Section 1: Math Reviews/Previews

Ruofan Ma

Gov2018 2024 Spring

January 31, 2024

Now that you're here...

Road Map for Today

- Introduction
- MATH!
- Linear Algebra: vectors, matrices, and projections
- Calculus: derivatives, multivariate calculus, and optimizations
- Statistics: probability, inference, and computation

Linear Algebra: Basic Ideas

- Let $\mathbf{A}=\left(a_{i j}\right)_{p \times p}$ denote a $p \times p$ matrix with its (i, j) th entry being $a_{i j}$, and let $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right)^{\top}$ be a p-dim (column) vector.

Linear Algebra: Basic Ideas

- Let $\mathbf{A}=\left(a_{i j}\right)_{p \times p}$ denote a $p \times p$ matrix with its (i, j) th entry being $a_{i j}$, and let $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right)^{\top}$ be a p-dim (column) vector.
- A vector can be viewed as a function of indexes (input index i, output $\mathbf{x}[i]=x_{i}$).

Linear Algebra: Basic Ideas

- Let $\mathbf{A}=\left(a_{i j}\right)_{p \times p}$ denote a $p \times p$ matrix with its (i, j) th entry being $a_{i j}$, and let $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right)^{\top}$ be a p-dim (column) vector.
- A vector can be viewed as a function of indexes (input index i, output $\left.\mathbf{x}[i]=x_{i}\right)$.
- Solving a system of linear equations: $\mathbf{A x}=\mathbf{b}$, which has the solution $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$ when \mathbf{A} is invertible.

Linear Algebra: Basic Ideas

- Let $\mathbf{A}=\left(a_{i j}\right)_{p \times p}$ denote a $p \times p$ matrix with its (i, j) th entry being $a_{i j}$, and let $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right)^{\top}$ be a p-dim (column) vector.
- A vector can be viewed as a function of indexes (input index i, output $\left.\mathbf{x}[i]=x_{i}\right)$.
- Solving a system of linear equations: $\mathbf{A x}=\mathbf{b}$, which has the solution $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$ when \mathbf{A} is invertible.
- Linear dependence and inverse of a matrix: for a matrix to have its inverse, it has to be a square matrix, and its columns are linearly independent.

Linear Algebra: Basic Ideas

- Let $\mathbf{A}=\left(a_{i j}\right)_{p \times p}$ denote a $p \times p$ matrix with its (i, j) th entry being $a_{i j}$, and let $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right)^{\top}$ be a p-dim (column) vector.
- A vector can be viewed as a function of indexes (input index i, output $\left.\mathbf{x}[i]=x_{i}\right)$.
- Solving a system of linear equations: $\mathbf{A x}=\mathbf{b}$, which has the solution $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$ when \mathbf{A} is invertible.
- Linear dependence and inverse of a matrix: for a matrix to have its inverse, it has to be a square matrix, and its columns are linearly independent.
- Linear transformation of a vector: $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$; entry $\mathbf{x}^{\prime}[i]=\sum_{j=1}^{p} a_{i j} x_{j}$. It can also be written as $\mathbf{x}^{\prime}=\sum_{j=1}^{p} x_{j} \mathbf{A}_{\cdot j}$, where $\mathbf{A}_{\cdot j}$, denote the j th column of \mathbf{A}.

Linear Algebra: Vectors

- Things that should sound familiar to you: vector space, subspace, span, basis, dimension ...

Linear Algebra: Vectors

- Things that should sound familiar to you: vector space, subspace, span, basis, dimension ...
- L_{p}-norm: $\|\mathbf{x}\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}$

Linear Algebra: Vectors

- Things that should sound familiar to you: vector space, subspace, span, basis, dimension...
- L_{p}-norm: $\|\mathbf{x}\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}$
- L_{2} and L_{1} norms are most frequently seen.

Linear Algebra: Vectors

- Things that should sound familiar to you: vector space, subspace, span, basis, dimension...
- L_{p}-norm: $\|\mathbf{x}\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}$
- L_{2} and L_{1} norms are most frequently seen.
- L_{∞}-norm is defined as $\|\mathbf{x}\|_{\infty}=\max _{i}\left|x_{i}\right|$; and L_{0} norm is defined as $\|\mathbf{x}\|_{0}=\sum_{i=1}^{p} I_{\left\{x_{i} \neq 0\right\}}$, i.e., the number of non-zero entries in \mathbf{x}.

Linear Algebra: Vectors

- Things that should sound familiar to you: vector space, subspace, span, basis, dimension...
- L_{p}-norm: $\|\mathbf{x}\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}$
- L_{2} and L_{1} norms are most frequently seen.
- L_{∞}-norm is defined as $\|\mathbf{x}\|_{\infty}=\max _{i}\left|x_{i}\right|$; and L_{0} norm is defined as $\|\mathbf{x}\|_{0}=\sum_{i=1}^{p} I_{\left\{x_{i} \neq 0\right\}}$, i.e., the number of non-zero entries in \mathbf{x}.
- Frobenius norm of a matrix: $\|\mathbf{A}\|_{F}=\sqrt{\sum_{i, j} a_{i j}^{2}}$, analogous to the L_{2} norm.

Linear Algebra: Vectors

- Things that should sound familiar to you: vector space, subspace, span, basis, dimension...
- L_{p}-norm: $\|\mathbf{x}\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}$
- L_{2} and L_{1} norms are most frequently seen.
- L_{∞}-norm is defined as $\|\mathbf{x}\|_{\infty}=\max _{i}\left|x_{i}\right|$; and L_{0} norm is defined as $\|\mathbf{x}\|_{0}=\sum_{i=1}^{p} I_{\left\{x_{i} \neq 0\right\}}$, i.e., the number of non-zero entries in \mathbf{x}.
- Frobenius norm of a matrix: $\|\mathbf{A}\|_{F}=\sqrt{\sum_{i, j} a_{i j}^{2}}$, analogous to the L_{2} norm.
- Inner product (aka "dot product") of two vectors:

Linear Algebra: Vectors

- Things that should sound familiar to you: vector space, subspace, span, basis, dimension...
- L_{p}-norm: $\|\mathbf{x}\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}$
- L_{2} and L_{1} norms are most frequently seen.
- L_{∞}-norm is defined as $\|\mathbf{x}\|_{\infty}=\max _{i}\left|x_{i}\right|$; and L_{0} norm is defined as $\|\mathbf{x}\|_{0}=\sum_{i=1}^{p} I_{\left\{x_{i} \neq 0\right\}}$, i.e., the number of non-zero entries in \mathbf{x}.
- Frobenius norm of a matrix: $\|\mathbf{A}\|_{F}=\sqrt{\sum_{i, j} a_{i j}^{2}}$, analogous to the L_{2} norm.
- Inner product (aka "dot product") of two vectors:
-

$$
\mathbf{x} \cdot \mathbf{y} \equiv\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\top} \mathbf{y}=\mathbf{y}^{\top} \mathbf{x}=\sum_{i=1}^{p} x_{i} y_{i}=\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2} \cos (\theta)
$$

Linear Algebra: Vectors

- Things that should sound familiar to you: vector space, subspace, span, basis, dimension...
- L_{p}-norm: $\|\mathbf{x}\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}$
- L_{2} and L_{1} norms are most frequently seen.
- L_{∞}-norm is defined as $\|\mathbf{x}\|_{\infty}=\max _{i}\left|x_{i}\right|$; and L_{0} norm is defined as $\|\mathbf{x}\|_{0}=\sum_{i=1}^{p} I_{\left\{x_{i} \neq 0\right\}}$, i.e., the number of non-zero entries in \mathbf{x}.
- Frobenius norm of a matrix: $\|\mathbf{A}\|_{F}=\sqrt{\sum_{i, j} a_{i j}^{2}}$, analogous to the L_{2} norm.
- Inner product (aka "dot product") of two vectors:
-

$$
\mathbf{x} \cdot \mathbf{y} \equiv\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\top} \mathbf{y}=\mathbf{y}^{\top} \mathbf{x}=\sum_{i=1}^{p} x_{i} y_{i}=\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2} \cos (\theta)
$$

- Thus, $\mathbf{x} \cdot \mathbf{x}=\mathbf{x}^{\top} \mathbf{x}=\|\mathbf{x}\|_{2}^{2}$

Linear Algebra: Matrix Multiplication

- Matrix multiplication: $\mathbf{A B}$ is a valid matrix product if \mathbf{A} is $p \times q$ and \mathbf{B} is $q \times r$. The standard matrix product is defined as follows:

Linear Algebra: Matrix Multiplication

- Matrix multiplication: $\mathbf{A B}$ is a valid matrix product if \mathbf{A} is $p \times q$ and \mathbf{B} is $q \times r$. The standard matrix product is defined as follows:

$$
(\mathbf{A B})_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i q} b_{q j}=\sum_{k=1}^{q} a_{i k} b_{k j}
$$

Linear Algebra: Matrix Multiplication

- Matrix multiplication: $\mathbf{A B}$ is a valid matrix product if \mathbf{A} is $p \times q$ and \mathbf{B} is $q \times r$. The standard matrix product is defined as follows:

$$
(\mathbf{A B})_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i q} b_{q j}=\sum_{k=1}^{q} a_{i k} b_{k j}
$$

, where $i=1, \ldots, p$ and $j=1, \ldots, r$. In other words, $(\mathbf{A B})_{i j}$ is the dot product of the i th row of \mathbf{A} with the j th column of \mathbf{B}.

Linear Algebra: Matrix Multiplication

- Matrix multiplication: $\mathbf{A B}$ is a valid matrix product if \mathbf{A} is $p \times q$ and \mathbf{B} is $q \times r$. The standard matrix product is defined as follows:

$$
(\mathbf{A B})_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i q} b_{q j}=\sum_{k=1}^{q} a_{i k} b_{k j}
$$

, where $i=1, \ldots, p$ and $j=1, \ldots, r$. In other words, $(\mathbf{A B})_{i j}$ is the dot product of the i th row of \mathbf{A} with the j th column of \mathbf{B}.

- Properties of matrix multiplication:

Linear Algebra: Matrix Multiplication

- Matrix multiplication: $\mathbf{A B}$ is a valid matrix product if \mathbf{A} is $p \times q$ and \mathbf{B} is $q \times r$. The standard matrix product is defined as follows:

$$
(\mathbf{A B})_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i q} b_{q j}=\sum_{k=1}^{q} a_{i k} b_{k j}
$$

, where $i=1, \ldots, p$ and $j=1, \ldots, r$. In other words, $(\mathbf{A B})_{i j}$ is the dot product of the i th row of \mathbf{A} with the j th column of \mathbf{B}.

- Properties of matrix multiplication:
- Generally not commutative: $\mathbf{A B} \neq \mathbf{B A}$

Linear Algebra: Matrix Multiplication

- Matrix multiplication: $\mathbf{A B}$ is a valid matrix product if \mathbf{A} is $p \times q$ and \mathbf{B} is $q \times r$. The standard matrix product is defined as follows:

$$
(\mathbf{A B})_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i q} b_{q j}=\sum_{k=1}^{q} a_{i k} b_{k j}
$$

, where $i=1, \ldots, p$ and $j=1, \ldots, r$. In other words, $(\mathbf{A B})_{i j}$ is the dot product of the i th row of \mathbf{A} with the j th column of \mathbf{B}.

- Properties of matrix multiplication:
- Generally not commutative: $\mathbf{A B} \neq \mathbf{B A}$
- Distributive over addition: $\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}$.

$$
(\mathbf{A}+\mathbf{B}) \mathbf{C}=\mathbf{A C}+\mathbf{B C} .
$$

Linear Algebra: Matrix Multiplication

- Matrix multiplication: $\mathbf{A B}$ is a valid matrix product if \mathbf{A} is $p \times q$ and \mathbf{B} is $q \times r$. The standard matrix product is defined as follows:

$$
(\mathbf{A B})_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i q} b_{q j}=\sum_{k=1}^{q} a_{i k} b_{k j}
$$

, where $i=1, \ldots, p$ and $j=1, \ldots, r$. In other words, $(\mathbf{A B})_{i j}$ is the dot product of the i th row of \mathbf{A} with the j th column of \mathbf{B}.

- Properties of matrix multiplication:
- Generally not commutative: $\mathbf{A B} \neq \mathbf{B A}$
- Distributive over addition: $\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}$.
$(A+B) C=A C+B C$.
- Scalable: $\lambda(\mathbf{A B})=(\lambda \mathbf{A}) \mathbf{B}=(\mathbf{A B}) \lambda=\mathbf{A}(\mathbf{B} \lambda)$

Linear Algebra: Matrix Multiplication

- Matrix multiplication: $\mathbf{A B}$ is a valid matrix product if \mathbf{A} is $p \times q$ and \mathbf{B} is $q \times r$. The standard matrix product is defined as follows:

$$
(\mathbf{A B})_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i q} b_{q j}=\sum_{k=1}^{q} a_{i k} b_{k j}
$$

, where $i=1, \ldots, p$ and $j=1, \ldots, r$. In other words, $(\mathbf{A B})_{i j}$ is the dot product of the i th row of \mathbf{A} with the j th column of \mathbf{B}.

- Properties of matrix multiplication:
- Generally not commutative: $\mathbf{A B} \neq \mathbf{B A}$
- Distributive over addition: $\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}$.

$$
(A+B) C=A C+B C
$$

- Scalable: $\lambda(\mathbf{A B})=(\lambda \mathbf{A}) \mathbf{B}=(\mathbf{A B}) \lambda=\mathbf{A}(\mathbf{B} \lambda)$
- Transpose of product: $(\mathbf{A B})^{\top}=\mathbf{B}^{\top} \mathbf{A}^{\top}$

Linear Algebra: Matrices

- Things that should sound familiar to you: rank, trace, determinant, inverse ...

Linear Algebra: Matrices

- Things that should sound familiar to you: rank, trace, determinant, inverse ...
- Matrix Properties

Linear Algebra: Matrices

- Things that should sound familiar to you: rank, trace, determinant, inverse ...
- Matrix Properties
- \mathbf{A}^{\top} is the transpose of \mathbf{A} and has $A_{j i}^{\top}=A_{i j}$. This is just like flipping the two dimensions of your matrix.

Linear Algebra: Matrices

- Things that should sound familiar to you: rank, trace, determinant, inverse ...
- Matrix Properties
- \mathbf{A}^{\top} is the transpose of \mathbf{A} and has $A_{j i}^{\top}=A_{i j}$. This is just like flipping the two dimensions of your matrix.
- \mathbf{A} is symmetric if $A_{i j}=A_{j i}$. That is, $\mathbf{A}=\mathbf{A}^{\top}$. Only square matrices can be symmetric.

Linear Algebra: Matrices

- Things that should sound familiar to you: rank, trace, determinant, inverse ...
- Matrix Properties
- \mathbf{A}^{\top} is the transpose of \mathbf{A} and has $A_{j i}^{\top}=A_{i j}$. This is just like flipping the two dimensions of your matrix.
- \mathbf{A} is symmetric if $A_{i j}=A_{j i}$. That is, $\mathbf{A}=\mathbf{A}^{\top}$. Only square matrices can be symmetric.
- A is orthogonal if its rows and its columns are orthogonal unit vectors:
$\mathbf{A}^{\top} \mathbf{A}=\mathbf{A} \mathbf{A}^{\top}=\mathbf{I}$. For an orthogonal matrix \mathbf{A} we have $\mathbf{A}^{\top}=\mathbf{A}^{-1}$.

Linear Algebra: Matrices

- Things that should sound familiar to you: rank, trace, determinant, inverse ...
- Matrix Properties
- \mathbf{A}^{\top} is the transpose of \mathbf{A} and has $A_{j i}^{\top}=A_{i j}$. This is just like flipping the two dimensions of your matrix.
- \mathbf{A} is symmetric if $A_{i j}=A_{j i}$. That is, $\mathbf{A}=\mathbf{A}^{\top}$. Only square matrices can be symmetric.
- \mathbf{A} is orthogonal if its rows and its columns are orthogonal unit vectors:
$\mathbf{A}^{\top} \mathbf{A}=\mathbf{A A}^{\top}=\mathbf{I}$. For an orthogonal matrix \mathbf{A} we have $\mathbf{A}^{\top}=\mathbf{A}^{-1}$.
- Diagonal matrices have non-zero values on the main diagonal and zeros elsewhere. Diagonal matrices are easy to take powers of because you just take the powers of the diagonal entries.

Linear Algebra: Matrices

- Things that should sound familiar to you: rank, trace, determinant, inverse ...
- Matrix Properties
- \mathbf{A}^{\top} is the transpose of \mathbf{A} and has $A_{j i}^{\top}=A_{i j}$. This is just like flipping the two dimensions of your matrix.
- \mathbf{A} is symmetric if $A_{i j}=A_{j i}$. That is, $\mathbf{A}=\mathbf{A}^{\top}$. Only square matrices can be symmetric.
- A is orthogonal if its rows and its columns are orthogonal unit vectors:
$\mathbf{A}^{\top} \mathbf{A}=\mathbf{A A}^{\top}=\mathbf{I}$. For an orthogonal matrix \mathbf{A} we have $\mathbf{A}^{\top}=\mathbf{A}^{-1}$.
- Diagonal matrices have non-zero values on the main diagonal and zeros elsewhere. Diagonal matrices are easy to take powers of because you just take the powers of the diagonal entries.
- Eigen-everything: $\mathbf{A v}=\lambda \mathbf{v} \Rightarrow$ eigenvalue decomposition, single value decomposition, etc.

Linear Algebra: Projection

- Project vector \mathbf{x} to the direction of vector $\mathbf{v} \neq 0\left(\right.$ define $\left.\operatorname{proj}_{0}(\mathbf{x}) \equiv 0\right)$:

Linear Algebra: Projection

- Project vector \mathbf{x} to the direction of vector $\mathbf{v} \neq 0\left(\right.$ define $\left.\operatorname{proj}_{0}(\mathbf{x}) \equiv 0\right)$:

$$
\operatorname{proj}_{\mathbf{v}}(\mathbf{x})=\frac{\langle\mathbf{x}, \mathbf{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle} \mathbf{v} \equiv\left[\mathbf{v}\left(\mathbf{v}^{\top} \mathbf{v}\right)^{-1} \mathbf{v}^{\top}\right] \mathbf{x}
$$

Linear Algebra: Projection

- Project vector \mathbf{x} to the direction of vector $\mathbf{v} \neq 0\left(\right.$ define $\left.\operatorname{proj}_{0}(\mathbf{x}) \equiv 0\right)$:

$$
\operatorname{proj}_{\mathbf{v}}(\mathbf{x})=\frac{\langle\mathbf{x}, \mathbf{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle} \mathbf{v} \equiv\left[\mathbf{v}\left(\mathbf{v}^{\top} \mathbf{v}\right)^{-1} \mathbf{v}^{\top}\right] \mathbf{x}
$$

- Thus, $\mathbf{x}-\operatorname{proj}_{\mathbf{v}}(\mathbf{x})=\left[\mathbf{I}-\mathbf{v}\left(\mathbf{v}^{\top} \mathbf{v}\right)^{-1} \mathbf{v}^{\top}\right] \mathbf{x} \stackrel{\text { def }}{=} \operatorname{orth}_{\mathbf{v}}(\mathbf{x})$ is orthogonal to \mathbf{v}.

Linear Algebra: Projection

- Project vector \mathbf{x} to the direction of vector $\mathbf{v} \neq 0\left(\right.$ define $\left.\operatorname{proj}_{0}(\mathbf{x}) \equiv 0\right)$:

$$
\operatorname{proj}_{\mathbf{v}}(\mathbf{x})=\frac{\langle\mathbf{x}, \mathbf{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle} \mathbf{v} \equiv\left[\mathbf{v}\left(\mathbf{v}^{\top} \mathbf{v}\right)^{-1} \mathbf{v}^{\top}\right] \mathbf{x}
$$

- Thus, $\mathbf{x}-\operatorname{proj}_{\mathbf{v}}(\mathbf{x})=\left[\mathbf{I}-\mathbf{v}\left(\mathbf{v}^{\top} \mathbf{v}\right)^{-1} \mathbf{v}^{\top}\right] \mathbf{x} \stackrel{\text { def }}{=} \operatorname{orth}_{\mathbf{v}}(\mathbf{x})$ is orthogonal to \mathbf{v}.
- By Pythagorean theorem: $\|\mathbf{x}\|_{2}^{2}=\left\|\operatorname{proj}_{\mathbf{v}}(\mathbf{x})\right\|_{2}^{2}+\left\|\operatorname{orth}_{\mathbf{v}}(\mathbf{x})\right\|_{2}^{2}$

Linear Algebra: Projection

- Project vector \mathbf{x} to the direction of vector $\mathbf{v} \neq 0\left(\right.$ define $\left.\operatorname{proj}_{0}(\mathbf{x}) \equiv 0\right)$:

$$
\operatorname{proj}_{\mathbf{v}}(\mathbf{x})=\frac{\langle\mathbf{x}, \mathbf{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle} \mathbf{v} \equiv\left[\mathbf{v}\left(\mathbf{v}^{\top} \mathbf{v}\right)^{-1} \mathbf{v}^{\top}\right] \mathbf{x}
$$

- Thus, $\mathbf{x}-\operatorname{proj}_{\mathbf{v}}(\mathbf{x})=\left[\mathbf{I}-\mathbf{v}\left(\mathbf{v}^{\top} \mathbf{v}\right)^{-1} \mathbf{v}^{\top}\right] \mathbf{x} \stackrel{\text { def }}{=} \operatorname{orth}_{\mathbf{v}}(\mathbf{x})$ is orthogonal to \mathbf{v}.
- By Pythagorean theorem: $\|\mathbf{x}\|_{2}^{2}=\left\|\operatorname{proj}_{\mathbf{v}}(\mathbf{x})\right\|_{2}^{2}+\left\|\operatorname{orth}_{\mathbf{v}}(\mathbf{x})\right\|_{2}^{2}$
- Projection to a subspace:
- $\operatorname{proj}_{\mathbf{V}}(\mathbf{x})=\left[\mathbf{V}\left(\mathbf{V}^{\top} \mathbf{V}\right)^{-1} \mathbf{V}^{\top}\right] \mathbf{x}, \operatorname{orth}_{V}(\mathbf{x})=\left[\mathbf{I}-\mathbf{V}\left(\mathbf{V}^{\top} \mathbf{V}\right)^{-1} \mathbf{V}^{\top}\right] \mathbf{x}$

Linear Algebra: Projection

- Project vector \mathbf{x} to the direction of vector $\mathbf{v} \neq 0\left(\right.$ define $\left.\operatorname{proj}_{0}(\mathbf{x}) \equiv 0\right)$:

$$
\operatorname{proj}_{\mathbf{v}}(\mathbf{x})=\frac{\langle\mathbf{x}, \mathbf{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle} \mathbf{v} \equiv\left[\mathbf{v}\left(\mathbf{v}^{\top} \mathbf{v}\right)^{-1} \mathbf{v}^{\top}\right] \mathbf{x}
$$

- Thus, $\mathbf{x}-\operatorname{proj}_{\mathbf{v}}(\mathbf{x})=\left[\mathbf{I}-\mathbf{v}\left(\mathbf{v}^{\top} \mathbf{v}\right)^{-1} \mathbf{v}^{\top}\right] \mathbf{x} \stackrel{\text { def }}{=} \operatorname{orth}_{\mathbf{v}}(\mathbf{x})$ is orthogonal to \mathbf{v}.
- By Pythagorean theorem: $\|\mathbf{x}\|_{2}^{2}=\left\|\operatorname{proj}_{\mathbf{v}}(\mathbf{x})\right\|_{2}^{2}+\left\|\operatorname{orth}_{\mathrm{v}}(\mathbf{x})\right\|_{2}^{2}$
- Projection to a subspace:
- $\operatorname{proj}_{\mathbf{v}}(\mathbf{x})=\left[\mathbf{V}\left(\mathbf{V}^{\top} \mathbf{V}\right)^{-1} \mathbf{V}^{\top}\right] \mathbf{x}, \operatorname{orth}_{V}(\mathbf{x})=\left[\mathbf{I}-\mathbf{V}\left(\mathbf{V}^{\top} \mathbf{V}\right)^{-1} \mathbf{V}^{\top}\right] \mathbf{x}$
- $\mathbf{P}=\mathbf{V}\left(\mathbf{V}^{\top} \mathbf{V}\right)^{-1} \mathbf{V}^{\top}$ (hat/projection matrix);

Linear Algebra: Projection

- Project vector \mathbf{x} to the direction of vector $\mathbf{v} \neq 0\left(\right.$ define $\left.\operatorname{proj}_{0}(\mathbf{x}) \equiv 0\right)$:

$$
\operatorname{proj}_{\mathbf{v}}(\mathbf{x})=\frac{\langle\mathbf{x}, \mathbf{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle} \mathbf{v} \equiv\left[\mathbf{v}\left(\mathbf{v}^{\top} \mathbf{v}\right)^{-1} \mathbf{v}^{\top}\right] \mathbf{x}
$$

- Thus, $\mathbf{x}-\operatorname{proj}_{\mathbf{v}}(\mathbf{x})=\left[\mathbf{I}-\mathbf{v}\left(\mathbf{v}^{\top} \mathbf{v}\right)^{-1} \mathbf{v}^{\top}\right] \mathbf{x} \stackrel{\text { def }}{=} \operatorname{orth}_{\mathbf{v}}(\mathbf{x})$ is orthogonal to \mathbf{v}.
- By Pythagorean theorem: $\|\mathbf{x}\|_{2}^{2}=\left\|\operatorname{proj}_{\mathbf{v}}(\mathbf{x})\right\|_{2}^{2}+\left\|\operatorname{orth}_{\mathrm{v}}(\mathbf{x})\right\|_{2}^{2}$
- Projection to a subspace:
- $\operatorname{proj}_{\mathbf{V}}(\mathbf{x})=\left[\mathbf{V}\left(\mathbf{V}^{\top} \mathbf{V}\right)^{-1} \mathbf{V}^{\top}\right] \mathbf{x}, \operatorname{orth}_{V}(\mathbf{x})=\left[\mathbf{I}-\mathbf{V}\left(\mathbf{V}^{\top} \mathbf{V}\right)^{-1} \mathbf{V}^{\top}\right] \mathbf{x}$
- $\mathbf{P}=\mathbf{V}\left(\mathbf{V}^{\top} \mathbf{V}\right)^{-1} \mathbf{V}^{\top}$ (hat/projection matrix); $\mathbf{I}-\mathbf{P}$ (orthogonalization/annihilation matrix)

Calculus: Differentiation

- Things that should sound familiar to you: product rule, quotient rule, chain rule, increasing/decreasing, concave/convex ...

Calculus: Differentiation

- Things that should sound familiar to you: product rule, quotient rule, chain rule, increasing/decreasing, concave/convex ...
- Derivative as "rate-of-change":

$$
f^{\prime}(x) \equiv \frac{d f(x)}{d x} \equiv \frac{\partial f(x)}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Calculus: Differentiation

- Things that should sound familiar to you: product rule, quotient rule, chain rule, increasing/decreasing, concave/convex ...
- Derivative as "rate-of-change":

$$
f^{\prime}(x) \equiv \frac{d f(x)}{d x} \equiv \frac{\partial f(x)}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

- If $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right)^{\top}$ is multi-dimensional, we have the gradient:

Calculus: Differentiation

- Things that should sound familiar to you: product rule, quotient rule, chain rule, increasing/decreasing, concave/convex ...
- Derivative as "rate-of-change":

$$
f^{\prime}(x) \equiv \frac{d f(x)}{d x} \equiv \frac{\partial f(x)}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

- If $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right)^{\top}$ is multi-dimensional, we have the gradient:

$$
\nabla f(\mathbf{x})=\frac{d f(\mathbf{x})}{d \mathbf{x}}=\left(\frac{\partial f(\mathbf{x})}{\partial x_{1}}, \ldots, \frac{\partial f(\mathbf{x})}{\partial x_{p}}\right)^{\top}
$$

Calculus: Differentiation

- Things that should sound familiar to you: product rule, quotient rule, chain rule, increasing/decreasing, concave/convex ...
- Derivative as "rate-of-change":

$$
f^{\prime}(x) \equiv \frac{d f(x)}{d x} \equiv \frac{\partial f(x)}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

- If $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right)^{\top}$ is multi-dimensional, we have the gradient:

$$
\nabla f(\mathbf{x})=\frac{d f(\mathbf{x})}{d \mathbf{x}}=\left(\frac{\partial f(\mathbf{x})}{\partial x_{1}}, \ldots, \frac{\partial f(\mathbf{x})}{\partial x_{p}}\right)^{\top}
$$

- The gradient vector points in the direction of steepest ascent in $f(\mathbf{x})$. This is useful for optimization.

Calculus: Differentiation

- Things that should sound familiar to you: product rule, quotient rule, chain rule, increasing/decreasing, concave/convex ...
- Derivative as "rate-of-change":

$$
f^{\prime}(x) \equiv \frac{d f(x)}{d x} \equiv \frac{\partial f(x)}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

- If $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right)^{\top}$ is multi-dimensional, we have the gradient:

$$
\nabla f(\mathbf{x})=\frac{d f(\mathbf{x})}{d \mathbf{x}}=\left(\frac{\partial f(\mathbf{x})}{\partial x_{1}}, \ldots, \frac{\partial f(\mathbf{x})}{\partial x_{p}}\right)^{\top}
$$

- The gradient vector points in the direction of steepest ascent in $f(\mathbf{x})$. This is useful for optimization.
- If \mathbf{f} has multiple outputs, we have the Jacobian

Calculus: Differentiation

- Things that should sound familiar to you: product rule, quotient rule, chain rule, increasing/decreasing, concave/convex ...
- Derivative as "rate-of-change":

$$
f^{\prime}(x) \equiv \frac{d f(x)}{d x} \equiv \frac{\partial f(x)}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

- If $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right)^{\top}$ is multi-dimensional, we have the gradient:

$$
\nabla f(\mathbf{x})=\frac{d f(\mathbf{x})}{d \mathbf{x}}=\left(\frac{\partial f(\mathbf{x})}{\partial x_{1}}, \ldots, \frac{\partial f(\mathbf{x})}{\partial x_{p}}\right)^{\top}
$$

- The gradient vector points in the direction of steepest ascent in $f(\mathbf{x})$. This is useful for optimization.
- If \mathbf{f} has multiple outputs, we have the Jacobian
- The Hessian matrix is like the Jacobian but with second-order derivatives

Calculus: Multivariate Calculus

Calculus: Multivariate Calculus

- Univariate normal: $\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)$

Calculus: Multivariate Calculus

- Univariate normal: $\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)$
- Properties of Gaussians:
- If X, Y are independent normals then $X+Y \sim \mathcal{N}\left(\mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)$
- Any PDF proportional to $\exp \left(a x^{2}+b x+c\right)$ must be a Gaussian PDF.

Calculus: Multivariate Calculus

- Univariate normal: $\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)$
- Properties of Gaussians:
- If X, Y are independent normals then $X+Y \sim \mathcal{N}\left(\mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)$
- Any PDF proportional to $\exp \left(a x^{2}+b x+c\right)$ must be a Gaussian PDF.
- Multivariate normal:

$$
\mathcal{N}(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{\operatorname{det}(2 \pi \boldsymbol{\Sigma})^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

Calculus: Multivariate Calculus

- Univariate normal: $\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)$
- Properties of Gaussians:
- If X, Y are independent normals then $X+Y \sim \mathcal{N}\left(\mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)$
- Any PDF proportional to $\exp \left(a x^{2}+b x+c\right)$ must be a Gaussian PDF.
- Multivariate normal:

$$
\mathcal{N}(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{\operatorname{det}(2 \pi \boldsymbol{\Sigma})^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

- Matrix differentiation: Generally analogous to univariate differentiation. But pay attention to the dimensions! For example:

Calculus: Multivariate Calculus

- Univariate normal: $\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)$
- Properties of Gaussians:
- If X, Y are independent normals then $X+Y \sim \mathcal{N}\left(\mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)$
- Any PDF proportional to $\exp \left(a x^{2}+b x+c\right)$ must be a Gaussian PDF.
- Multivariate normal:

$$
\mathcal{N}(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{\operatorname{det}(2 \pi \boldsymbol{\Sigma})^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

- Matrix differentiation: Generally analogous to univariate differentiation. But pay attention to the dimensions! For example:

$$
\begin{aligned}
& \frac{d \mathbf{x}^{\top} \mathbf{a}}{d \mathbf{x}}=\frac{d \mathbf{a}^{\top} \mathbf{x}}{d \mathbf{x}}=\mathbf{a}, \frac{d \mathbf{a}^{\top} \mathbf{X} \mathbf{b}}{d \mathbf{X}}=\mathbf{a b}^{\top} \\
& \frac{d \mathbf{a}^{\top} \mathbf{X}^{\top} \mathbf{b}}{d \mathbf{X}}=\mathbf{b a}^{\top}, \frac{d \mathbf{a}^{\top} \mathbf{X} \mathbf{a}}{d \mathbf{X}}=\frac{d \mathbf{a}^{\top} \mathbf{X}^{\top} \mathbf{a}}{d \mathbf{X}}=\mathbf{a a}^{\top}
\end{aligned}
$$

Calculus: Optimization in high-dimension

- Local Extrema: Recall that the local extrema of a single-variable function can be found by setting its derivative to 0 . The same is true in multivariate case, using the condition $\frac{d \mathbf{f}(\mathrm{x})}{d \mathrm{x}}=\mathbf{0}$. However, this equation is often intractable. We can also search for local minima numerically using gradient-based methods.

Calculus: Optimization in high-dimension

- Local Extrema: Recall that the local extrema of a single-variable function can be found by setting its derivative to 0 . The same is true in multivariate case, using the condition $\frac{d \mathbf{f}(\mathrm{x})}{d \mathrm{x}}=\mathbf{0}$. However, this equation is often intractable. We can also search for local minima numerically using gradient-based methods.
- Gradient Descent (finding minima): We start with an initial guess at a useful value for $\mathbf{x}: \mathbf{x}_{0}$. Then at each step i we update our guess by going against the direction of the gradient vector:

Calculus: Optimization in high-dimension

- Local Extrema: Recall that the local extrema of a single-variable function can be found by setting its derivative to 0 . The same is true in multivariate case, using the condition $\frac{d \mathbf{f}(\mathrm{x})}{d \mathrm{x}}=\mathbf{0}$. However, this equation is often intractable. We can also search for local minima numerically using gradient-based methods.
- Gradient Descent (finding minima): We start with an initial guess at a useful value for $\mathbf{x}: \mathbf{x}_{0}$. Then at each step i we update our guess by going against the direction of the gradient vector:

$$
\mathbf{x}_{i+1}=\mathbf{x}_{i}-\eta \nabla f\left(\mathbf{x}_{i}\right)
$$

Calculus: Optimization in high-dimension

- Local Extrema: Recall that the local extrema of a single-variable function can be found by setting its derivative to 0 . The same is true in multivariate case, using the condition $\frac{d \mathbf{f}(\mathrm{x})}{d \mathrm{x}}=\mathbf{0}$. However, this equation is often intractable. We can also search for local minima numerically using gradient-based methods.
- Gradient Descent (finding minima): We start with an initial guess at a useful value for $\mathbf{x}: \mathbf{x}_{0}$. Then at each step i we update our guess by going against the direction of the gradient vector:

$$
\mathbf{x}_{i+1}=\mathbf{x}_{i}-\eta \nabla f\left(\mathbf{x}_{i}\right)
$$

where $\eta>0$ is the step size. We stop updating \mathbf{x}_{i} when the value of the gradient is close to 0

Visualization of gradient descent

Calculus: Optimization in high-dimension

- Lagrange Multipliers: This technique is used to optimize a function $f(\mathbf{x})$ given some constraint $g(\mathbf{x})=0$. First, construct what is called the Lagrangian function $L(\mathbf{x}, \lambda)$:

Calculus: Optimization in high-dimension

- Lagrange Multipliers: This technique is used to optimize a function $f(\mathbf{x})$ given some constraint $g(\mathbf{x})=0$. First, construct what is called the Lagrangian function $L(\mathbf{x}, \lambda)$:

$$
L(\mathbf{x}, \lambda)=f(\mathbf{x})+\lambda g(\mathbf{x})
$$

Calculus: Optimization in high-dimension

- Lagrange Multipliers: This technique is used to optimize a function $f(\mathbf{x})$ given some constraint $g(\mathbf{x})=0$. First, construct what is called the Lagrangian function $L(\mathbf{x}, \lambda)$:

$$
L(\mathbf{x}, \lambda)=f(\mathbf{x})+\lambda g(\mathbf{x})
$$

Then, set the derivative of L with respect to both x and λ equal to 0 :

Calculus: Optimization in high-dimension

- Lagrange Multipliers: This technique is used to optimize a function $f(\mathbf{x})$ given some constraint $g(\mathbf{x})=0$. First, construct what is called the Lagrangian function $L(\mathbf{x}, \lambda)$:

$$
L(\mathbf{x}, \lambda)=f(\mathbf{x})+\lambda g(\mathbf{x})
$$

Then, set the derivative of L with respect to both x and λ equal to 0 :

$$
\nabla L_{\mathbf{x}}=\nabla f(\mathbf{x})+\lambda \nabla g(\mathbf{x})=0, \quad \frac{\partial L}{\partial \lambda}=g(\mathbf{x})=0
$$

Calculus: Optimization in high-dimension

- Lagrange Multipliers: This technique is used to optimize a function $f(\mathbf{x})$ given some constraint $g(\mathbf{x})=0$. First, construct what is called the Lagrangian function $L(\mathbf{x}, \lambda)$:

$$
L(\mathbf{x}, \lambda)=f(\mathbf{x})+\lambda g(\mathbf{x})
$$

Then, set the derivative of L with respect to both \mathbf{x} and λ equal to 0 :

$$
\nabla L_{\mathbf{x}}=\nabla f(\mathbf{x})+\lambda \nabla g(\mathbf{x})=0, \quad \frac{\partial L}{\partial \lambda}=g(\mathbf{x})=0
$$

If \mathbf{x} is d-dimensional, this will give you a system of $d+1$ equations. In this way, you can solve analytically for x to find the optimal value of $f(\mathbf{x})$ subject to the constraint $g(\mathbf{x})$.

Calculus: Optimization in high-dimension

- Lagrange Multipliers: This technique is used to optimize a function $f(\mathbf{x})$ given some constraint $g(\mathbf{x})=0$. First, construct what is called the Lagrangian function $L(\mathbf{x}, \lambda)$:

$$
L(\mathbf{x}, \lambda)=f(\mathbf{x})+\lambda g(\mathbf{x})
$$

Then, set the derivative of L with respect to both \mathbf{x} and λ equal to 0 :

$$
\nabla L_{\mathbf{x}}=\nabla f(\mathbf{x})+\lambda \nabla g(\mathbf{x})=0, \quad \frac{\partial L}{\partial \lambda}=g(\mathbf{x})=0
$$

If \mathbf{x} is d-dimensional, this will give you a system of $d+1$ equations. In this way, you can solve analytically for \mathbf{x} to find the optimal value of $f(\mathbf{x})$ subject to the constraint $g(\mathbf{x})$. As with unconstrained optimization, this too becomes intractable as the dimension increases and gradient descent is used to make progress.

Statistics: Probability and Inference

- Things that should sound familiar to you:

Statistics: Probability and Inference

- Things that should sound familiar to you:
- PDF/PMF, CDF/CMF, conditional/marginal/joint
- Expectations, Variance, Covariance
- LOTP, LOTE/Adam's Law, Eve's Law, Bayes' Theorem
- LLN, CLT
- Likelihood function, MLE, prior/posterior

Statistics: Probability and Inference

- Things that should sound familiar to you:
- PDF/PMF, CDF/CMF, conditional/marginal/joint
- Expectations, Variance, Covariance
- LOTP, LOTE/Adam's Law, Eve's Law, Bayes' Theorem
- LLN, CLT
- Likelihood function, MLE, prior/posterior
- Useful facts:
- Triangle Inequality: $|\operatorname{Cov}(X, Y)| \leq \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}$

Statistics: Probability and Inference

- Things that should sound familiar to you:
- PDF/PMF, CDF/CMF, conditional/marginal/joint
- Expectations, Variance, Covariance
- LOTP, LOTE/Adam's Law, Eve's Law, Bayes' Theorem
- LLN, CLT
- Likelihood function, MLE, prior/posterior
- Useful facts:
- Triangle Inequality: $|\operatorname{Cov}(X, Y)| \leq \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}$
- Cauchy-Schwarz Inequality: $|E(X Y)| \leq \sqrt{E\left(X^{2}\right) E\left(Y^{2}\right)}$
- Markov Inequality: for any $a>0, P(|Y| \geq a) \leq \frac{E|Y|}{a}$

Statistics: Probability and Inference

- Things that should sound familiar to you:
- PDF/PMF, CDF/CMF, conditional/marginal/joint
- Expectations, Variance, Covariance
- LOTP, LOTE/Adam's Law, Eve's Law, Bayes' Theorem
- LLN, CLT
- Likelihood function, MLE, prior/posterior
- Useful facts:
- Triangle Inequality: $|\operatorname{Cov}(X, Y)| \leq \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}$
- Cauchy-Schwarz Inequality: $|E(X Y)| \leq \sqrt{E\left(X^{2}\right) E\left(Y^{2}\right)}$
- Markov Inequality: for any $a>0, P(|Y| \geq a) \leq \frac{E|Y|}{a}$
- Chebyshev Inequality: For any Y with finite variance and $\epsilon>0$, $P(|Y-\mu| \geq \epsilon) \leq \sigma^{2} / \epsilon^{2}$

Statistics: Probability and Inference

- Things that should sound familiar to you:
- PDF/PMF, CDF/CMF, conditional/marginal/joint
- Expectations, Variance, Covariance
- LOTP, LOTE/Adam's Law, Eve's Law, Bayes' Theorem
- LLN, CLT
- Likelihood function, MLE, prior/posterior
- Useful facts:
- Triangle Inequality: $|\operatorname{Cov}(X, Y)| \leq \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}$
- Cauchy-Schwarz Inequality: $|E(X Y)| \leq \sqrt{E\left(X^{2}\right) E\left(Y^{2}\right)}$
- Markov Inequality: for any $a>0, P(|Y| \geq a) \leq \frac{E|Y|}{a}$
- Chebyshev Inequality: For any Y with finite variance and $\epsilon>0$, $P(|Y-\mu| \geq \epsilon) \leq \sigma^{2} / \epsilon^{2}$
- Jensen's Inequality: $E g(Y) \geq g(E Y)$ for g convex

Statistics: Markov Chain

Statistics: Markov Chain

- A sequence of random variables X_{1}, X_{2}, \ldots is said to be a Markov chain if it satisfies the Markov property:

Statistics: Markov Chain

- A sequence of random variables X_{1}, X_{2}, \ldots is said to be a Markov chain if it satisfies the Markov property:

$$
X_{n+1}\left|X_{1}, \ldots, X_{n} \sim X_{n+1}\right| X_{n}
$$

Statistics: Markov Chain

- A sequence of random variables X_{1}, X_{2}, \ldots is said to be a Markov chain if it satisfies the Markov property:

$$
X_{n+1}\left|X_{1}, \ldots, X_{n} \sim X_{n+1}\right| X_{n}
$$

i.e., knowing the value of X_{n} tells you the same amount of information about X_{n+1} as knowing all of X_{1}, \ldots, X_{n}.

Statistics: Markov Chain

- A sequence of random variables X_{1}, X_{2}, \ldots is said to be a Markov chain if it satisfies the Markov property:

$$
X_{n+1}\left|X_{1}, \ldots, X_{n} \sim X_{n+1}\right| X_{n}
$$

i.e., knowing the value of X_{n} tells you the same amount of information about X_{n+1} as knowing all of X_{1}, \ldots, X_{n}. If the X_{i} 's are a discrete distribution the Markov property can be written as:

Statistics: Markov Chain

- A sequence of random variables X_{1}, X_{2}, \ldots is said to be a Markov chain if it satisfies the Markov property:

$$
X_{n+1}\left|X_{1}, \ldots, X_{n} \sim X_{n+1}\right| X_{n}
$$

i.e., knowing the value of X_{n} tells you the same amount of information about X_{n+1} as knowing all of X_{1}, \ldots, X_{n}. If the X_{i} 's are a discrete distribution the Markov property can be written as:

$$
\mathbb{P}\left(X_{n+1}=j_{n+1} \mid X_{n}=j_{n}, \ldots, X_{1}=j_{1}\right)=\mathbb{P}\left(X_{n+1}=j_{n+1} \mid X_{n}=j_{n}\right)
$$

Statistics: Markov Chain

- A sequence of random variables X_{1}, X_{2}, \ldots is said to be a Markov chain if it satisfies the Markov property:

$$
X_{n+1}\left|X_{1}, \ldots, X_{n} \sim X_{n+1}\right| X_{n}
$$

i.e., knowing the value of X_{n} tells you the same amount of information about X_{n+1} as knowing all of X_{1}, \ldots, X_{n}. If the X_{i} 's are a discrete distribution the Markov property can be written as:

$$
\mathbb{P}\left(X_{n+1}=j_{n+1} \mid X_{n}=j_{n}, \ldots, X_{1}=j_{1}\right)=\mathbb{P}\left(X_{n+1}=j_{n+1} \mid X_{n}=j_{n}\right)
$$

- Application: latent Dirichlet allocation, Viterbi algorithm, EM algorithm, missing data, etc.

Statistics: Computational Thinking

- Solutions to all practical problems need and (for the most part) only need to be "computable"

Statistics: Computational Thinking

- Solutions to all practical problems need and (for the most part) only need to be "computable"
- Overflow and Underflow

Statistics: Computational Thinking

- Solutions to all practical problems need and (for the most part) only need to be "computable"
- Overflow and Underflow
- Never multiply many probabilities or density values literally

Statistics: Computational Thinking

- Solutions to all practical problems need and (for the most part) only need to be "computable"
- Overflow and Underflow
- Never multiply many probabilities or density values literally
- Operate at the logarithmic scale if you can: For example, when computing the summation of many small (or huge) numbers, it is better to do them properly via logarithm.

Statistics: Computational Thinking

- Solutions to all practical problems need and (for the most part) only need to be "computable"
- Overflow and Underflow
- Never multiply many probabilities or density values literally
- Operate at the logarithmic scale if you can: For example, when computing the summation of many small (or huge) numbers, it is better to do them properly via logarithm.
- Example: softmax function. $\operatorname{softmax}(\mathbf{x})_{i}=\frac{\exp \left(x_{i}\right)}{\sum_{j=1}^{k} \exp \left(x_{j}\right)}$

Statistics: Computational Thinking

- Solutions to all practical problems need and (for the most part) only need to be "computable"
- Overflow and Underflow
- Never multiply many probabilities or density values literally
- Operate at the logarithmic scale if you can: For example, when computing the summation of many small (or huge) numbers, it is better to do them properly via logarithm.
- Example: softmax function. $\operatorname{softmax}(\mathbf{x})_{i}=\frac{\exp \left(x_{i}\right)}{\sum_{j=1}^{k} \exp \left(x_{j}\right)}$
- Approximation

Statistics: Computational Thinking

- Solutions to all practical problems need and (for the most part) only need to be "computable"
- Overflow and Underflow
- Never multiply many probabilities or density values literally
- Operate at the logarithmic scale if you can: For example, when computing the summation of many small (or huge) numbers, it is better to do them properly via logarithm.
- Example: softmax function. $\operatorname{softmax}(\mathbf{x})_{i}=\frac{\exp \left(x_{i}\right)}{\sum_{j=1}^{k} \exp \left(x_{j}\right)}$
- Approximation
- Taylor expansion: $f(x+\epsilon)=f(x)+f^{\prime}(x) \epsilon+\cdots+\frac{f^{(k)}(x)}{k!} \epsilon^{k}+\ldots$

Statistics: Computational Thinking

- Solutions to all practical problems need and (for the most part) only need to be "computable"
- Overflow and Underflow
- Never multiply many probabilities or density values literally
- Operate at the logarithmic scale if you can: For example, when computing the summation of many small (or huge) numbers, it is better to do them properly via logarithm.
- Example: softmax function. $\operatorname{softmax}(\mathbf{x})_{i}=\frac{\exp \left(x_{i}\right)}{\sum_{j=1}^{k} \exp \left(x_{j}\right)}$
- Approximation
- Taylor expansion: $f(x+\epsilon)=f(x)+f^{\prime}(x) \epsilon+\cdots+\frac{f^{(k)}(x)}{k!} \epsilon^{k}+\ldots$

$$
\Rightarrow f(\mathbf{x}+\epsilon)=f(\mathbf{x})+[\nabla f(\mathbf{x})]^{\top} \epsilon+\frac{1}{2} \epsilon^{T} H(\mathbf{x}) \epsilon+o\left(\|\epsilon\|^{2}\right)
$$

