1 i=1

(&,8,4) = arg min > (V; — (& + BX; +4Z)))°
a8y =1
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Model fit with multiple predictors

» R? mechanically increases when you add a variables to the
regression.
» But this could be overfitting!!
» Solution: penalize regression models with more variables.
» Occam'’s razor: simpler models are preferred
» Adjusted R?: lowers regular R? for each additional covariate.
» If the added covariates doesn’t help predict, adjusted R? goes down!
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Modeling Difference-in-Differences with regression

» We can develop a linear model that will yield the
Difference-in-difference ATT estimator that we encountered in Week
1.

Yi = Bo+ f1Pi + B2T; + B3P; x T; + ¢; (Population Model)
Y = Bo+ BiPi+ BaT; + B3P; x T; (Estimated)

» Note P; is an indicator of period, and T; is an indicator of whether
the unit belongs to a group that is ever treated.

» Recall the DiD estimator takes the difference in the outcome among
the treated group (T; = 1) between P; = 1 and P; = 0 and subtracts
the difference in control group (T; = 0) between P; =1 and P; = 0.
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DiD Estimator Proof

Treated group (T;=1)at Pi=1 | Yi=0o+ 1+ P2+ B3+
Treated group (T; =1) at P, =0 Y=o+ Pr+e
Control group (T; =0) at P, =1 Yi=080+ 1 +€
Control group (T; =0) at P; = Yi=[o+e

(Change in Treated Group) — (Change in Control Group) =
(Bo+BritPa+Bs+ei—(Bot+Bate))—(BotPrte—(Botei)) =05

» Upshot: B3 (coefficient on interaction of treatment group indicator
and period indicator) is the DiD ATT estimator!
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Fixed Effects

» In regression, we can use something called fixed effects to control
for unobserved characteristics such as ability level in studies of
educational policy.

» We often include time and unit fixed effects to account for
time-specific, but unit invariant fixed effects and unit-specific, but
time invariant fixed effects, respectively.

» Operationally, this means just including a factor variable in your
regression that uniquely represents each time period or unit.

» Great way to account for some unobserved potential confounding
variables, but often not sufficient!

Im(y ~ x + as.factor(unit_indicator))
OR

Im(y ~ x + as.factor(time_indicator))
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