
Unsupervised Text Analysis
Gov 51: Section 9

Sima Biondi
Spring 2025

1

Overview

1 Housekeeping

2 Unsupervised learning overview

3 Implementation 1: polisci publishing

Results

4 Implementation 2: text analysis for description

Results

5 Summary

6 Office hours

2

Housekeeping

• Reminder of deadlines

• April 11th→ first draft of poster
• April 24th→ final draft of poster
• April 25: Pset 3 due
• April 29rd→ poster session

3

Housekeeping

• Reminder of deadlines
• April 11th→ first draft of poster

• April 24th→ final draft of poster
• April 25: Pset 3 due
• April 29rd→ poster session

3

Housekeeping

• Reminder of deadlines
• April 11th→ first draft of poster
• April 24th→ final draft of poster

• April 25: Pset 3 due
• April 29rd→ poster session

3

Housekeeping

• Reminder of deadlines
• April 11th→ first draft of poster
• April 24th→ final draft of poster
• April 25: Pset 3 due

• April 29rd→ poster session

3

Housekeeping

• Reminder of deadlines
• April 11th→ first draft of poster
• April 24th→ final draft of poster
• April 25: Pset 3 due
• April 29rd→ poster session

3

Terms and things

• Corpus - a collection of texts that we want to analyze
• Complete works of Charlotte Bronte, newspaper articles from the
AP

• Document - a unit within the corpus
• Jane Eyre; an article from the AP

4

Unsupervised learning example 1: peer review bias

• Lots of criticism of the peer review model - send your article in
to two double blind reviewers

• Despite double blind, questions about anonymity - people post
their papers online now

• Reviewers can be quite biased as well!
• Two questions arise:

1. Who is publishing in top political science journals? Are their
ascriptive disparities?

2. What is being published? Are some topics avoided?

5

Topic modeling

• One advantage of unsupervised learning is pattern finding
• Data could be high-dimensional, messy, huge observations (e.g.
Jane Eyre) ...

• Patterns within the data are incredibly useful!
• For example, the topics found in a flagship political science journal

• One application is topic modeling

6

Latent Dirichlet Allocation (LDA)

• When we topic model, we need to make some assumptions
about how text is generated

• Recall basic assumptions about topics→ probability distribution
of words

• Latent Dirichlet Allocation is just one model we can use to topic
model

• LDA relies on a similar assumption of the data generating process
of text

• Steps:
1. For each topic, draw a topic-word distribution→ how likely is a
topic given a word?

2. For each document, draw a document-topic distribution→ how
likely is a document about certain topics?

7

Lecture example

“I had donuts this morning. I don’t have diabetes yet.”

LDA steps

1. For each topic, draw a topic-word distribution.
• food: donuts (0.7), have (0.3), diabetes (0)
• health: diabetes (0.7), have (0.3), donuts (0)

2. For each document in the corpus, draw a document-topic
distribution.

• Sentence 1: food (0.999), health (0.001)
• Sentence 2: food (0.001), health (0.999)

8

Installation

• ‘topicmodels‘ package is useful for implementing an LDA model
• In our example here, we will be taking a look at a sample of
articles in the AP in 1992

1 library(topicmodels)
2 data("AssociatedPress")

9

Preview

Data is at the document-word level - for each document, each
unique word is counted

1 head(tidy(AssociatedPress))

10

Function

• ‘k‘: number of topics we want to specify
• ‘control‘: setting a seed because probability distributions entail
randomness

1 # set a seed so that the output of the model is
predictable

2 ap_lda <- LDA(AssociatedPress, k = 2, control =
list(seed = 02138))

3 ap_lda

11

Results

• ‘beta‘ refers to the probability that a given word is related to a
topic

• Let’s see which topic ”harvard” is associated with

1 ap_topics <- tidy(ap_lda, matrix = "beta")
2

3 ap_topics |>
4 filter(term == "harvard")

12

Visualization prep

Instead of looking for specific words, let’s visualize the most likely
terms per topic

1 top_terms <- ap_topics |>
2 group_by(topic) |>
3 slice_max(beta, n = 10) |>
4 ungroup() |>
5 arrange(topic, -beta)
6

7 top_terms <- top_terms |>
8 mutate(term = reorder_within(term, beta, topic))

13

Visualization code

1 ggplot(top_terms, aes(beta, term, fill =
factor(topic))) +

2 geom_col(show.legend = FALSE) +
3 facet_wrap(~ topic, scales = "free") +
4 scale_y_reordered()

14

Visualization

15

Document level visualization

• How about topic likelihoods at the document level?
• ‘gamma‘ gives us the likelihood of a topic given the words in a
document

1 ap_documents <- tidy(ap_lda, matrix = "gamma") |>
2 arrange(document, topic)
3 head(ap_documents)

16

So, the motivating question

1. Who is publishing in top political science journals? Are their
ascriptive disparities?

2. What is being published? Are some topics avoided?

Saraceno (2020) did an analysis of publications in The Journal of
Politics

17

So, the motivating question

1. Who is publishing in top political science journals? Are their
ascriptive disparities?

2. What is being published? Are some topics avoided?

Saraceno (2020) did an analysis of publications in The Journal of
Politics

17

Back to Saraceno (2020)

18

Saraceno (2022)

19

Topic modeling, LDA, and notes

• Reiterating caveats at the end of lecture
• Topic modeling is not a panacea!

• Similar to other methods, it relies on assumptions, particularly
about the DGP of text

• Uncertainty is also a part of predictions - similar in respect to
regression predictions which have their own standard errors

20

Packages and preamble

1 library(tm)
2 library(SnowballC)

• In what ways can we categorize and divide the Harvard
Government faculty?

• Let’s say we have a corpus with three variables in ‘.csv‘ form
1. ‘prof‘ - name of faculty member
2. ‘phd‘ - year of phd attainment
3. ‘bio‘ - biography on website

21

Pre-pre-processing

1 # Loading in the data
2 df <- read.csv("data/harvardgov.csv")
3

4 # Converting the .csv to document term matrix form
5 corpus <- Corpus(VectorSource(df$bio))

22

Pre-processing

1 # make everything lowercase
2 corpus <- tm_map(corpus, content_transformer(tolower))
3

4 # remove white space (e.g. spaces)
5 corpus <- tm_map(corpus, stripWhitespace)
6

7 # remove numbers
8 corpus <- tm_map(corpus, removeNumbers)
9

10 # remove stopwords
11 corpus <- tm_map(corpus, removeWords,

stopwords("english"))
12

13 # stem words (e.g. remove "ing")
14 corpus <- tm_map(corpus, stemDocument)

23

Conversion to DTM

1 # Turning into a document term matrix
2 dtm <- DocumentTermMatrix(corpus)
3 dtm.mat <- as.matrix(dtm)
4

5 # Adding labels to each document
6 rownames(dtm.mat) <- df$prof

24

Normalize by document size

1 # Normalize by document size
2 tfidf <- weightTfIdf(dtm, normalize = TRUE)
3 tfidf.mat <- as.matrix(tfidf, normalize = TRUE)
4

5 # Adding labels to each document
6 rownames(tfidf.mat) <- df$prof

25

Visualizing

1 par(cex = 1.25)
2 library("wordcloud")
3 liu <- dtm.mat["naijia liu",]
4 liu.tfidf <- tfidf.mat["naijia liu",]

26

Visualizing example

1 wordcloud(colnames(dtm.mat), liu,
2 min.freq = min(liu[liu > 0]))

27

Descriptive stats

1 sort(liu, decreasing = TRUE)[1:5]
2 sort(liu.tfidf, decreasing = T)[1:3]

28

K-means algorithm

• K-Means clustering is simply an exercise in partitioning n
observations into k clusters

• In a text context, this means comparing the similarity of words
between documents

• Here, we are looking to cluster professors based on similar word
usage in their bios!

• This is an iterative process - the algorithm does initial groupings,
then sees whether it can minimize error by another permutation

1 # Need to standardize so that each row sums to a unit
length (e.g. 1)

2 tfidf.unit <- tfidf.mat / sqrt(rowSums(tfidf.mat^2))
3

4 set.seed(1234)
5 # centers indicates the number of clusters (e.g. k)
6 kconfour.out <- kmeans(tfidf.unit,
7 centers = 5)

29

Descriptive stats

1 table(kconfour.out$cluster)

↓

30

K-means group 1

1 knitr::kable(df$prof[kconfour.out$cluster == 1])

31

K-means group 2

1 knitr::kable(df$prof[kconfour.out$cluster == 2])

32

K-means group 3

1 knitr::kable(df$prof[kconfour.out$cluster == 3])

33

K-means group 4

1 knitr::kable(df$prof[kconfour.out$cluster == 4])

34

K-means group 5

1 knitr::kable(df$prof[kconfour.out$cluster == 5])

35

Overtime comparisons

• How similar are each bio to the professor with the earliest PhD,
Harvey Mansfield?

1 # Isolate Harvey
2 harvey <- as.data.frame(tfidf.mat["harvey c.

mansfield",])
3 # Isolate non-Harveys
4 nonhm.tfidf <-

as.data.frame(tfidf.mat[rownames(tfidf.mat)
5 != "harvey c. mansfield",])
6 # Sort everything chronologically by PhD attainment
7 nonhm.tfidf$year.index <-
8 df$phd[df$prof!= "harvey c. mansfield"]
9 chron.tfidf <-

nonhm.tfidf[order(nonhm.tfidf$year.index),]
10 years <- sort(unique(df$phd))
11 years <- years[-1]

36

For-loop

1 cosine <- function(a, b) {
2 ## t() transposes a matrix ensuring that vector `a'

is multiplied ## by each row of matrix `b'
3 numer <- apply(a * t(b), 2, sum)
4 denom <- sqrt(sum(a^2)) * sqrt(apply(b^2, 1, sum))
5 return(numer / denom)
6 }

1 avg.cosim <- rep(NA, length(years))
2 for (i in 1:length(years)) {
3 decade <- subset(chron.tfidf,
4 (year.index == years[i]))
5 decade <- decade[, names(decade) != "year.index"]
6 similarity <- cosine(harvey, decade)
7 avg.cosim[i] <- mean(similarity)
8 }

37

Plotting similarity to Harvey across time

1 plot(years, avg.cosim, main = "Similarity to Harvey",
2 xlab = "Year", ylab = "Cosine Similarity")

38

Summary

• Pre-processing text in an easy-to-implement way
• Also, pre-pre-processing when our data isn’t already a
document term matrix

• Learned one way to group text based on similarity (e.g. k-means
algorithm)

• Using for-loops and our own cosine similarity function, we can
plot similarity over time

39

Office hours

• Bring all your questions!
• Happy to help on code, identification, etc!

40

	Housekeeping
	Unsupervised learning overview
	Implementation 1: polisci publishing
	Results

	Implementation 2: text analysis for description
	Results

	Summary
	Office hours

