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Housekeeping

• Reach out to me if you don’t have a group for the final project
• OH if you have questions about the project or about finding a
group

• My midterm review session→ March 11st 4:00 PM - 6:00 PM in
CGIS K105

• Midterm→ March 13th
• 50% Conceptual + 50% Coding
• Exam is open note (personal materials, course materials) but not
open-internet
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Roadmap

Last week: how to estimate ground-truth relationships with lots of
predictors

→ Use penalized regressions like Lasso which adds a penalty term
to our loss function to only keep relevant covariates in our
model

→ Tackles two problems: high-dimensionality and overfitting
→ Lasso is better than ridge regression but isn’t perfect: can

induce bias if OLS assumptions are met

In this section, we try to quantify the degree to which our results are
due to randomness
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Regression again, with confidence

Linear regression is a tool to help us estimate the relationship
between two variables

↪→ regression provides an numerical estimate (β̂0 and β̂1)

Problem: how do we know our results (β̂0 and β̂1) are not just due to
randomness?

↪→ More precisely, how sure can we be of our β̂0 and β̂1 estimates
match up to β0 and β1?
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How do we read the table?

Variables: inc (incumbency), outcome (vote share in congressional
election)
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Statistical hypothesis testing

• Solution: hypothesis testing!
• A statistical thought experiment that compares what would have
happened to what did happen

• Key concepts
• Null hypothesis (H0): “a hypothesis we would like to refute” (Imai
2017)

• “some statement about the population parameters” (Blackwell 2022)
• Ex: incumbency has no effect on election results

• Alternative hypothesis (H1 or H2 or H3...): a hypothesis we would
like to prove

• “the statement we hope or suspect is true” (Blackwell 2022)
• Ex: incumbency has an effect on election results
• But there are many other potential examples!
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Example of null and alternative hypotheses

Question: What is the effect of incumbency on vote share?

• H0: A candidate’s vote share does not change depending on
incumbency status

β̂1 = Y(1)− Y(0) = 0

• H1: A candidate’s vote share does change depending on
incumbency status

β̂1 = Y(1)− Y(0) ̸= 0
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How do we test?

• We need to try to disprove the null hypothesis to argue there is
a treatment effect.

• Assume the null hypothesis is true - what values of β̂1 disprove
it?

• We can sort of guess - probably not scientific
• We can set a cutoff - also probably not very systematic
• We can simulate!
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What is the null distribution?

We use simulation to show, assuming the null hypothesis is true,
what values would β̂1 have to be in order to disprove it?

Or how
unlikely is the null hypothesis given that β̂1 exists?

Remember: Random variables, like our β̂1, have nice properties!

• The distribution of averages (or expectations) approximate a
normal distribution

⇒ Central Limit Theorem, decomposition is outside the scope of this
course

• Simulating can give a rough idea of expected values under the
null hypothesis
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Leveraging the null distribution

Steps:

1. Specify a null hypothesis

2. Use properties of existing data, namely its variation, to estimate
likely values for β̂1

• Leverage the null distribution (the distribution of β̂1 if the null
hypothesis is true) to test the likelihood of β̂1 occuring if the null
hypothesis is true
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p-value

• We have a distribution of β̂1 values under the null - now what?
• Generally reject the null when our estimates are extreme in the
null distribution

• p-value: the probability under the null hypothesis that we
observe data as extreme as ours

• Scientific community cutoffs to reject the null
• p < .05 ≈ *
• p < .01 ≈ **
• p < .001 ≈ ***

• Norms change - in the past, p < .1 was significant, now it’s p < .05
• Quick check: relationship between p-value and α (not β0?
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p < .05
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p < .01
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p < .001
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Estimating the null for congressional elections

• Back to our incumbency question, what estimate of a treatment
effect is sufficient to reject the null

• If our estimate is positive, 0.0217468 is a sufficient β̂1
• Instead of a normal, we use a Student T-Distribution, which is a
bit more conservative
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In table form

1 model <- lm(voteshare ~ inc, data = cand20)
2 summary(model

17



Error Types

• Type I Error: Reject null hypothesis when it is true

(False
Positive)

• Type II Error: Accept the null when it is false (False Negative)
• What situations might Type I or Type II errors be worse?
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Quick recap

• Hypothesis testing provides framework to evaluate β̂ point
estimates

• Provides evidence against null hypothesis of no effect

• Relies on properties like Central Limit Theorem to estimate a
null distribution

• Use cut-offs to determine when to reject a null hypothesis
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Drawbacks to our congressional elections example

• Confounders in relationship between incumbency and vote
share

• Strategic behavior by politicians
• Strategic behavior by challengers

• Is it identified?

No

• Further reading: Gelman and King (1990), Levitt and Wolfram (1997),
Ansolabehere, Snyder, and Stewart (2000)

20



Drawbacks to our congressional elections example

• Confounders in relationship between incumbency and vote
share

• Strategic behavior by politicians

• Strategic behavior by challengers
• Is it identified?

No

• Further reading: Gelman and King (1990), Levitt and Wolfram (1997),
Ansolabehere, Snyder, and Stewart (2000)

20



Drawbacks to our congressional elections example

• Confounders in relationship between incumbency and vote
share

• Strategic behavior by politicians
• Strategic behavior by challengers

• Is it identified?

No

• Further reading: Gelman and King (1990), Levitt and Wolfram (1997),
Ansolabehere, Snyder, and Stewart (2000)

20



Drawbacks to our congressional elections example

• Confounders in relationship between incumbency and vote
share

• Strategic behavior by politicians
• Strategic behavior by challengers

• Is it identified?

No

• Further reading: Gelman and King (1990), Levitt and Wolfram (1997),
Ansolabehere, Snyder, and Stewart (2000)

20



Drawbacks to our congressional elections example

• Confounders in relationship between incumbency and vote
share

• Strategic behavior by politicians
• Strategic behavior by challengers

• Is it identified?

No

• Further reading: Gelman and King (1990), Levitt and Wolfram (1997),
Ansolabehere, Snyder, and Stewart (2000)

20



Drawbacks to our congressional elections example

• Confounders in relationship between incumbency and vote
share

• Strategic behavior by politicians
• Strategic behavior by challengers

• Is it identified? No
• Further reading: Gelman and King (1990), Levitt and Wolfram (1997),
Ansolabehere, Snyder, and Stewart (2000)

20



Quick note on bias-variance tradeoff

• Decomposition from lecture
1. Increase model complexity: better in-sample, overfitting concerns
2. Decrease model complexity: worse in-sample, better
out-of-sample

• Similar to Lasso unit problems

21



Implementation in R for regression

• Mean squared error is a combination of our variance and bias
• Decomposition gets us a bias quantity that includes an impossible
to know parameter β

• We can use an estimator to get our best estimate

1 mean(model$ˆresiduals2)
2 ## [1] 0.03310148
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Notation

Yi = β0 + β1Xi + εi → True β’s

Yi = β̂0 + β̂1Xi + εi → Estimated β’s

Ŷi = β̂0 + β̂1Xi → Relationship between estimated β’s and predicted Ŷi
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Recap

• Hypothesis testing is incredibly important
• Contextualize effect estimates in OLS

• Types of errors in hypothesis testing
• Bias and variance make up Mean Squared Error (MSE) - their
tradeoff

• Midterm on March 13th
• Review on March 11st

• CGIS K105
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