
GOV 51 Section
Week 9: Unsupervised Text Analysis

Pranav Moudgalya

Harvard College

1/46

Agenda

▶ Housekeeping
▶ Unsupervised Learning Overview
▶ Implementation

2/46

Housekeeping

▶ Reminder of deadlines
▶ April 11th → Initial result due (one page write up). (10%)
▶ April 18th → First draft of poster due.
▶ April 24th → Final draft of poster due.
▶ April 29th → Poster session (usual lecture time) (no

extensions!)

3/46

Terms and Things

▶ Corpus - a collection of texts that we want to analyze
▶ Complete works of Charlotte Bronte, newspaper articles from

the AP
▶ Document - a unit within the corpus

▶ Jane Eyre; an article from the AP

4/46

Unsupervised Learning Example

▶ Lot’s of criticism of the peer review model - send your article
in to two double blind reviewers
▶ Despite double blind, questions about anonymity - people post

their papers online now
▶ Reviewers can be quite biased as well!

▶ Two questions arise

1. Who is publishing in top political science journals? Are their
ascriptive disparities?

2. What is being published? Are some topics avoided?

5/46

Unsupervised Learning Example

▶ Lot’s of criticism of the peer review model - send your article
in to two double blind reviewers
▶ Despite double blind, questions about anonymity - people post

their papers online now
▶ Reviewers can be quite biased as well!

▶ Two questions arise

1. Who is publishing in top political science journals? Are their
ascriptive disparities?

2. What is being published? Are some topics avoided?

6/46

Topic Modeling

▶ One advantage of unsupervised learning is that pattern finding
▶ Data could be high-dimensional, messy, huge observations

(e.g. Jane Eyre) . . .
▶ Patterns within the data are incredibly useful!

▶ For example, the topics found in a flagship political science
journal

▶ One application is topic modeling

7/46

Latent Dirichlet Allocation (LDA)

▶ When we topic model, we need to make some assumptions
about how text is generated
▶ Recall basic assumptions about topics → probability

distribution of words
▶ Latent Dirichlet Allocation is just one model that we can use

to topic model
▶ LDA relies on a similar assumption of the data generating

process of text

1. For each topic, draw a topic-word distribution

→ how likely is
a topic given a word?

2. For each document, draw a document-topic distribution →
how likely is a document about certain topics?

8/46

Latent Dirichlet Allocation (LDA)

▶ When we topic model, we need to make some assumptions
about how text is generated
▶ Recall basic assumptions about topics → probability

distribution of words
▶ Latent Dirichlet Allocation is just one model that we can use

to topic model
▶ LDA relies on a similar assumption of the data generating

process of text

1. For each topic, draw a topic-word distribution → how likely is
a topic given a word?

2. For each document, draw a document-topic distribution →
how likely is a document about certain topics?

8/46

Latent Dirichlet Allocation (LDA)

▶ When we topic model, we need to make some assumptions
about how text is generated
▶ Recall basic assumptions about topics → probability

distribution of words
▶ Latent Dirichlet Allocation is just one model that we can use

to topic model
▶ LDA relies on a similar assumption of the data generating

process of text

1. For each topic, draw a topic-word distribution → how likely is
a topic given a word?

2. For each document, draw a document-topic distribution

→
how likely is a document about certain topics?

8/46

Latent Dirichlet Allocation (LDA)

▶ When we topic model, we need to make some assumptions
about how text is generated
▶ Recall basic assumptions about topics → probability

distribution of words
▶ Latent Dirichlet Allocation is just one model that we can use

to topic model
▶ LDA relies on a similar assumption of the data generating

process of text

1. For each topic, draw a topic-word distribution → how likely is
a topic given a word?

2. For each document, draw a document-topic distribution →
how likely is a document about certain topics?

8/46

Lecture Example

I had donuts this morning. I don’t have diabetes yet.

9/46

LDA Visualization

10/46

LDA Visualization

11/46

LDA Visualization

12/46

Installation

▶ topicmodels package is useful for implementing a LDA
model

▶ In our example here, we will be taking a look at a sample of
articles in the AP in 1992

library(topicmodels)
data("AssociatedPress")

13/46

Preview

▶ Data is at the document-word level - for each document, each
unique word is counted

head(tidy(AssociatedPress))

A tibble: 6 x 3
document term count
<int> <chr> <dbl>
1 1 adding 1
2 1 adult 2
3 1 ago 1
4 1 alcohol 1
5 1 allegedly 1
6 1 allen 1

14/46

Function

▶ k: number of topics we want to specify
▶ control: setting a seed because probability distributions

entail randomness

set a seed so that the output of the model is predictable
ap_lda <- LDA(AssociatedPress,

k = 2,
control = list(seed = 02138))

ap_lda

A LDA_VEM topic model with 2 topics.

15/46

Results
▶ beta refers to the probability that a given word is related to a

topic
▶ Let’s see which topic “harvard” is associated with

ap_topics <- tidy(ap_lda,
matrix = "beta")

ap_topics |>
filter(term == "harvard")

A tibble: 2 x 3
topic term beta
<int> <chr> <dbl>
1 1 harvard 0.0000402
2 2 harvard 0.000120

16/46

Visualization Prep

▶ Instead of looking for specific words, let’s visualize the most
likely terms per topic

top_terms <- ap_topics |>
group_by(topic) |>
slice_max(beta, n = 10) |>
ungroup() |>
arrange(topic, -beta)

top_terms <- top_terms |>
mutate(term = reorder_within(term, beta, topic))

17/46

Visualization

ggplot(top_terms, aes(beta, term, fill = factor(topic))) +
geom_col(show.legend = FALSE) +
facet_wrap(~ topic, scales = "free") +
scale_y_reordered()

18/46

Visualization

1 2

0.000 0.002 0.004 0.006 0.000 0.003 0.006 0.009

years

federal

market

company

last

billion

new

year

million

percent

state

years

new

soviet

government

president

police

two

people

i

beta

te
rm

19/46

Document Level Visualization
▶ How about topic likelihoods at the document level?
▶ gamma gives us the likelihood of a topic given the words in a

document

ap_documents <- tidy(ap_lda, matrix = "gamma") |>
arrange(document, topic)

head(ap_documents)

A tibble: 6 x 3
document topic gamma
<int> <int> <dbl>
1 1 1 0.999
2 1 2 0.000677
3 2 1 0.514
4 2 2 0.486
5 3 1 0.962
6 3 2 0.0380

20/46

So, the motivating question

1. Who is publishing in top political science journals? Are their
ascriptive disparities?

2. What is being published? Are some topics avoided?

Saraceno (2020) did an analysis of publications in The Journal of
Politics

21/46

So, the motivating question

1. Who is publishing in top political science journals? Are their
ascriptive disparities?

2. What is being published? Are some topics avoided?

Saraceno (2020) did an analysis of publications in The Journal of
Politics

21/46

Back to Saraceno (2020)

22/46

Saraceno (2022)

23/46

Topic Modelling, LDA, and Notes

▶ Reiterating caveats at the end of lecture
▶ Topic modelling is not a panacea!

▶ Similar to other methods, it relies on assumptions, particularly
about the DGP of text

▶ Uncertainty is also a part of predictions - similar in respect to
regression predictions which have their own standard errors

24/46

Packages and Preamble

library(tm)
library(SnowballC)

▶ In what ways can we categorize and divide the Harvard
Government faculty?

▶ Let’s say we have a corpus with three variables in .csv form

1. prof - name of faculty member
2. phd - year of phd attainment
3. bio - biography on website

25/46

Pre-pre-processing

Loading in the data
df <- read.csv("data/harvardgov.csv")

Converting the .csv to document term matrix form
corpus <- Corpus(VectorSource(df$bio))

26/46

Pre-processing

make everything lowercase
corpus <- tm_map(corpus, content_transformer(tolower))

remove white space (e.g. spaces)
corpus <- tm_map(corpus, stripWhitespace)

remove numbers
corpus <- tm_map(corpus, removeNumbers)

remove stopwords
corpus <- tm_map(corpus, removeWords, stopwords("english"))

stem words (e.g. remove "ing")
corpus <- tm_map(corpus, stemDocument)

27/46

Conversion to DtM

Turning into a document term matrix
dtm <- DocumentTermMatrix(corpus)
dtm.mat <- as.matrix(dtm)

Adding labels to each document
rownames(dtm.mat) <- df$prof

Normalize by document size
tfidf <- weightTfIdf(dtm, normalize = TRUE)
tfidf.mat <- as.matrix(tfidf, normalize = TRUE)

Adding labels to each document
rownames(tfidf.mat) <- df$prof

28/46

Visualizing

par(cex = 1.25)
library("wordcloud")

Loading required package: RColorBrewer

liu <- dtm.mat["naijia liu",]
liu.tfidf <- tfidf.mat["naijia liu",]

29/46

Visualizing Example

wordcloud(colnames(dtm.mat), liu,
min.freq = min(liu[liu > 0]))

imputation,

so
ci

alphd

may
methodologist.
research

current

mediain
te

re
st

assist

depart

ha
rv

ar
d.

text govern

scientist

includ

team

survey

work

sc
ie

nc

facebook

obtain

data

demographi

(−).

professor

study.

analysis,

miss polit

30/46

Descriptive Stats

sort(liu, decreasing = TRUE)[1:5]

polit research current includ professor
2 2 1 1 1

sort(liu.tfidf, decreasing = T)[1:3]

demographi facebook imputation,
0.1745301 0.1745301 0.1745301

31/46

K-Means Algorithm

▶ K-Means clustering is simply an exercise in partitioning n
observations into k clusters
▶ In a text context, this means comparing the similarity of words

between documents
▶ Here, we are looking to cluster professors based on similar

word usage in their bios!
▶ This is an iterative process - the algorithm does initial

groupings, then sees whether it can minimize error by another
permutation

32/46

K-Means Algorithm

33/46

K-Means Algorithm

Need to standardize so that each row sums to a unit length (e.g. 1)
tfidf.unit <- tfidf.mat / sqrt(rowSums(tfidf.matˆ2))

set.seed(1234)
centers indicates the number of clusters (e.g. k)
kconfour.out <- kmeans(tfidf.unit,

centers = 5)

34/46

Descriptive Stats

table(kconfour.out$cluster)

##
1 2 3 4 5
11 14 5 7 11

35/46

K-Means Group 1
knitr::kable(df$prof[kconfour.out$cluster == 1])

x

stephen ansolabehere
nara dillon
grzegorz ekiert
peter a. hall
jennifer hochschild
alastair iain johnston
taeku lee
elizabeth j. perry
michael rosen
james m. snyder, jr
richard tuck

36/46

K-Means Group 2
knitr::kable(df$prof[kconfour.out$cluster == 2])

x

danielle allen
eric beerbohm
daniel carpenter
timothy colton
katrina forrester
claudine gay
harvey c. mansfield
eric nelson
paul peterson
stephen peter rosen
michael sandel
theda skocpol
latanya sweeney
daniel ziblatt

37/46

K-Means Group 3

knitr::kable(df$prof[kconfour.out$cluster == 3])

x

jeffry frieden
frances hagopian
alisha c. holland
torben iversen
steven levitsky

38/46

K-Means Group 4

knitr::kable(df$prof[kconfour.out$cluster == 4])

x

melani cammett
stephen chaudoin
christina davis
joshua d. kertzer
christoph mikulaschek
pia raffler
yuhua wang

39/46

K-Means Group 5
knitr::kable(df$prof[kconfour.out$cluster == 5])

x

matthew blackwell
peter buisseret
ryan enos
chase h. harrison
michael j. hiscox
kosuke imai
gary king
naijia liu
mashail malik
stephanie ternullo
dustin tingley

40/46

Overtime Comparisons

▶ How similar are each bio to the professor with the earliest
PhD, Harvey Mansfield?

Isolate Harvey
harvey <- as.data.frame(tfidf.mat["harvey c. mansfield",])
Isolate non-Harveys
nonhm.tfidf <- as.data.frame(tfidf.mat[rownames(tfidf.mat)

!= "harvey c. mansfield",])
Sort everything chronologically by PhD attainment
nonhm.tfidf$year.index <-

df$phd[df$prof!= "harvey c. mansfield"]
chron.tfidf <- nonhm.tfidf[order(nonhm.tfidf$year.index),]
years <- sort(unique(df$phd))
years <- years[-1]

41/46

For-Loop

avg.cosim <- rep(NA, length(years))
for (i in 1:length(years)) {

decade <- subset(chron.tfidf,
(year.index == years[i]))

decade <- decade[, names(decade) != "year.index"]
similarity <- cosine(harvey, decade)

avg.cosim[i] <- mean(similarity)
}

42/46

Plotting Similarity to Harvey Across Time

plot(years, avg.cosim, main = "Similarity to Harvey",
xlab = "Year", ylab = "Cosine Similarity")

1960 1970 1980 1990 2000 2010 2020

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0
0.

03
5

Similarity to Harvey

Year

C
os

in
e

S
im

ila
rit

y

43/46

Reminder: Cosine similarity vs. Euclidean length

44/46

Summary

▶ Pre-processing text in an easy-to-implement way
▶ Also, pre-pre-processing when our data isn’t already a

document term matrix
▶ Learned one way to group text based on similarity

(e.g. k-means algorithm)
▶ Using for-loops and our own cosine similarity function, we can

plot similarity over time

45/46

Office Hours

▶ Bring all your questions!
▶ Happy to help on code, identification, etc!
▶ Happy to talk about final projects!

46/46

