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Agenda

▶ Housekeeping
▶ Hypothesis Testing Review
▶ Conclusion
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Housekeeping

▶ Problem set 1 returned tomorrow
▶ Material: will cover material until Lecture 10
▶ Acceptable materials: Both parts are semi-closed book
▶ Place: you can take the exam either (1) online, OR (2)

in-person in CGIS South 020
▶ Submission: on Gradescope and if you’re taking it in-person

submit the paper copy
▶ Midterm review session: 3/11 from 4-6 pm in CGIS Knafel 105
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Statistical Inference
▶ A sample statistic, T (X ), is a scalar value we derive from the

sample (i.e., a function of the data X = {x1, x2, . . . , xn}) to
summarize the data in some way. For example, p̂, x̄ , s, etc.

▶ The expected value of a sample statistic, E[T (X ))], is the average
value of the statistic across repeated samples.
▶ Note: Expected value is distinct from the sample mean. The

sample mean, x̄ is a function of the sample data,
X = {x1, x2, . . . , xn}, meaning it is computed from a sample of
size n. However, the expected value is the average across
many samples! Formally, that means we take the average
across X1, X2, . . . , XN , where Xn = {x1, x2, . . . , xn}. We can
get a single sample mean from a single sample and then get
the expected value across samples.

▶ The standard error is the standard deviation of the sample statistic
across repeated samples. (In other words,

√
V[T (X )])

▶ Note: Standard error is distinct from the sample standard
deviation. The sample standard deviation, s is a function of
the sample data, X = {x1, x2, . . . , xn}, meaning it is computed
from a sample of size n.
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Sampling Distributions

▶ Suppose X1, X2, . . . , Xn is an SRS from a population
distribution with mean µ and variance σ2.

Sample Mean = X̄n = 1
n

n∑
i=1

Xi

▶ This is a random variable with a distribution!
▶ The distribution of X̄n has:

▶ Expected value of µ
▶ Standard error (remember that’s the s.d. of X̄n!) of σ/

√
n
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Understanding these Distributions

x

P(x)

µ = 0.75

Figure 1: Population

x

P(x)

X̄n = 0.8

Figure 2: One
Sample

X̄n

f (X̄n)

E[X̄n] = 0.75

Figure 3: Sampling

▶ The population distribution is in Figure 1. It shows the proportion of 0s
and 1s in the population.

▶ We take samples from the distribution to get a sample, which has its own
distribution as in Figure 2. Note this changes from sample to sample!

▶ We summarize the distribution of the sample means from all samples in
Figure 3, the sampling distribution! Note that the sampling distribution
is continuous even though the population and sample distributions are
discrete because means can take on any continuous value!

▶ Intuition: The sampling distribution will be centered about the
population distribution mean because many of our samples will have
means close to the true population proportion, but some may be
extremely off (very few, though!)
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Hypothesis Testing
▶ What is a hypothesis test in a nutshell?

(1) Specify a test statistic.

(2) Specify a null hypothesis.
(3) Approximate the reference distribution – distribution of test

statistic under the null (i.e., permutation)
(4) Compute the test statistic’s probability under the null from

reference distribution.
(5) Conclude whether you have sufficient evidence to reject the

null, based on a confidence level. IS THE OBSERVED
STATISTIC SO INCONSISTENT WITH WHAT WE’D
EXPECT UNDER THE NULL THAT WE CAN REJECT

▶ Statistical hypothesis testing is a thought experiment. We
quantify the probability that we observed a result as extreme
as we actually retrieved in our sample under the null
hypothesis due to random chance alone.

▶ Null hypothesis: Some statement about the population
parameters (often H0 : Statistic = 0).

▶ Alternative hypothesis: The statement we hope or suspect
is true instead of H0.

▶ Probabilistic proof by contradiction: try to “disprove” the
null.
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p-value

▶ The p-value is the probability of observing data as or more
extreme as our data if the null hypothesis is true.

▶ Low p-value ⇝ reject the null (dependent on significance
level)

▶ NOT the probability that the null is true!
▶ p-values are typically two-sided
▶ Common thresholds for rejecting the null:

▶ p ≥ “not statistically significant”
▶ p < 0.05 “statistically significant”
▶ p < 0.01 “highly significant”
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Testing errors

▶ A p-value of 0.05 says that data this extreme would only
happen in 5% of repeated samples if the null were true.
▶ ⇝ 5% of the time we’ll reject the null when it is actually true.

▶ Test errors:

H0 True H0 False
Retain H0 Awesome! Type II error
Reject H0 Type I error Good stuff!

▶ Type I error because it’s the worst
▶ “Convicting” an innocent null hypothesis

▶ Type II error less serious
▶ Missed out on an awesome finding
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What kind of significance?

There are different types of significance that don’t all have to be
true together:

1. Statistical significance: we can reject the null of no effect.
2. Causal significance: we can interpret our estimated

difference in means as a causal effect.
3. Practical significance: the estimated effect is meaningfully

large.
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Regression Again

▶ Linear regression helps us estimate the relationship between
two variables

▶ Problem: how do we know our results are not just due to
randomness?

▶ In our regression notation, how sure can we be of our β̂0 and
β̂1 estimates match up to β0 and β1?

▶ We know that our β̂0 and β̂1 have a distribution, and we can
use this fact to compute a range of plausible values for these
estimates.
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How do we read the table?

(1)

(Intercept) 0.247***
(0.007)

inc 0.391***
(0.011)

Num.Obs. 1154
R2 0.513
R2 Adj. 0.513
Log.Lik. 329.063
F 1215.638
RMSE 0.18
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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Example of Null and Alternative Hypotheses

Question: What is the effect of incumbency on vote share?

H0: A candidate’s vote share would not change depending on
incumbency status

β̂1 = Y (1) − Y (0) = 0

H1: A candidate’s vote share would change depending on
incumbency status

β̂1 = Y (1) − Y (0) ̸= 0
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Null Distribution

▶ Now, we need to try to disprove the null hypothesis to argue
there is a treatment effect.

▶ Let’s assume the null hypothesis is true - what values of β̂1
disprove it?

▶ We can sort of guess - probably not scientific
▶ We can set a cutoff - also probably not very systematic

▶ We can simulate!

1. Specify a null hypothesis
2. Use our existing data, namely variation, to estimate likely

values we might get
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Null Distribution

▶ Random variables, like our β̂1, have nice properties!
▶ The distribution of averages (or expectations) approximate to

a normal distribution
▶ So, simulating can give us a rough idea of what values to

expect under the null hypothesis
▶ This is also known as the Central Limit Theorem

▶ Decomposition is outside the scope of this course
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Example Normal Distribution
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p-value

▶ We have a distribution of β̂1 values under the null - now what?
▶ We generally reject the null, when our estimates are at some

extremity in the null distribution
▶ p-value: the probability under the null hypothesis, we observe

data as extreme as ours
▶ As a scientific community, we have some arbitrary cutoffs to

reject the null
▶ p < .05 ≈ *
▶ p < .01 ≈ **
▶ p < .001 ≈ ***

▶ Norms change - in the past, p < .1 was considered significant,
but lower bound is now p < .05

▶ Relationship between p-value and α
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p < .01
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