Wrapping up

Gov 51: Section 10

Sima Biondi Spring 2025 1 Housekeeping

2 Text as Data: PageRank

3 Summary

4 Concluding Thoughts

 \cdot April 24th \rightarrow Final draft of poster

- \cdot April 24th \rightarrow Final draft of poster
- \cdot April 29th \rightarrow Poster session

- April 24th \rightarrow Final draft of poster
- April 29th \rightarrow Poster session
- · April 30th \rightarrow Problem Set III due

- April 24th \rightarrow Final draft of poster
- April 29th \rightarrow Poster session
- · April 30th \rightarrow Problem Set III due

- · April 24th \rightarrow Final draft of poster
- · April 29th \rightarrow Poster session
- \cdot April 30th \rightarrow Problem Set III due

Course evaluations

• Please fill out your course evaluations!

- · April 24th \rightarrow Final draft of poster
- · April 29th \rightarrow Poster session
- \cdot April 30th \rightarrow Problem Set III due

Course evaluations

- Please fill out your course evaluations!
- They help us improve the course for future students

- April 24th \rightarrow Final draft of poster
- · April 29th \rightarrow Poster session
- · April 30th \rightarrow Problem Set III due

Course evaluations

- Please fill out your course evaluations!
- They help us improve the course for future students
- Documented systematic differences in teaching evaluations independent of instructor quality (Peterson et al. 2019, 2)

• Originally developed for ranking websites (Google Search).

- Originally developed for ranking websites (Google Search).
- Based on a random surfer model

- Originally developed for ranking websites (Google Search).
- Based on a random surfer model
- Basic idea: importance based on linked connections

- Originally developed for ranking websites (Google Search).
- Based on a random surfer model
- Basic idea: importance based on linked connections
- More information: how you sort matters (https: //www.toptal.com/developers/sorting-algorithms)

- Originally developed for ranking websites (Google Search).
- Based on a random surfer model
- Basic idea: importance based on linked connections
- More information: how you sort matters (https: //www.toptal.com/developers/sorting-algorithms)

- Originally developed for ranking websites (Google Search).
- Based on a random surfer model
- Basic idea: importance based on linked connections
- More information: how you sort matters (https: //www.toptal.com/developers/sorting-algorithms)

Why should we care?

 \hookrightarrow We can repurpose this for analyzing text similarity between documents

Steps: applying PageRank to professor bios

1. Prep the corpus

- 1. Prep the corpus
- 2. Transform corpus into DTM

- 1. Prep the corpus
- 2. Transform corpus into DTM
- 3. Calculate similarities between documents using cosine similarity function

- 1. Prep the corpus
- 2. Transform corpus into DTM
- 3. Calculate similarities between documents using cosine similarity function
- 4. Display results

```
library(SnowballC)
2 library(tm)
4 df <- read.csv("data/harvardgov.csv")</pre>
5 corpus <- Corpus(VectorSource(df$bio))</pre>
 corpus <- tm_map(corpus, content_transformer(tolower))</pre>
 corpus <- tm map(corpus, stripWhitespace)</pre>
 corpus <- tm_map(corpus, removeNumbers)</pre>
 corpus <- tm_map(corpus, removeWords,</pre>
      stopwords("english"))
n corpus <- tm_map(corpus, stemDocument)</pre>
12 corpus <- tm map(corpus, removePunctuation)</pre>
```

Create DTM and TF-IDF

```
1 dtm <- DocumentTermMatrix(corpus)
2 dtm.mat <- as.matrix(dtm)
3 rownames(dtm.mat) <- df$prof
4 
5 tfidf <- weightTfIdf(dtm, normalize = TRUE)
6 tfidf.mat <- as.matrix(tfidf)
7 rownames(tfidf.mat) <- df$prof</pre>
```

Create DTM and TF-IDF

```
1 dtm <- DocumentTermMatrix(corpus)
2 dtm.mat <- as.matrix(dtm)
3 rownames(dtm.mat) <- df$prof
4 
5 tfidf <- weightTfIdf(dtm, normalize = TRUE)
6 tfidf.mat <- as.matrix(tfidf)
7 rownames(tfidf.mat) <- df$prof</pre>
```

1 tfidf

Create DTM and TF-IDF

```
1 dtm <- DocumentTermMatrix(corpus)
2 dtm.mat <- as.matrix(dtm)
3 rownames(dtm.mat) <- df$prof
4 
5 tfidf <- weightTfIdf(dtm, normalize = TRUE)
6 tfidf.mat <- as.matrix(tfidf)
7 rownames(tfidf.mat) <- df$prof</pre>
```

1 tfidf

```
<<DocumentTermMatrix (documents: 48, terms: 1684)>>
Non-/sparse entries: 3767/77065
Sparsity : 95%
Maximal term length: 37
Weighting : term frequency - inverse document frequency (normalized) (tf-idf)
```

How sparse is this matrix overall?

How sparse is this matrix overall?

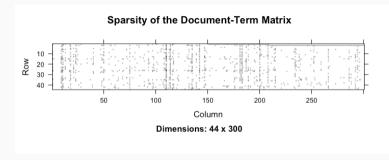


Figure 1: Snapshot of normalized DTM

Sparseness of DTM

Zooming in further, terms appear with different frequencies within each document

Sparseness of DTM

Zooming in further, terms appear with different frequencies within each document

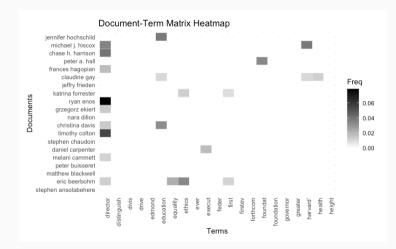


Figure 2: Heatmap of selected terms in document-term matrix

Cosine Similarity function

```
1 cosine <- function(a, b) {
2 numer <- apply(a * t(b), 2, sum)
3 denom <- sqrt(sum(a2)) * sqrt(apply(b2, 1, sum))
4 return(numer / denom)
5 }</pre>
```

Cosine Similarity function

```
1 cosine <- function(a, b) {
2 numer <- apply(a * t(b), 2, sum)
3 denom <- sqrt(sum(a2)) * sqrt(apply(b2, 1, sum))
4 return(numer / denom)
5 }</pre>
```

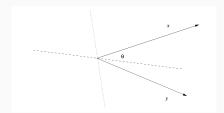


Figure 3: Two vectors make an angle θ

Load library and initialize empty matrix

Load library and initialize empty matrix

	danielle allen	stephen	ansolabehere	eric	beerbohm
danielle allen	0		0		0
stephen ansolabehere	0		0		0
eric beerbohm	0		0		0
matthew blackwell	0		0		0
peter buisseret	0		0		0
melani cammett	0		0		0

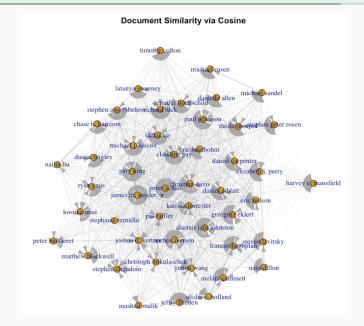
Use for-loop to populate matrix with cosine similarity values

```
2 for (i in 1
3 (tfidf.mat)) {
4 cosine.adj[i, ] <- cosine(tfidf.mat[i,], tfidf.mat)
5 cosine.adj[i, dfphd[i]<dfphd] <- 0
6 }</pre>
```

	danielle allen	stephen ansolabehere	eric beerbohm
danielle allen	1.000000000	0.041332417	0.0000000
stephen ansolabehere	0.00000000	1.000000000	0.0000000
eric beerbohm	0.091361849	0.048064445	1.00000000
matthew blackwell	0.003588252	0.008361747	0.02377969
peter buisseret	0.008678968	0.052150952	0.02564076
melani cammett	0.015404712	0.009130659	0.0000000

```
diag(cosine.adj) <- 0</pre>
2 cosine.graph <- graph_from_adjacency_matrix(cosine.adj,</pre>
     mode = "directed", weighted = TRUE)
4 set.seed(123) # For consistent layout
s layout fr <- layout with fr(cosine.graph)</pre>
 plot(cosine.graph,
       layout = layout_fr,
8
       vertex.size = 5,
       vertex.label = df$prof,
10
       edge.arrow.size = 0.3,
       edge.width = E(cosine.graph)$weight * 5,
       edge.color = "darkgray",
       main = "Document Similarity via Cosine")
```

Display graph



```
1 pr <- data.frame(name = colnames(cosine.adj),
2 year = dfphd,pagerank=page.rank(cosine.graph)vector)
3 arrange(pr, desc(pagerank))
```

	phdyear <int></int>	pagerank <dbl></dbl>
harvey c. mansfield	1961	0.154765821
paul peterson	1962	0.101931502
richard tuck	1973	0.082913801
theda skocpol	1975	0.042681307
elizabeth j. perry	1978	0.036496378
peter a. hall	1982	0.035537510
timothy colton	1974	0.034745156
jennifer hochschild	1979	0.033293136
michael rosen	1980	0.030915136
james m. snyder, jr	1984	0.029899312

• PageRank identifies influence based on connections or similarity

- PageRank identifies influence based on connections or similarity
- Unsupervised techniques help when data is high-dimensional or unstructured

- PageRank identifies influence based on connections or similarity
- Unsupervised techniques help when data is high-dimensional or unstructured
- This method bypasses manual interpretation and leverages structure in the data

• This course helps build an intuition around modeling, data cleaning, and analysis.

- This course helps build an intuition around modeling, data cleaning, and analysis.
- Once your TF, always your TF.

- This course helps build an intuition around modeling, data cleaning, and analysis.
- Once your TF, always your TF.
- Feel free to reach out (sbiondi@g.harvard.edu) if you need:

- This course helps build an intuition around modeling, data cleaning, and analysis.
- Once your TF, always your TF.
- Feel free to reach out (sbiondi@g.harvard.edu) if you need:
 - Grad school advice

- This course helps build an intuition around modeling, data cleaning, and analysis.
- Once your TF, always your TF.
- Feel free to reach out (sbiondi@g.harvard.edu) if you need:
 - Grad school advice
 - \cdot Letters of recommendation

- This course helps build an intuition around modeling, data cleaning, and analysis.
- Once your TF, always your TF.
- Feel free to reach out (sbiondi@g.harvard.edu) if you need:
 - Grad school advice
 - Letters of recommendation
 - Research help

- This course helps build an intuition around modeling, data cleaning, and analysis.
- Once your TF, always your TF.
- Feel free to reach out (sbiondi@g.harvard.edu) if you need:
 - Grad school advice
 - Letters of recommendation
 - Research help
- Don't forget to fill out your Q evaluations!