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Housekeeping

▶ Problem set 1 is complete now!

▶ We are grading, will return grades well before the midterm
▶ Midterm (conceptual + coding) coming up; I will release a list

of study topics to help you prepare
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Agenda

▶ Lasso

▶ Lasso Proof
▶ Implementation of Lasso
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Issues with Regression

▶ Regression allows us to estimate the relationship between two
variables

▶ Problem: How do we choose variables?

1. Intuition - perhaps, we have prior knowledge about the
relationship and think certain things affect outcomes

2. Literature - perhaps, the scholarship tells us that there are
things that are important

▶ Problem 2: What if we have lots and lots of variables?
▶ Intuition and the literature cannot really help us if we have

4500 variables
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Lasso
▶ Lasso - Least absolute shrinkage and selection operator

▶ Similar to ordinary least squares regression by using a loss
function to calculate β̂

β̂ = argmin
β̃

1
2

N∑
i=1

(Yi − β̃X )2 + λ|β̃| (1)

▶ Short version: Add a penalty term to our loss function to only
keep relevant covariates in our model
▶ Generally referred to shrinkage and regularization

▶ Advantages of lasso is the ease of which to interpret its
penalty: keep or drop

β̂lasso =
(

βOLS − sgn(βOLS) · λ

B

)
1

(
|βOLS| >

λ

B

)
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Lasso Intuition

▶ Intuition from lecture: The size of the boxed term, λ|β̃|,
determines the penalty size, or how stringent lasso is
▶ If a beta coefficient is insufficiently large, it goes to zero

(e.g. dropped)
▶ If lambda is too large, we exclude everything
▶ What happens if lambda is zero?
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Toy Example

Variable names are respectively field goals, field goal percentage, 3
pointers made, total rebounds, minutes played, field goals
attempted, 3 pointers attempted, 3 point percentage, 2 pointers
made, 2 pointers attempted, 2 pointer percentage, free throws
made, free throws attempted, free throw percentage, offensive
rebounds, defensive rebounds, assists, steals, blocks, turnovers,
personal fouls, points, conference dummy

Or. . .

What factors contribute to winning basketball?
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Lassoing some Lambdas
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Lasso Coefficients
## Warning: package ’plotmo’ was built under R version 4.3.3
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Issues with Lasso

▶ Researchers can choose λ - theoretically, infinite models and
infinite results, so opportunity to cherry pick

▶ OLS gives us Best Linear Unbiased Estimator with relatively
limited assumptions (e.g. linearity, conditional mean = zero,
independence of error)
▶ In short, if all our OLS assumptions are met, regularization and

shrinkage methods will bias our estimates
▶ Lasso does NOT have a closed-form solution because of

matrix limitations
▶ Ridge regression, another shrinkage/regularization method,

does
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Implementation of Lasso

library(glmnet)

nba_data <- as.matrix(nba[, -c(1,25,26)])
winning <- as.matrix(nba[, c(25)])

lasso <- glmnet(x = nba_data,
y = winning)

# sum absolute values of the betas
sum_beta <- colSums(abs(lasso$beta))
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Sum of Betas against Lambda
# plot against values of lambda
plot(sum_beta ~ lasso$lambda,

pch=16,
col="dodgerblue1",
ylab = expression(sum(beta)),
xlab = expression(lambda))
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Coefficient estimates against Lambda

library(plotmo)
plot_glmnet(lasso)
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What Lambda to Choose?

▶ Outside the scope of the class, but known as K-fold cross
validation
▶ In summary, minimizes the mean squared error to find the right

lambda
▶ glmnet allows us to implement this calculation

lasso.cv <- cv.glmnet(x = as.matrix(nba_data),
y = winning)

lasso.cv$lambda.min

## [1] 0.2997425
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Coefficient Estimates
coef(lasso,

s = lasso.cv$lambda.min)

## 24 x 1 sparse Matrix of class "dgCMatrix"
## s1
## (Intercept) -127.4574159
## g .
## mp .
## fg .
## fga -1.6450347
## fg% .
## 3p .
## 3pa .
## 3p% 373.9583001
## 2p .
## 2pa -0.4660265
## 2p% 206.0433940
## ft .
## fta 0.3110077
## ft% .
## orb 2.0083773
## drb .
## trb 1.6439070
## ast .
## stl 4.8840741
## blk 0.6392855
## tov -3.5783640
## pf .
## pts .
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Lasso Summary and Comments

▶ Lasso is an estimation technique, not an identification
technique
▶ Useful for obtaining more consistent estimates, as was

matching, but not sufficient for causal identification
▶ Tackles two problems: high-dimensionality and overfitting

▶ Better than ridge regression by making penalties easier to
understand: keep or drop

▶ However, can induce bias if OLS assumptions are met
▶ Other implementations of Lasso

▶ Urminsky, Hansen, and Chernozhukov (2016) have a method
known as double selection lasso, which attempts to control for
differential treatment assignment
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