Hypothesis testing

Section 6

Sima Biondi Spring 2025

Gov 51: Data Analysis and Politics

Overview

- 1 Housekeeping
- 2 Hypothesis testing

What is a hypothesis?

How to test hypotheses

P-values

Implementation

Housekeeping

- · Reach out to me if you don't have a group for the final project
 - OH if you have questions about the project or about finding a group
- My midterm review session \rightarrow March 11st 4:00 PM 6:00 PM in CGIS K105
- Midterm → March 13th
 - 50% Conceptual + 50% Coding
 - Exam is open note (personal materials, course materials) but not open-internet

Last week: how to estimate *ground-truth* relationships with lots of predictors

→ Use penalized regressions like Lasso which adds a penalty term to our loss function to only keep relevant covariates in our model

- → Use penalized regressions like Lasso which adds a penalty term to our loss function to only keep relevant covariates in our model
- ightarrow Tackles two problems: high-dimensionality and overfitting

- → Use penalized regressions like Lasso which adds a penalty term to our loss function to only keep relevant covariates in our model
- → Tackles two problems: high-dimensionality and overfitting
- ightarrow Lasso is better than ridge regression but isn't perfect: can induce bias if OLS assumptions are met

- → Use penalized regressions like Lasso which adds a penalty term to our loss function to only keep relevant covariates in our model
- → Tackles two problems: high-dimensionality and overfitting
- ightarrow Lasso is better than ridge regression but isn't perfect: can induce bias if OLS assumptions are met

Last week: how to estimate *ground-truth* relationships with lots of predictors

- → Use penalized regressions like Lasso which adds a penalty term to our loss function to only keep relevant covariates in our model
- → Tackles two problems: high-dimensionality and overfitting
- ightarrow Lasso is better than ridge regression but isn't perfect: can induce bias if OLS assumptions are met

In this section, we try to quantify the degree to which our results are due to randomness

Linear regression is a tool to help us estimate the relationship between two variables

Linear regression is a tool to help us estimate the relationship between two variables

 \hookrightarrow regression provides an numerical estimate $(\widehat{eta}_0$ and $\widehat{eta}_1)$

Linear regression is a tool to help us estimate the relationship between two variables

 \hookrightarrow regression provides an numerical estimate $(\widehat{eta}_0$ and $\widehat{eta}_1)$

Linear regression is a tool to help us estimate the relationship between two variables

 \hookrightarrow regression provides an numerical estimate $(\widehat{eta}_0$ and $\widehat{eta}_1)$

Problem: how do we know our results $(\widehat{\beta}_0 \text{ and } \widehat{\beta}_1)$ are not just due to randomness?

Linear regression is a tool to help us estimate the relationship between two variables

 \hookrightarrow regression provides an numerical estimate $(\widehat{eta}_0$ and $\widehat{eta}_1)$

Problem: how do we know our results $(\widehat{\beta}_0 \text{ and } \widehat{\beta}_1)$ are not just due to randomness?

 \hookrightarrow More precisely, how sure can we be of our $\widehat{\beta}_0$ and $\widehat{\beta}_1$ estimates match up to β_0 and β_1 ?

5

How do we read the table?

	(1)
(Intercept)	0.247***
	(0.007)
inc	0.391***
	(0.011)
Num.Obs.	1154
R2	0.513
R2 Adj.	0.513
Log.Lik.	329.063
F	1215.638
RMSE	0.18

Variables: inc (incumbency), outcome (vote share in congressional election)

- · Solution: hypothesis testing!
 - A statistical thought experiment that compares what would have happened to what did happen
- Key concepts
 - Null hypothesis (H_0): "a hypothesis we would like to refute" (Imai 2017)

- · Solution: hypothesis testing!
 - A statistical thought experiment that compares what would have happened to what did happen
- · Key concepts
 - Null hypothesis (H_0): "a hypothesis we would like to refute" (Imai 2017)
 - "some statement about the population parameters" (Blackwell 2022)

- · Solution: hypothesis testing!
 - A statistical thought experiment that compares what would have happened to what did happen
- · Key concepts
 - Null hypothesis (H_0): "a hypothesis we would like to refute" (Imai 2017)
 - "some statement about the population parameters" (Blackwell 2022)
 - $\boldsymbol{\cdot}$ Ex: incumbency has no effect on election results

- · Solution: hypothesis testing!
 - A statistical thought experiment that compares what would have happened to what did happen
- · Key concepts
 - Null hypothesis (H_0): "a hypothesis we would like to refute" (Imai 2017)
 - "some statement about the population parameters" (Blackwell 2022)
 - Ex: incumbency has no effect on election results
 - Alternative hypothesis (H_1 or H_2 or H_3 ...): a hypothesis we would like to prove

- · Solution: hypothesis testing!
 - A statistical thought experiment that compares what would have happened to what did happen
- · Key concepts
 - Null hypothesis (H_0): "a hypothesis we would like to refute" (Imai 2017)
 - "some statement about the population parameters" (Blackwell 2022)
 - Ex: incumbency has no effect on election results
 - Alternative hypothesis (H₁ or H₂ or H₃...): a hypothesis we would like to prove
 - "the statement we hope or suspect is true" (Blackwell 2022)

- · Solution: hypothesis testing!
 - A statistical thought experiment that compares what would have happened to what did happen
- · Key concepts
 - Null hypothesis (H_0): "a hypothesis we would like to refute" (Imai 2017)
 - "some statement about the population parameters" (Blackwell 2022)
 - Ex: incumbency has no effect on election results
 - Alternative hypothesis (H₁ or H₂ or H₃...): a hypothesis we would like to prove
 - "the statement we hope or suspect is true" (Blackwell 2022)
 - Ex: incumbency has an effect on election results

- · Solution: hypothesis testing!
 - A statistical thought experiment that compares what would have happened to what did happen
- · Key concepts
 - Null hypothesis (H_0): "a hypothesis we would like to refute" (Imai 2017)
 - "some statement about the population parameters" (Blackwell 2022)
 - Ex: incumbency has no effect on election results
 - Alternative hypothesis (H₁ or H₂ or H₃...): a hypothesis we would like to prove
 - "the statement we hope or suspect is true" (Blackwell 2022)
 - · Ex: incumbency has an effect on election results
 - · But there are many other potential examples!

Example of null and alternative hypotheses

Question: What is the effect of incumbency on vote share?

• *H*₀: A candidate's vote share does not change depending on incumbency status

$$\widehat{\beta}_1 = \overline{Y}(1) - \overline{Y}(0) = 0$$

Example of null and alternative hypotheses

Question: What is the effect of incumbency on vote share?

• *H*₀: A candidate's vote share does not change depending on incumbency status

$$\widehat{\beta}_1 = \overline{Y}(1) - \overline{Y}(0) = 0$$

 H₁: A candidate's vote share does change depending on incumbency status

$$\widehat{\beta}_1 = \overline{Y}(1) - \overline{Y}(0) \neq 0$$

• We need to try to disprove the null hypothesis to argue there is a treatment effect.

- We need to try to disprove the null hypothesis to argue there is a treatment effect.
- Assume the null hypothesis is true what values of $\widehat{\beta}_1$ disprove it?

- We need to try to disprove the null hypothesis to argue there is a treatment effect.
- Assume the null hypothesis is true what values of $\widehat{\beta}_1$ disprove it?
 - · We can sort of guess probably not scientific

- We need to try to disprove the null hypothesis to argue there is a treatment effect.
- Assume the null hypothesis is true what values of $\widehat{\beta}_1$ disprove it?
 - · We can sort of guess probably not scientific
 - · We can set a cutoff also probably not very systematic

- We need to try to disprove the null hypothesis to argue there is a treatment effect.
- Assume the null hypothesis is true what values of $\widehat{\beta}_1$ disprove it?
 - · We can sort of guess probably not scientific
 - · We can set a cutoff also probably not very systematic
 - · We can simulate!

We use simulation to show, assuming the null hypothesis is true, what values would $\widehat{\beta}_1$ have to be in order to disprove it?

We use simulation to show, assuming the null hypothesis is true, what values would $\widehat{\beta}_1$ have to be in order to disprove it? Or how unlikely is the null hypothesis given that $\widehat{\beta}_1$ exists?

We use simulation to show, assuming the null hypothesis is true, what values would $\hat{\beta}_1$ have to be in order to disprove it? Or how unlikely is the null hypothesis given that $\hat{\beta}_1$ exists?

Remember: Random variables, like our $\widehat{\beta}_1$, have nice properties!

 The distribution of averages (or expectations) approximate a normal distribution

We use simulation to show, assuming the null hypothesis is true, what values would $\hat{\beta}_1$ have to be in order to disprove it? Or how unlikely is the null hypothesis given that $\hat{\beta}_1$ exists?

Remember: Random variables, like our $\widehat{\beta}_1$, have nice properties!

- The distribution of averages (or expectations) approximate a normal distribution
 - ⇒ Central Limit Theorem,

We use simulation to show, assuming the null hypothesis is true, what values would $\hat{\beta}_1$ have to be in order to disprove it? Or how unlikely is the null hypothesis given that $\hat{\beta}_1$ exists?

Remember: Random variables, like our $\widehat{\beta}_1$, have nice properties!

- The distribution of averages (or expectations) approximate a normal distribution
 - ⇒ Central Limit Theorem,

We use simulation to show, assuming the null hypothesis is true, what values would $\hat{\beta}_1$ have to be in order to disprove it? Or how unlikely is the null hypothesis given that $\hat{\beta}_1$ exists?

Remember: Random variables, like our $\widehat{\beta}_1$, have nice properties!

- The distribution of averages (or expectations) approximate a normal distribution
 - ⇒ Central Limit Theorem, decomposition is outside the scope of this course
- Simulating can give a rough idea of expected values under the null hypothesis

Leveraging the null distribution

Steps:

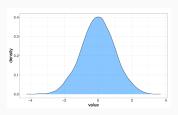
1. Specify a null hypothesis

- 1. Specify a null hypothesis
- 2. Use properties of existing data, namely its variation, to estimate likely values for $\widehat{\beta}_{\rm 1}$

- 1. Specify a null hypothesis
- 2. Use properties of existing data, namely its variation, to estimate likely values for $\widehat{\beta}_1$
 - Leverage the null distribution (the distribution of $\widehat{\beta}_1$ if the null hypothesis is true) to test the likelihood of $\widehat{\beta}_1$ occurring if the null hypothesis is true

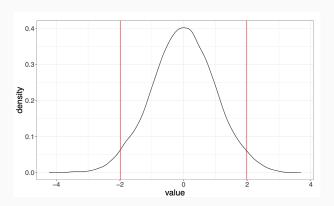
- 1. Specify a null hypothesis
- 2. Use properties of existing data, namely its variation, to estimate likely values for $\widehat{\beta}_1$
 - Leverage the null distribution (the distribution of $\widehat{\beta}_1$ if the null hypothesis is true) to test the likelihood of $\widehat{\beta}_1$ occurring if the null hypothesis is true

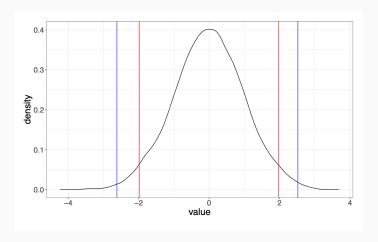
- 1. Specify a null hypothesis
- 2. Use properties of existing data, namely its variation, to estimate likely values for $\widehat{\beta}_1$
 - Leverage the null distribution (the distribution of $\widehat{\beta}_1$ if the null hypothesis is true) to test the likelihood of $\widehat{\beta}_1$ occurring if the null hypothesis is true

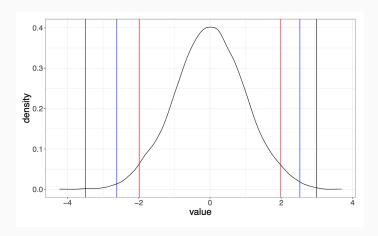


p-value

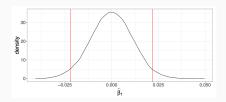
- We have a distribution of $\widehat{\beta}_1$ values under the null now what?
- Generally reject the null when our estimates are extreme in the null distribution
- p-value: the probability under the null hypothesis that we observe data as extreme as ours
- Scientific community cutoffs to reject the null
 - p < $.05 \approx *$
 - p < .01 ≈ **
 - p < $.001 \approx ***$
- Norms change in the past, p < .1 was significant, now it's p < .05
- Quick check: relationship between p-value and α (not β_0 ?







Estimating the null for congressional elections



- Back to our incumbency question, what estimate of a treatment effect is sufficient to reject the null
 - If our estimate is positive, 0.0217468 is a sufficient $\widehat{\beta}_1$
- Instead of a normal, we use a Student T-Distribution, which is a bit more conservative

In table form

```
model <- lm(voteshare ~ inc, data = cand20)
summary(model</pre>
```

	(1)
(Intercept)	0.247***
,	(0.007)
inc	0.391***
	(0.011)
Num.Obs.	1154
R2	0.513
R2 Adj.	0.513
Log.Lik.	329.063
F	1215.638
RMSE	0.18
+ p < 0.1, * p < 0	0.05, ** p < 0.01 , *** p < 0.00

 $\boldsymbol{\cdot}$ Type I Error: Reject null hypothesis when it is true

 $\boldsymbol{\cdot}$ Type I Error: Reject null hypothesis when it is true

 Type I Error: Reject null hypothesis when it is true (False Positive)

- Type I Error: Reject null hypothesis when it is true (False Positive)
- Type II Error: Accept the null when it is false

- Type I Error: Reject null hypothesis when it is true (False Positive)
- Type II Error: Accept the null when it is false

- Type I Error: Reject null hypothesis when it is true (False Positive)
- Type II Error: Accept the null when it is false (False Negative)

- Type I Error: Reject null hypothesis when it is true (False Positive)
- Type II Error: Accept the null when it is false (False Negative)
- What situations might Type I or Type II errors be worse?

- Hypothesis testing provides framework to evaluate $\widehat{\beta}$ point estimates

- Hypothesis testing provides framework to evaluate $\widehat{\beta}$ point estimates
 - · Provides evidence against null hypothesis of no effect

- Hypothesis testing provides framework to evaluate $\widehat{\beta}$ point estimates
 - · Provides evidence against null hypothesis of no effect
- Relies on properties like Central Limit Theorem to estimate a null distribution

- Hypothesis testing provides framework to evaluate $\widehat{\beta}$ point estimates
 - · Provides evidence against null hypothesis of no effect
- Relies on properties like Central Limit Theorem to estimate a null distribution
- · Use cut-offs to determine when to reject a null hypothesis

Confounders in relationship between incumbency and vote share

- Confounders in relationship between incumbency and vote share
 - Strategic behavior by politicians

- Confounders in relationship between incumbency and vote share
 - · Strategic behavior by politicians
 - Strategic behavior by challengers

- Confounders in relationship between incumbency and vote share
 - · Strategic behavior by politicians
 - · Strategic behavior by challengers
- · Is it identified?

- Confounders in relationship between incumbency and vote share
 - · Strategic behavior by politicians
 - · Strategic behavior by challengers
- · Is it identified?

- Confounders in relationship between incumbency and vote share
 - · Strategic behavior by politicians
 - · Strategic behavior by challengers
- · Is it identified? No
 - Further reading: Gelman and King (1990), Levitt and Wolfram (1997), Ansolabehere, Snyder, and Stewart (2000)

Quick note on bias-variance tradeoff

- Decomposition from lecture
 - 1. Increase model complexity: better in-sample, overfitting concerns
 - Decrease model complexity: worse in-sample, better out-of-sample
- · Similar to Lasso unit problems

Implementation in R for regression

- · Mean squared error is a combination of our variance and bias
 - Decomposition gets us a bias quantity that includes an impossible to know parameter β
- We can use an estimator to get our best estimate

```
mean(model$^residuals2)
## [1] 0.03310148
```

Notation

$$\begin{split} Y_i &= \beta_0 + \beta_1 X_i + \epsilon_i \to \mathsf{True} \; \beta' \mathsf{s} \\ Y_i &= \left[\widehat{\beta}_0 + \widehat{\beta}_1 X_i \right] + \epsilon_i \to \mathsf{Estimated} \; \beta' \mathsf{s} \\ \widehat{Y}_i &= \left[\widehat{\beta}_0 + \widehat{\beta}_1 X_i \right] \to \mathsf{Relationship} \; \mathsf{between} \; \mathsf{estimated} \; \beta' \mathsf{s} \; \mathsf{and} \; \mathsf{predicted} \; \widehat{Y}_i \end{split}$$

Recap

- · Hypothesis testing is incredibly important
 - Contextualize effect estimates in OLS
- · Types of errors in hypothesis testing
- Bias and variance make up Mean Squared Error (MSE) their tradeoff
- · Midterm on March 13th
- · Review on March 11st
 - · CGIS K105