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Housekeeping

- Take a deep breath - you're through the midterm

- Only 30% of the class is completed thus far (20% midterm, 10%
Problem Set)

- Even if you didn’t do the best, lots of the course left
- Upcoming deadlines:

- Problem Set II: released today and due 4/3
- 1-pager: due 4/4
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Housekeeping: final project deadlines

- April 4th — one-page memo

- April 10th — preliminary results draft due
- April 18th — first draft of poster

- April 24th — final poster deadline

- April 29th — poster session

More information on the details of each submission can be found
here: https://naijialiu.github.io/Gov_51/final.html
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Back to basics with R: working directories

Setting working directory

- You must tell R where you want it to find files
- You can do this with setwd( ) or here()

- If you are saving things to your Downloads, then you must tell R
to look there

library(here) ## or setwd("~/path/to/your/project/root")

»| ed3_visits = read.csv(here("data", "processed",

"rulers", "edwardiii_visits3.csv"))
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Back to basics with R: installing packages

Installing and loading packages

- If you want to use tidyverse, you must load tidyverse

- If you have loaded it, but closed R, you must load it again

1| # for regular expression functionality in R, use the
stringr package

.| install.packages("stringr")

;| library(stringr)
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Back to basics with R: workflow

Setting up an RMarkdown workflow for the final project:

1. Establish a Rproject object

2. Store your data in the file associated with the Rproject

3. Start writing your code, but be careful about reproducibility,
ESPECIALLY if you overwrite your dataframes

— If you want to use RMarkdown as a script, | highly suggest you use
the "Run All Chunks Above” feature
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Hypothesis testing

Last time: we've covered hypothesis testing for 3

- Conceptually: it was simply a comparison of distributions with
means — we can apply hypothesis testing to compare means of
quantities

- Application: Recall that the 1m function uses the t-distribution
instead of the normal

Generalized steps:

1. Specify a null and an alternative hypothesis
2. Use the null hypothesis to specify a null distribution

3. See how likely our alternative hypothesis is given the null
distribution
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The Black Death was a huge shock to England’s economy and society
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Hypothesis testing example

What happens to the king’s travel after the plague? — the average
number of miles traveled different in 1347 to 13507

- Ho: no difference exists in the average number of miles traveled
different in 1347 to 1350

- Hq: a difference exists in the average number of miles traveled
different in 1347 to 1350

1| #1load data frame and subset data

| data(ed3_visits)

s|distdf <- ed3_visits[ed3_visits$year >= 1347 &
ed3_visits$year <= 1350, ]




Hypothesis testing example

5

# run ttest comparing average distances in 1347 and 1350

s{distance_ttest <-

t.test(distdf$distance[ed3_visits$year == 1347],
distdf$distance[ed3_visits$year == 1350],
na.action = na.omit)

distance_ttest

Welch Two Sample t-test

data: treat$distance and control$distance
t = 2.7367, df = 36.886, p-value = 0.009489
alternative hypothesis: true difference in means is not equal to @
95 percent confidence interval:
5.996715 40.211449
sample estimates:
mean of X mean of y
49.45357 26.34949

1



Hypothesis testing example

How do we do this by hand?

est <- mean(distdf$distance[ed3_visits$year == 1347]) -
mean(distdf$distance[ed3_visits$year == 1350])

;| treatSE <- var(distdf$distance[ed3_visits$year ==

1350]1)/
length(distdf$distance[ed3_visits$year == 1350])

5| controlSE <- var(distdf$distance[ed3_visits$year ==

13471)/
length(distdf$distance[ed3_visits$year == 1347])

/|se <- sqrt(treatSE + controlSE)

slc(est - (se * 1.96), est + (se * 1.96))
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Fixed effects

Problem: your data may have observations that are just simply
somewhat different from each other

- Example: do Presidents allocate federal funds to districts that
supported them in the previous election?
- California has different needs from Arkansas

How do we control for this in our regressions? Fixed effects!

- Fixed effects are simply indicators for a particular trait of an
observation or multiple observations

- If we simply ran a regression, the California observation would
dominate our calculation of 3
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Fixed effect: implementation

- Packages such as fixest, but can manually do it through base
R
- Sometimes the fixed effect we want to control for is a year
- Years are numeric, so to turn them into indicators we use factor

- Generally good practice to “factorize” our fixed effects

modell <- lm(y ~ x1 + x2, data = df)

;/model2 <- lm(y ~ x1 + x2 + factor(state), data = df)

14
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Fixed effect: interpretation

Recall: we're interested in do Presidents allocate federal funds to
districts that supported them in the previous election?

imodell <- Im(y ~ x1 + x2, data = df)
;/model2 <- lm(y ~ x1 + x2 + factor(state), data = df)

How is model1 different than model2?

- Controls for state fixed effects

- Approach helps control for omitted variable bias due to
unobserved state-specific characteristics that could influence
the allocation of federal funds (dependent variable)
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Missing data background

- Throughout modern social science, researchers have oftentimes
dropped missing data.

- Example command in R:

mean(data$variable, na.rm = TRUE)

- However, simply dropping missing data can induce bias, given
missingness is not always random.

16



Example of non-random missingness

What if poll response is not representative?

How To Read Polls In 2020

Nathaniel Rakich
© 2020 Election

an g on gion p o g
=20 2k -

dddadt
dddadd
ddadd

‘We’re about to enter the thick of general-election season, which means we’re

about to get a boatload of polls.
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Framework for understanding missing data

Problem: Our data is incomplete, and we (probably) don’t know why
apriori
Solution: Depends on our assumptions about the missing data

- Each assumption is generally mutually exclusive and affects our
strategies to address them

Missing data assumptions:

1. Missing Completely at Random (MCAR)
2. Missing at Random (MAR)
3. Missing Not at Random (MNAR)
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Missing Completely at Random (MCAR)

- Problem: Observations are missing at random

- Listwise deletion (e.g,, dropping the observations with missing
data) does not induce bias because we assume MCAR

- Incredibly stringent assumption - not many real-world situations
have data that is missing completely at random

Gender White Democrat Vote Choice

1 1 1 1 Trump
2 NA 1 0 Biden
30 0 1 Biden
4 1 0 NA Trump
5 NA 0 1 Trump
6 0 0 1 Biden

19
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Missing at Random (MAR)

- Problem: Conditional on observable covariates, observations are
missing at random

- A bit of a misnomer - probably better to call it conditionally
missing at random

- Less restrictive than MCAR, but still a stringent assumption

- Listwise deletion does induce bias because data is not missing
randomly

- Solution: Multiple imputation

- Implementation requires using observed data to impute missing
values.

20



Missing Not at Random (MNAR)

- Problem: Unobserved covariates are influencing missingness

21



Missing Not at Random (MNAR)

- Problem: Unobserved covariates are influencing missingness

- Least restrictive assumption, but difficult to address given the
unobserved nature of the bias

21



Missing Not at Random (MNAR)

- Problem: Unobserved covariates are influencing missingness

- Least restrictive assumption, but difficult to address given the
unobserved nature of the bias

— Listwise deletion would induce bias because data is not missing
randomly

21



Missing Not at Random (MNAR)

- Problem: Unobserved covariates are influencing missingness

- Least restrictive assumption, but difficult to address given the
unobserved nature of the bias
— Listwise deletion would induce bias because data is not missing
randomly
— Multiple imputation relies on observed covariates - cannot impute
with unobserved covariates

21



Missing Not at Random (MNAR)

- Problem: Unobserved covariates are influencing missingness
- Least restrictive assumption, but difficult to address given the
unobserved nature of the bias
— Listwise deletion would induce bias because data is not missing
randomly
— Multiple imputation relies on observed covariates - cannot impute
with unobserved covariates

- Solution: better modeling and/or data collection

21
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Framework for missing data

- Missing data has been insufficiently addressed throughout
empirical social science
- Organize types of missing data for resolution:

- MCAR — listwise deletion.
- MAR — multiple imputation.
- MNAR — better modeling/data collection.

- Gov department features leaders in research on missing data:

- Professor Naijia Liu
- Professor Matthew Blackwell
- Professor Kosuke Imai

22
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