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Roadmap

Last week: the fundamental problem of causal inference, and
introduction to one estimation strategy (DiD)

→ Potential outcomes framework and notation
→ Estimand vs. estimator vs. estimate
→ Parallel trends assumption

In this section, we continue to examine ways to estimate causal
quantities via instrumental variables (IV)
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Intro to IV

• Explanatory variables are oftentimes correlated with our errors
(also known as endogenity)

• Examples: conflict and economic growth, government
information and inequality, efficacy of canvassing

• OLS and controls are insufficient to account for this bias

• Check-in: why?
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IV assumptions

• For an IV to be identified, it must:

1. Be assigned as-if random
2. Affect treatment assignment
3. Only affect outcome through treatment (exclusion restriction)

• IF we meet these assumptions→ consistent estimate of the
local Average Treatment Effect (LATE)

• Check-in: the LATE is an estimate of the causal quantity for the
compliers, why?
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IV assumptions: a DAG

Does this DAG fit our necessary assumptions for a IV strategy?

Zi Ti Yi

Ui
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IV assumptions: a DAG

What about this DAG? Does it fit our necessary assumptions for a IV
strategy?

Zi Ti Yi

Ui

No, because this also violates the exclusion restriction!
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The assumptions strike back

Why does the LATE only estimate the causal effect on the compliers?

• The exclusion restriction means that always and never takers
always get the same treatment

• If treatment is static→ outcomes are consistent
• Monotonicity
• Is this a useful estimate? Why or why not?
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IV example: voter turnout

Question: What is the effect of voter turnout on Democratic vote
share?

• What’s are potential confounders? Strategic voters who only
turn out because they think Democrats can win

• Using an IV approach our estimates tell us the effect of strategic
voter turnout when Democrats are favored or unfavored

• Changing the question: captures measure of Democratic
strength

How do we achieve identification?
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IV example: voter turnout

→ Need an IV to capture variation in voter turnout that is
independent from strategic voting

Let’s think back to the IV assumptions:

1. Randomization: treatment is assigned as-if random
2. First-stage: IV affects treatment assignment
3. Exclusion restriction: IV only affects outcome through treatment
4. Monotonicity: no defiers
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IV example: voter turnout

→ Need an IV to capture variation in voter turnout that is
independent from strategic voting

Let’s think back to the IV assumptions:

1. Randomization:

rain is assigned as-if random to districts

2. First-stage: Rain depresses voter turnout
3. Exclusion restriction: Rain only affects Dem vote share through
voter turnout

4. Monotonicity: rain doesn’t increase turnout

⇒ Candidate strength in any given election is independent (does not
affect the variation) in turnout caused by rain
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Using R scripts

• R Scripts are different than R Markdown files

• R Markdown files are often used to generate documents, BUT

• Not all coding requires a generation of a PDF
• May actually hinder our code

• If you want to run a line of code in a script, you don’t need to
click Run!

• Mac: Click on the line of interest, CMD + Return
• Windows: Click on the line of interest, Ctrl + Enter

• Scripts allow us to save our code, AND run the functions in our
console
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Working directories

• You must tell R where your files are, or what your ”working
directory” is.

• getwd() and setwd() respectively ”get” your working
directory and ”set” your working directory.

• If you get an error along the lines of ”Cannot establish
connection....,” it is because you are loading in data that is not in
your working directory.
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Setting up a working directory

• You can either set your working directory through code:

setwd("/Users/simabiondi/GitHub/teaching/gov51")

• OR click Session → Set Working Directory → Choose
Directory.

• OR use the here package:

here("teaching", "gov51", "mydataset.csv")

• Note: R Projects set your working directory to the folder that it is
in.
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Loading data from a URL

• You can also load in data easily from the course website if you
have an internet connection:

url <- "https://naijialiu.github.io/Gov_51/
Causal/simulated_iv.csv"

df <- read.csv(url)
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Why do we use base R?

Advantages of tidyverse: Efficient recall of variable names, consistent
within the Tidyverse universe, some unique data wrangling functions

↪→ BUT: Clunky in function creation, reliance on package functions

Pedagogical reason: Reliance on package functions - think a
calculator before learning basic arithmetic
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Grammar of base R

Some basic functions and their tidyverse equivalents:

# Creating new variable
df$newvar <- 1:10

df <- df |>
mutate(newvar = 1:10)

For more information, check out the tidyverse guide to base R:
https://dplyr.tidyverse.org/articles/base.html
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Grammar of base R

Some basic functions and their tidyverse equivalents:

# Creating a conditional new variable
df$newvar2 <- ifelse(df$newvar %% 2 == 0,

1,
0)

df <- df |>
mutate(newvar2 = ifelse(df$newvar %% 2 == 0,

1,
0))

For more information, check out the tidyverse guide to base R:
https://dplyr.tidyverse.org/articles/base.html
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A quick note about coding

I spend most of my time in section getting everyone up to speed on
the concepts, but that doesn’t mean that coding isn’t important!

What if I have a coding question? → Come to office hours!
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Now, let’s estimate!

Recall: → Estimand: LATE = ITT effect on the outcome for compliers

• Many estimators exist to estimate the LATE
• Two of the most popular: (1) Two Stage Least Squares (TSLS) and
(2) Wald estimators

• Logic of of TSLS

1. Regress treatment (Ti) on the instrument (Zi)
2. Regress outcome of interest (Yi) on the fitted values (T̂i) generated
in the previous stage

• IMPORTANT: we are estimating the LATE, not the ATE, why?

• → Can’t estimate ATE because we don’t know the proportions of
compliers, always, and never takers
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IV example: estimation using Wald estimator

The Wald Estimator estimates the LATE among compliers

ÎTT
̂Encouragement

=
ÎTTY
ÎTTT

=
E[Yi(Zi = 1]− E[Yi(Zi = 0)]
E[Ti(Zi = 1]− E[Ti(Zi = 0)]

What does this mean in English?

Let’s go to R!
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IV example: using Wald estimator

set.seed(02138)
mydf <- data.frame(draft = rbinom(20, 1, 0.5),

military = rbinom(20, 1, 0.3),
earning = rnorm(20, 10000, sd =

5000))
summary(mydf)
dim(mydf)
ITT <- mean(mydf$earning[mydf$draft == 1]) -

mean(mydf$earning[mydf$draft == 0])
Encouragement <- mean(mydf$military[mydf$draft ==

1]) -
mean(mydf$military[mydf$draft == 0])

tauhat <- ITT/Encouragement

Estimate of the effect of military service on lifetime earnings (for
compliers) is r round(tauhat,2) 88



IV example: wrap-up

• Endogeneity concerns are real! Our estimates of military service
on lifetime earnings are clearly affected by confounding
variables

• -6261.08 vs. 583.49 is huge!!

• Instrumental variables are a useful strategy to achieve
identification of an estimand

• Finding a good instrument is difficult, as the assumptions are
stringent
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Next week

• Matching
• In the background: start brainstorming and talking to classmates
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