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Housekeeping

• Remember to sign-up for office hours with me or Pranav as a
group to discuss projects

• Upcoming deadlines:

• April 3 (today): Problem Set II due
• April 4 (tomorrow): 1-pager due, see
https://naijialiu.github.io/Gov_51/final.html for
more information

• April 11: Initial result due, within one page write up
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Missing data implementation

• ‘mice‘ package - ”Multiple Imputation by Chained Equations”

1 library(mice) # recall install.packages("mice") for
first use

2 library(NHANES)
3

4 data(NHANES)
5 nhanes <- NHANES[c("Age", "SmokeNow", "TotChol")]
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Patterns in the data’s missingness

1 md.pattern(nhanes)
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Multiple imputation

1 # m specifies the number of imputation cycles
2 nhanes2MI5 <- mice(nhanes, m = 5)
3

4 # exports complete data with imputations
5 df <- complete(nhanes2MI5, 5)
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Evaluating imputation

1 stripplot(nhanes2MI5, TotChol ~ .imp,
2 col = c("grey", mdc(2)),
3 pch = c(1,20))
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Regressions with imputed data

1 model1 <- lm(TotChol ~ Age + SmokeNow, data = df)
library(modelsummary)

2 modelsummary(model1, stars = T,
3 gof_omit =

'DF|Deviance|AIC|BIC|F|Log.Lik.|RMSE')
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Comparing with listwise deletion

1 model2 <- lm(TotChol ~ Age + SmokeNow, data = nhanes)
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Multiple imputation

• Questions?
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Text as data

• A large goal of this course is to give you a framework to
understand different methodologies and the challenges they
tackle.

• Missing data

→ types of missingness drives our solutions.
• Text as data→ ?
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Examples of text as data in research

• Ban, Grimmer, Kaslovsky, and West (2022) - committee hearings
and the effect of women in Congress

• Finds that less interruptions with more women, more substantive
conversations.

• King, Pan, and Roberts (2013) - social media in censored contexts

• Censorship in China does not target individual criticisms, but
instead attempts at collective action.

• Communication relies on or can be represented by text

→ many
political applications!
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Data generating process (DGP)

Key question: how do humans come up with sentences?

• One theory is that given a topic (or multiple!), there is a certain
probability that words appear

• In a given document, there could be a number of topics
• Those topics then dictate the likelihood of which words appear

Figure 1: Opposite of this!
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Data generating process (DGP)

Takeaways of the DGP for text data:

• Pretty rigid framework, but some ground truth

• Also undergirds the logic under Chat GPT and other large
language models (LLMs)

• Why GPTZero and other programs to detect AI usage are
somewhat easily able to detect because text generated using
this framework is rigid!
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Bag of words model

Where do we begin analysis on text data?

One of the most common
models is bag-of-words

• Text is just a collection of words - the order and structure do not
matter particularly when we care about topical relevancy

• Method assumes that the frequency of words can provide us
information about the context in the text

Process:

1. Tokenization - dividing text into individual words
2. Counting - counting the frequency they show up
3. Vectorization - representing the text as a vector of word
frequencies
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Example: Congressional hearings about TikTok
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Example: Congressional hearings about TikTok

“Does TikTok access the home Wi-Fi Network” - Richard Hudson
(R-NC)

“Tiktok is fun” - Sima Biondi (Not in Congress-CA)

Process:

1. Tokenization: {TikTok, network, fun, etc.}
2. Counting frequency of text appearances: {2, 1, 1, etc.}
3. Vectorization→

i TikTok network fun
Richard Hudson 1 1 0
Sima Biondi 0 0 1
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Example vectorized table + applications

i Does TikTok access the home Wi-Fi network is fun China …
1 1 1 1 1 1 1 1 0 0 0 …
2 0 1 0 0 0 0 0 1 1 0 …
… … … … … … … … … … … …

Result is a sparse matrix (lots of missing data) to analyze!

Applications

• Topic modeling

• Sentiment analysis
• Text classification
• Also a great application of Lasso, since data can get VERY large.
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Example application: topic modeling

• Can be supervised or unsupervised

• Supervised: use labeled data to guide model in identifying topics
• Unsupervised: no labeled data, based on distribution of words in
document

• Oftentimes, will require some human interpretation of the
generated categories

• Example: Terman (2017)

• Examines portrayals of Muslim woman in American media
• Results suggest that US news media propagate the perception that
Muslims are distinctly sexist

19
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Summary

• Multiple imputation is easily implemented through the ‘mice‘
package.

• Introduces a number of easy to use functions that help with
descriptive statistics and modeling.

• Text as data is incredibly popular and powerful tools in social
science.

• Data generating process of text is an important foundation for
understanding how to tackle text as data.

• Bag-of-words is a simple, but powerful model to analyze text.
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