Conceptual Causality: DiD

Section 1

Sima Biondi Spring 2025

Gov 51: Data Analysis and Politics

- 2 Logistics
- 3 Causation and correlation
- 4 Difference-in-difference

2 Logistics

- 3 Causation and correlation
- 4 Difference-in-difference

- 3rd year PhD
- From San Francisco, CA
- State building and political development in 19th-century Egypt and Iran using statistical and computational methods
- Excited to teach Gov 51!

edward3

henry7

of visits
50
100
15

Turn to your partner, and say hello! Learn their:

- Name
- School year
- Hometown
- Why are they taking the class
- \cdot Movie they saw this break or favorite song they listened to

Turn to your partner, and say hello! Learn their:

- Name
- School year
- Hometown
- Why are they taking the class
- \cdot Movie they saw this break or favorite song they listened to

Share with the class!

2 Logistics

- 3 Causation and correlation
- 4 Difference-in-difference

- Reinforce a solid foundation to engage with causal inference methodologies
- Develop a familiarity with machine learning in social science
- Understand methodological approaches in leading social science journals
- Work collaboratively on quantitative social science

- Reinforce a solid foundation to engage with causal inference methodologies
- Develop a familiarity with machine learning in social science
- Understand methodological approaches in leading social science journals
- Work collaboratively on quantitative social science

Bottom line: Gov 51 builds on material from Gov 50:

← Check out the course "prefresher" for more information (tinyurl.com/GOV51prefresher) • Full section syllabus can be found on Gov 51 course site

- $\cdot\,$ Full section syllabus can be found on Gov 51 course site
 - $\rightarrow\,$ Attendance: required

- Full section syllabus can be found on Gov 51 course site
 - \rightarrow Attendance: required
 - $\rightarrow\,$ Assignments: 3 psets, midterm, final project

- Full section syllabus can be found on Gov 51 course site
 - \rightarrow Attendance: required
 - $\rightarrow\,$ Assignments: 3 psets, midterm, final project
 - $\rightarrow\,$ Contact: email or Slack me!

- Full section syllabus can be found on Gov 51 course site
 - \rightarrow Attendance: required
 - $\rightarrow\,$ Assignments: 3 psets, midterm, final project
 - \rightarrow Contact: email or Slack me!
- Office hours: Tuesday 2-4 PM (appointment basis) in Jenny's Cafe

- Full section syllabus can be found on Gov 51 course site
 - \rightarrow Attendance: required
 - $\rightarrow\,$ Assignments: 3 psets, midterm, final project
 - \rightarrow Contact: email or Slack me!
- Office hours: Tuesday 2-4 PM (appointment basis) in Jenny's Cafe
- Other office Hours

- Full section syllabus can be found on Gov 51 course site
 - \rightarrow Attendance: required
 - $\rightarrow\,$ Assignments: 3 psets, midterm, final project
 - \rightarrow Contact: email or Slack me!
- Office hours: Tuesday 2-4 PM (appointment basis) in Jenny's Cafe
- \cdot Other office Hours
 - Pranav Moudgalya: Walk in 7-9 on Mondays and 7:45-9pm on Thursdays (Leverett House Dining Hall)

- Full section syllabus can be found on Gov 51 course site
 - \rightarrow Attendance: required
 - $\rightarrow\,$ Assignments: 3 psets, midterm, final project
 - \rightarrow Contact: email or Slack me!
- Office hours: Tuesday 2-4 PM (appointment basis) in Jenny's Cafe
- \cdot Other office Hours
 - Pranav Moudgalya: Walk in 7-9 on Mondays and 7:45-9pm on Thursdays (Leverett House Dining Hall)
 - Ben Heilbronn: Tues/Thurs 7:30pm-9:30pm @ Eliot Dining Hall; by appointment

• Attendance is worth 20% of your grade! This includes section.

- Attendance is worth 20% of your grade! This includes section.
- Expectation in section is that you come prepared much of what is covered will be extensions of your reading assignments and implementation!

- Attendance is worth 20% of your grade! This includes section.
- Expectation in section is that you come prepared much of what is covered will be extensions of your reading assignments and implementation!
- While participation is not required, disrupting your classmates will impact your grade.

- Attendance is worth 20% of your grade! This includes section.
- Expectation in section is that you come prepared much of what is covered will be extensions of your reading assignments and implementation!
- While participation is not required, disrupting your classmates will impact your grade.
- Alternative section attendance is fine just email me AND Pranav BEFORE both sections start

- We'll use Professor Liu's website, Slack, and Gradescope (more instructions coming)
- Laptops are required for both lecture and section

- We'll use Professor Liu's website, Slack, and Gradescope (more instructions coming)
- Laptops are required for both lecture and section
- Questions?

2 Logistics

- 3 Causation and correlation
 - 4 Difference-in-difference

• Causal inference is the study of **causal** questions

- Causal inference is the study of **causal** questions
 - Does an electoral challenge increase legislative productivity?

- Causal inference is the study of **causal** questions
 - Does an electoral challenge increase legislative productivity?
 - Do protests lead to lasting institutional changes?

- Causal inference is the study of **causal** questions
 - Does an electoral challenge increase legislative productivity?
 - Do protests lead to lasting institutional changes?
- Causal questions specifically revolve around unobserved outcomes

Only one observed treatment (treated or control) outcome!

- Causal inference is the study of **causal** questions
 - Does an electoral challenge increase legislative productivity?
 - Do protests lead to lasting institutional changes?
- Causal questions specifically revolve around unobserved outcomes

Only one observed treatment (treated or control) outcome!

 \Rightarrow the fundamental problem of causal inference

• Since we do not directly observe the counterfactual (these *but-ifs*), how do we identify and estimate causal effects?

- Since we do not directly observe the counterfactual (these *but-ifs*), how do we identify and estimate causal effects?
- Assumptions, assumptions, assumptions

- Since we do not directly observe the counterfactual (these *but-ifs*), how do we identify and estimate causal effects?
- Assumptions, assumptions, assumptions
- But before that, let's introduce some notation to ground us

• $Y_i(T_i)$ where Y_i refers to observation *i*'s outcome and T_i refers to their treatment status

- $Y_i(T_i)$ where Y_i refers to observation *i*'s outcome and T_i refers to their treatment status
- $Y_i(1)$: outcome that observation *i* would have if treated.

- $Y_i(T_i)$ where Y_i refers to observation *i*'s outcome and T_i refers to their treatment status
- $Y_i(1)$: outcome that observation *i* would have if treated.
- $Y_i(0)$: outcome that observation *i* would have if untreated.

- $Y_i(T_i)$ where Y_i refers to observation *i*'s outcome and T_i refers to their treatment status
- $Y_i(1)$: outcome that observation *i* would have if treated.
- $Y_i(0)$: outcome that observation *i* would have if untreated.
- $Y_i(1) Y_i(0)$: causal quantity of interest, or the difference in the potential outcomes under treatment for the same unit i.

- $Y_i(T_i)$ where Y_i refers to observation *i*'s outcome and T_i refers to their treatment status
- $Y_i(1)$: outcome that observation *i* would have if treated.
- $Y_i(0)$: outcome that observation *i* would have if untreated.
- $Y_i(1) Y_i(0)$: causal quantity of interest, or the difference in the potential outcomes under treatment for the same unit i.
 - Check-in: can this quantity be observed?

- $Y_i(T_i)$ where Y_i refers to observation *i*'s outcome and T_i refers to their treatment status
- $Y_i(1)$: outcome that observation *i* would have if treated.
- $Y_i(0)$: outcome that observation *i* would have if untreated.
- $Y_i(1) Y_i(0)$: causal quantity of interest, or the difference in the potential outcomes under treatment for the same unit i.
 - Check-in: can this quantity be observed?

- $Y_i(T_i)$ where Y_i refers to observation *i*'s outcome and T_i refers to their treatment status
- $Y_i(1)$: outcome that observation *i* would have if treated.
- $Y_i(0)$: outcome that observation *i* would have if untreated.
- $Y_i(1) Y_i(0)$: causal quantity of interest, or the difference in the potential outcomes under treatment for the same unit i.
 - Check-in: can this quantity be observed?
- *E*[*X*] is the **expectation or average** of random variable *X*

- $Y_i(T_i)$ where Y_i refers to observation *i*'s outcome and T_i refers to their treatment status
- $Y_i(1)$: outcome that observation *i* would have if treated.
- $Y_i(0)$: outcome that observation *i* would have if untreated.
- $Y_i(1) Y_i(0)$: causal quantity of interest, or the difference in the potential outcomes under treatment for the same unit i.
 - Check-in: can this quantity be observed?
- *E*[*X*] is the **expectation or average** of random variable *X*

- $Y_i(T_i)$ where Y_i refers to observation *i*'s outcome and T_i refers to their treatment status
- $Y_i(1)$: outcome that observation *i* would have if treated.
- $Y_i(0)$: outcome that observation *i* would have if untreated.
- $Y_i(1) Y_i(0)$: causal quantity of interest, or the difference in the potential outcomes under treatment for the same unit i.
 - Check-in: can this quantity be observed?
- *E*[*X*] is the **expectation or average** of random variable *X*

- $Y_i(T_i)$ where Y_i refers to observation *i*'s outcome and T_i refers to their treatment status
- $Y_i(1)$: outcome that observation *i* would have if treated.
- $Y_i(0)$: outcome that observation *i* would have if untreated.
- $Y_i(1) Y_i(0)$: causal quantity of interest, or the difference in the potential outcomes under treatment for the same unit i.
 - Check-in: can this quantity be observed?
- *E*[*X*] is the **expectation or average** of random variable *X*
 - For example, the *E*[*X*], where *X* is age, could be 20 for this class

Voters	Age	Gender	Canvassed	Turnout		Causal Effect
i	<i>X</i> ₁	X ₂	T _i	$Y_{i}(1)$	$Y_{i}(0)$	$Y_i(1) - Y_i(0)$
1	19	Μ	1	0	???	???
2	56	F	0	???	1	???
3	89	F	0	???	0	???

• Given that we are unable to know the counterfactual for any given person, we employ the **Average Treatment Effect** as a measure of a causal effect oftentimes

- Given that we are unable to know the counterfactual for any given person, we employ the **Average Treatment Effect** as a measure of a causal effect oftentimes
- Asserting that the average effect = causal effect requires assumptions

- Given that we are unable to know the counterfactual for any given person, we employ the **Average Treatment Effect** as a measure of a causal effect oftentimes
- Asserting that the average effect = causal effect requires assumptions
 - 1. Non-interference among units

- Given that we are unable to know the counterfactual for any given person, we employ the **Average Treatment Effect** as a measure of a causal effect oftentimes
- Asserting that the average effect = causal effect requires assumptions
 - 1. Non-interference among units
 - 2. Only a single version of each treatment level (i.e. consistency)

- Given that we are unable to know the counterfactual for any given person, we employ the **Average Treatment Effect** as a measure of a causal effect oftentimes
- Asserting that the average effect = causal effect requires assumptions
 - 1. Non-interference among units
 - 2. Only a single version of each treatment level (i.e. consistency)
- Together, these form the Stable Unit Treatment Value Assumption (SUTVA)

- Given that we are unable to know the counterfactual for any given person, we employ the **Average Treatment Effect** as a measure of a causal effect oftentimes
- Asserting that the average effect = causal effect requires assumptions
 - 1. Non-interference among units
 - 2. Only a single version of each treatment level (i.e. consistency)
- Together, these form the Stable Unit Treatment Value Assumption (SUTVA)
- These are just to start there will be many more assumptions for other measures of causal effects

• Identification refers to the assumptions necessary to claim a causal effect

- Identification refers to the assumptions necessary to claim a causal effect
 - IMPORTANT: "Identification tells us what to estimate, not how"

- Identification refers to the assumptions necessary to claim a causal effect
 - IMPORTANT: "Identification tells us what to estimate, not how"
- $\cdot\,$ Estimation is a statistical exercise that answers the how

- Identification refers to the assumptions necessary to claim a causal effect
 - IMPORTANT: "Identification tells us what to estimate, not how"
- $\cdot\,$ Estimation is a statistical exercise that answers the how
- We start with identification when we discuss instrumental variables, for example

- Identification refers to the assumptions necessary to claim a causal effect
 - IMPORTANT: "Identification tells us what to estimate, not how"
- $\cdot\,$ Estimation is a statistical exercise that answers the how
- We start with identification when we discuss instrumental variables, for example
 - Estimand: unknown quantity we want to estimate

- Identification refers to the assumptions necessary to claim a causal effect
 - IMPORTANT: "Identification tells us what to estimate, not how"
- $\cdot\,$ Estimation is a statistical exercise that answers the how
- We start with identification when we discuss instrumental variables, for example
 - Estimand: unknown quantity we want to estimate
 - Estimator: the method by which we measure the estimand

- Identification refers to the assumptions necessary to claim a causal effect
 - IMPORTANT: "Identification tells us what to estimate, not how"
- $\cdot\,$ Estimation is a statistical exercise that answers the how
- We start with identification when we discuss instrumental variables, for example
 - Estimand: unknown quantity we want to estimate
 - Estimator: the method by which we measure the estimand
 - Estimate: the value we get when the estimator is applied to the data

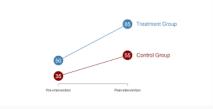
- Identification refers to the assumptions necessary to claim a causal effect
 - IMPORTANT: "Identification tells us what to estimate, not how"
- $\cdot\,$ Estimation is a statistical exercise that answers the how
- We start with identification when we discuss instrumental variables, for example
 - Estimand: unknown quantity we want to estimate
 - Estimator: the method by which we measure the estimand
 - Estimate: the value we get when the estimator is applied to the data

- Identification refers to the assumptions necessary to claim a causal effect
 - IMPORTANT: "Identification tells us what to estimate, not how"
- $\cdot\,$ Estimation is a statistical exercise that answers the how
- We start with identification when we discuss instrumental variables, for example
 - · Estimand: unknown quantity we want to estimate
 - Estimator: the method by which we measure the estimand
 - Estimate: the value we get when the estimator is applied to the data

1 Introductions

- 2 Logistics
- 3 Causation and correlation
- 4 Difference-in-difference

- As in lecture, difference-in-difference allows us to "infer what would have happened to the treatment group without treatment"
- What assumptions are necessary for identification?



• **Parallel trends**: "treated and control groups will share the same difference IF the treated were not to be treated at t = 1"

DiD assumptions preview

- **Parallel trends**: "treated and control groups will share the same difference IF the treated were not to be treated at t = 1"
- You can do a difference-in-difference analysis without parallel trends (e.g. just simple algebra subtracting means) your estimand will not be identified, so you cannot make causal interpretations

DiD assumptions preview

- **Parallel trends**: "treated and control groups will share the same difference IF the treated were not to be treated at t = 1"
- You can do a difference-in-difference analysis without parallel trends (e.g. just simple algebra subtracting means) your estimand will not be identified, so you cannot make causal interpretations
- Difference-in-difference is a powerful tool in causal inference they refer to a broad class of estimators that are hotly contested right now

- **Parallel trends**: "treated and control groups will share the same difference IF the treated were not to be treated at t = 1"
- You can do a difference-in-difference analysis without parallel trends (e.g. just simple algebra subtracting means) your estimand will not be identified, so you cannot make causal interpretations
- Difference-in-difference is a powerful tool in causal inference they refer to a broad class of estimators that are hotly contested right now
 - Refinements include: DiDiD, moving treatments, controls in semi-parametric estimation, etc.

Variation in potential outcomes across (a) treatment and (b) time

Variation in potential outcomes across (a) **treatment** and (b) **time** Previous notation of potential outcomes: $Y_i(1)$ but now we need an indicator for time period (*t*) Variation in potential outcomes across (a) **treatment** and (b) **time** Previous notation of potential outcomes: $Y_i(1)$ but now we need an indicator for time period (*t*)

Now: $\hookrightarrow Y_{it}(1)$

• Y_{i1}(0)

• Y_{i1}(0)

- + $Y_{i1}(0)$: Potential outcome in period after treatment under control
- $Y_{i0}(0)$

- + $Y_{i1}(0)$: Potential outcome in period after treatment under control
- $Y_{i0}(0)$

- + $Y_{i1}(0)$: Potential outcome in period after treatment under control
- $Y_{i0}(0)$: Potential outcome in period before treatment under control
- Y_{i1}(1)

- + $Y_{i1}(0)$: Potential outcome in period after treatment under control
- $Y_{i0}(0)$: Potential outcome in period before treatment under control
- Y_{i1}(1)

- Y_{i1}(0): Potential outcome in period after treatment under control
- $Y_{i0}(0)$: Potential outcome in period before treatment under control
- Y_{i1}(1): Potential outcome in period after treatment under treatment
- $Y_{i0}(1)$

- Y_{i1}(0): Potential outcome in period after treatment under control
- $Y_{i0}(0)$: Potential outcome in period before treatment under control
- Y_{i1}(1): Potential outcome in period after treatment under treatment
- $Y_{i0}(1)$

- Y_{i1}(0): Potential outcome in period after treatment under control
- $Y_{i0}(0)$: Potential outcome in period before treatment under control
- Y_{i1}(1): Potential outcome in period after treatment under treatment
- Y_{i0}(1): Potential outcome in period before treatment under treatment
- $Y_{i1}(0)|T_i = 0$

- Y_{i1}(0): Potential outcome in period after treatment under control
- $Y_{i0}(0)$: Potential outcome in period before treatment under control
- Y_{i1}(1): Potential outcome in period after treatment under treatment
- Y_{i0}(1): Potential outcome in period before treatment under treatment
- $Y_{i1}(0)|T_i = 0$

- Y_{i1}(0): Potential outcome in period after treatment under control
- $Y_{i0}(0)$: Potential outcome in period before treatment under control
- Y_{i1}(1): Potential outcome in period after treatment under treatment
- Y_{i0}(1): Potential outcome in period before treatment under treatment
- $Y_{i1}(0)|T_i = 0$: Potential outcome in period after treatment under control given the units are not treated. This is observed!
- $Y_{i1}(0)|T_i = 1$

- Y_{i1}(0): Potential outcome in period after treatment under control
- $Y_{i0}(0)$: Potential outcome in period before treatment under control
- Y_{i1}(1): Potential outcome in period after treatment under treatment
- Y_{i0}(1): Potential outcome in period before treatment under treatment
- $Y_{i1}(0)|T_i = 0$: Potential outcome in period after treatment under control given the units are not treated. This is observed!
- $Y_{i1}(0)|T_i = 1$

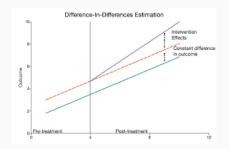
- Y_{i1}(0): Potential outcome in period after treatment under control
- $Y_{i0}(0)$: Potential outcome in period before treatment under control
- Y_{i1}(1): Potential outcome in period after treatment under treatment
- Y_{i0}(1): Potential outcome in period before treatment under treatment
- $Y_{i1}(0)|T_i = 0$: Potential outcome in period after treatment under control given the units are not treated. This is observed!
- $Y_{i1}(0)|T_i = 1$: Potential outcome in period after treatment under control given the units are treated. Never observed!

DiD estimation

What is the estimand?

• ATT (average treatment effect on the treated units), not the ATE (average treatment effect)

$$\Delta_{DiD} = E[Y_{i1}(1) - Y_{i0}(0) \mid T_i = 1]$$



What is the estimand? $\Delta_{DiD} = E[Y_{i1}(1) - Y_{i0}(0) | T_i = 1]$

Problem? \rightarrow Can't observe $Y_{i1}(0) \mid T_i = 1$

 $\textbf{Solution} \rightarrow \textbf{Parallel trends assumption}$

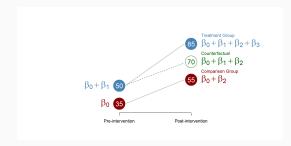
- Use the control group's trend as a stand-in for $Y_{i1}(0)$ in the control group
- Means that we assume treatment and control group share the same trend

DiD estimation

Estimand: $\Delta_{DiD} = E[Y_{i1}(1) - Y_{i0}(0) | T_i = 1]$

 $\ensuremath{\textbf{Solution}}\xspace \rightarrow \ensuremath{\textbf{Assume parallel trends to formulate our estimator to}}$ estimate our estimand

$$\Delta_{DiD} = (E[Y_{i1}(1) - Y_{i0}(1) | T_i = 1]) - (E[Y_{i1}(0) - Y_{i0}(0) | T_i = 0])$$



See the proof we went over in class!

- Instrumental variables
- More coding!
- In the background: start brainstorming