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Prediction

▶ What is prediction? Our best guess of a realized outcome.

prediction error = actual outcome − predicted outcome

▶ How to evaluate prediction errors?
▶ Bias: take the average of prediction errors.
▶ Root mean-squared error:average magnitude of the prediction error.

▶ Prediction of binary outcome variable ⇝ classification problem

▶ Wrong prediction ⇝ misclassification. Types? Consider the binary
outcome variable Y with possible values {0, 1}.
▶ True positive: predict 1 when actually 1.
▶ False positive: predict 1 when actually 0.
▶ True negative: predict 0 when actually 0.
▶ False negative: predict 0 when actually 1.
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Prediction with a Line

▶ Simplest possible way to relate two variables: a line, y = mx + b.

▶ Problem: not everything will fall on the line!
▶ Some points will be above the line, some below.
▶ Need a way to account for chance variation away from the line.

▶ Solution to above problem ⇝ linear model

Yi = β0 + β1Xi + ϵi

Yi︸︷︷︸
Outcome variable for unit i

= β0︸︷︷︸
Intercept

+ β1︸︷︷︸
Slope

· Xi︸︷︷︸
Explanatory variable for unit i

+ ϵi︸︷︷︸
Error for uniti
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Linear Model

Yi︸︷︷︸
Outcome variable for unit i

= β0︸︷︷︸
Intercept

+ β1︸︷︷︸
Slope

· Xi︸︷︷︸
Explanatory variable for unit i

+ ϵi︸︷︷︸
Error for uniti

▶ Notes on the foregoing equation
▶ Coefficients/parameters (β0, β1): true unknown intercept/slope of

the line of best fit.

▶ Chance error (ϵi ): for each unit, accounts for the fact that the line
doesn’t perfectly fit the data.
▶ Each observation allowed to be off the regression line
▶ On average, chance errors assumed to be 0.

▶ Useful fiction: this model represents the data generating process
▶ Intercept (β0): average value of Y when X is 0
▶ Slope (β1): average change in Y when X increases by one unit.
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Estimation

▶ Parameters: β0, β1
▶ Unknown features of the data-generating process.
▶ Chance error makes these impossible to observe directly.

▶ Estimates β̂0, β̂1
▶ An estimate is our best guess about some parameter, given sample.

▶ Regression line: Ŷ = β̂0 + β̂1x
▶ Notice how we NO LONGER use the notation Yi or Xi ⇝ we are

now thinking about averages.
▶ Average value of Y when X is equal to x .
▶ Represents the best guess or predicted value of the outcome at x .

Line of Best Fit is a CONDITIONAL EXPECTATION FUNCTION!

E[Y | x ] = Ŷ = β̂0 + β̂1x
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Regression is not magic
▶ People love to regress some variable on another, but that doesn’t

inherently mean anything. If you regress some continuous variable
(think income) on some binary variable (think treated vs. not
treated) your β0 and β1 are just describing the average value within
the treated group (x = 0) and the difference in the average values in
the treated and non-treated group. Why?

Line of Best Fit is a CONDITIONAL EXPECTATION FUNCTION!

▶ Regression becomes useful when you combine it with theory:
controlling for potential confounders, modeling DiD or other
research designs. Thinking about theory and assumptions must
precede regression for its estimates to be useful.

▶ Main point to takeaway: Regression only yields a causally identified
effect in the coefficient on a treatment variable if you’ve controlled
for all possible confounding variables in your model such that
treatment is effectively random. We call this unconfoundedness:

Ti ⊥ {Yi(1), Yi(0)}n
i=1 | Xi∀xi
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Least squares

▶ We get our estimates of β0, β1 by the least squares method.

▶ Minimize the sum of the squared residuals (SSR)

SSR =
n∑

i=1
(prediction errori)2 =

n∑
i=1

(Yi − (β̂0 + β̂1Xi))2

(β̂0, β̂1) = arg min
β̃0,β̃1

n∑
i=1

(Yi − (β̃0 + β̃1Xi))2

▶ Finds the line that minimizes the magnitude of the prediction errors!
▶ Least squares line always goes through (X̄ , Ȳ )!
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More on Regression & Model fit
▶ Estimated slope is related to correlation:

β̂ = (correlation of x and y) × σy
σx

▶ Prediction error for regression: Sum of squared residuals

SSR =
n∑

i=1
(Yi − Ŷi)2 =

n∑
i=1

(Yi − (α̂ + β̂xi))2

▶ Benchmarking our predictions using the proportional reduction in
error:

reduction in prediction error using model
baseline prediction error
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More on Model fit

▶ Baseline prediction error without a regression is using the mean of Y
to predict. This is called the Total sum of squares:

TSS =
n∑

i=1
(Yi − Ȳ )2

▶ Combining SSR and TSS from earlier we get the coefficient of
determination, or R2:

R2 = TSS − SSR
TSS = how much smaller LS prediction errors are vs mean

prediction error using the mean

▶ Can be very misleading! Does not guarantee linear model is ideal
for given data.
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Overfitting

▶ In-sample fit: how well your model predicts the data used to
estimate it.
▶ R2 is one measure of in-sample fit

▶ Out-of-sample fit: how well your model predicts new data.

▶ Overfitting: OLS optimizes in-sample fit; may do poorly out of
sample.
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Multiple predictors

Yi = α + β1Xi + γZi + ϵi

▶ Motivation for multiple regression:
▶ Better predictions (at least in-sample).
▶ Better interpretation as ceteris paribus relationships:

▶ Consider above expression
▶ β1 is the change in Y on average for a one unit increase in X ,

holding constant Z (i.e.,ceteris paribus)
▶ Statistical control in a cross-sectional study.

▶ How do we estimate the coefficients? ⇝ The same way as before!
Minimize SSR.

SSR =
n∑

i=1
(ϵi)2 =

n∑
i=1

(Yi − (α̂ + β̂Xi + γ̂Zi))2

(α̂, β̂, γ̂) = arg min
α̃,β̃,γ̃

n∑
i=1

(Yi − (α̃ + β̃Xi + γ̃Zi))2
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Model fit with multiple predictors

▶ R2 mechanically increases when you add a variables to the
regression.
▶ But this could be overfitting!!

▶ Solution: penalize regression models with more variables.
▶ Occam’s razor: simpler models are preferred

▶ Adjusted R2: lowers regular R2 for each additional covariate.
▶ If the added covariates doesn’t help predict, adjusted R2 goes down!

12/16



Model fit with multiple predictors

▶ R2 mechanically increases when you add a variables to the
regression.
▶ But this could be overfitting!!

▶ Solution: penalize regression models with more variables.
▶ Occam’s razor: simpler models are preferred

▶ Adjusted R2: lowers regular R2 for each additional covariate.
▶ If the added covariates doesn’t help predict, adjusted R2 goes down!

12/16



Model fit with multiple predictors

▶ R2 mechanically increases when you add a variables to the
regression.
▶ But this could be overfitting!!

▶ Solution: penalize regression models with more variables.
▶ Occam’s razor: simpler models are preferred

▶ Adjusted R2: lowers regular R2 for each additional covariate.
▶ If the added covariates doesn’t help predict, adjusted R2 goes down!

12/16



Illustrating R-squared’s Deficiencies

▶ What do you notice?

all these graphs have the same R2
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Modeling Difference-in-Differences with regression

▶ We can develop a linear model that will yield the
Difference-in-difference ATT estimator that we encountered in Week
1.

Yi = β0 + β1Pi + β2Ti + β3Pi × Ti + ϵi (Population Model)

Ŷ = β̂0 + β̂1Pi + β̂2Ti + β̂3Pi × Ti (Estimated)

▶ Note Pi is an indicator of period, and Ti is an indicator of whether
the unit belongs to a group that is ever treated.

▶ Recall the DiD estimator takes the difference in the outcome among
the treated group (Ti = 1) between Pi = 1 and Pi = 0 and subtracts
the difference in control group (Ti = 0) between Pi = 1 and Pi = 0.
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DiD Estimator Proof

Treated group (Ti = 1) at Pi = 1

Yi = β0 + β1 + β2 + β3 + ϵi
Treated group (Ti = 1) at Pi = 0 Yi = β0 + β2 + ϵi
Control group (Ti = 0) at Pi = 1 Yi = β0 + β1 + ϵi
Control group (Ti = 0) at Pi = 0 Yi = β0 + ϵi

(Change in Treated Group) − (Change in Control Group) =
(β0 + β1 + β2 + β3 + ϵi − (β0 + β2 + ϵi)) − (β0 + β1 + ϵi − (β0 + ϵi)) = β3

▶ Upshot: β3 (coefficient on interaction of treatment group indicator
and period indicator) is the DiD ATT estimator!
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Fixed Effects

▶ In regression, we can use something called fixed effects to control
for unobserved characteristics such as ability level in studies of
educational policy.

▶ We often include time and unit fixed effects to account for
time-specific, but unit invariant fixed effects and unit-specific, but
time invariant fixed effects, respectively.

▶ Operationally, this means just including a factor variable in your
regression that uniquely represents each time period or unit.

▶ Great way to account for some unobserved potential confounding
variables, but often not sufficient!

lm(y ~ x + as.factor(unit_indicator))

OR

lm(y ~ x + as.factor(time_indicator))
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