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Road Map for Today

Introduction

MATH!

Linear Algebra: vectors, matrices, and projections
Calculus: derivatives, multivariate calculus, and optimizations
Statistics: probability, inference, and computation
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Linear Algebra: Basic Ideas

Let A = (aij)p×p denote a p × p matrix with its (i , j) th entry being

aij , and let x = (x1, . . . , xp)
⊤ be a p-dim (column) vector.

A vector can be viewed as a function of indexes (input index i , output
x[i ] = xi ).
Solving a system of linear equations: Ax = b, which has the solution
x = A−1b when A is invertible.
Linear dependence and inverse of a matrix: for a matrix to have its
inverse, it has to be a square matrix, and its columns are linearly
independent.
Linear transformation of a vector: x′ = Ax; entry x′[i ] =

∑p
j=1 aijxj . It

can also be written as x′ =
∑p

j=1 xjA·j , where A·j , denote the j th
column of A.
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Linear Algebra: Vectors

Things that should sound familiar to you: vector space, subspace,
span, basis, dimension . . .

Lp-norm: ∥x∥p = (
∑

i |xi |
p)1/p

L2 and L1 norms are most frequently seen.
L∞-norm is defined as ∥x∥∞ = maxi |xi | ; and L0 norm is defined as
∥x∥0 =

∑p
i=1 I{xi ̸=0}, i.e., the number of non-zero entries in x.

Frobenius norm of a matrix: ∥A∥F =
√∑

i,j a
2
ij , analogous to the L2

norm.

Inner product (aka ”dot product”) of two vectors:

x · y ≡ ⟨x, y⟩ = x⊤y = y⊤x =

p∑
i=1

xiyi = ∥x∥2∥y∥2 cos(θ)

Thus, x · x = x⊤x = ∥x∥22
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Linear Algebra: Matrix Multiplication

Matrix multiplication: AB is a valid matrix product if A is p × q and
B is q × r . The standard matrix product is defined as follows:

(AB)ij = ai1b1j + ai2b2j + · · ·+ aiqbqj =

q∑
k=1

aikbkj

, where i = 1, . . . , p and j = 1, . . . , r . In other words, (AB)ij is the
dot product of the i th row of A with the j th column of B.

Properties of matrix multiplication:

Generally not commutative: AB ̸= BA
Distributive over addition: A(B+ C) = AB+ AC.
(A+ B)C = AC+ BC.
Scalable: λ(AB) = (λA)B = (AB)λ = A(Bλ)
Transpose of product: (AB)⊤ = B⊤A⊤
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Linear Algebra: Matrices

Things that should sound familiar to you: rank, trace, determinant,
inverse . . .

Matrix Properties

A⊤ is the transpose of A and has A⊤
ji = Aij . This is just like flipping

the two dimensions of your matrix.
A is symmetric if Aij = Aji . That is, A = A⊤. Only square matrices
can be symmetric.
A is orthogonal if its rows and its columns are orthogonal unit vectors:
A⊤A = AA⊤ = I. For an orthogonal matrix A we have A⊤ = A−1.
Diagonal matrices have non-zero values on the main diagonal and zeros
elsewhere. Diagonal matrices are easy to take powers of because you
just take the powers of the diagonal entries.
Eigen-everything: Av = λv ⇒ eigenvalue decomposition, single value
decomposition, etc.
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Linear Algebra: Projection

Project vector x to the direction of vector v ̸= 0 (define proj0(x) ≡ 0):

projv(x) =
⟨x, v⟩
⟨v, v⟩

v ≡
[
v
(
v⊤v

)−1
v⊤

]
x

Thus, x− projv(x) =
[
I− v

(
v⊤v

)−1
v⊤

]
x

def
= orthv(x) is orthogonal

to v.
By Pythagorean theorem: ∥x∥22 = ∥projv(x)∥

2
2 + ∥orthv(x)∥22

Projection to a subspace:

projV(x) =
[
V
(
V⊤V

)−1
V⊤

]
x, orthV (x) =

[
I− V

(
V⊤V

)−1
V⊤

]
x

P = V
(
V⊤V

)−1
V⊤ (hat/projection matrix); I− P

(orthogonalization/annihilation matrix)
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Calculus: Differentiation

Things that should sound familiar to you: product rule, quotient rule,
chain rule, increasing/decreasing, concave/convex . . .

Derivative as “rate-of-change”:

f ′(x) ≡ df (x)

dx
≡ ∂f (x)

∂x
= lim

∆x→0

f (x +∆x)− f (x)

∆x

If x = (x1, . . . , xp)
⊤ is multi-dimensional, we have the gradient:

∇f (x) =
df (x)

dx
=

(
∂f (x)

∂x1
, . . . ,

∂f (x)

∂xp

)⊤

The gradient vector points in the direction of steepest ascent in f (x).
This is useful for optimization.

If f has multiple outputs, we have the Jacobian

The Hessian matrix is like the Jacobian but with second-order
derivatives

Ruofan Ma Section 1: Math Reviews/Previews January 31, 2024 9 / 16



Calculus: Differentiation

Things that should sound familiar to you: product rule, quotient rule,
chain rule, increasing/decreasing, concave/convex . . .

Derivative as “rate-of-change”:

f ′(x) ≡ df (x)

dx
≡ ∂f (x)

∂x
= lim

∆x→0

f (x +∆x)− f (x)

∆x

If x = (x1, . . . , xp)
⊤ is multi-dimensional, we have the gradient:

∇f (x) =
df (x)

dx
=

(
∂f (x)

∂x1
, . . . ,

∂f (x)

∂xp

)⊤

The gradient vector points in the direction of steepest ascent in f (x).
This is useful for optimization.

If f has multiple outputs, we have the Jacobian

The Hessian matrix is like the Jacobian but with second-order
derivatives

Ruofan Ma Section 1: Math Reviews/Previews January 31, 2024 9 / 16



Calculus: Differentiation

Things that should sound familiar to you: product rule, quotient rule,
chain rule, increasing/decreasing, concave/convex . . .

Derivative as “rate-of-change”:

f ′(x) ≡ df (x)

dx
≡ ∂f (x)

∂x
= lim

∆x→0

f (x +∆x)− f (x)

∆x

If x = (x1, . . . , xp)
⊤ is multi-dimensional, we have the gradient:

∇f (x) =
df (x)

dx
=

(
∂f (x)

∂x1
, . . . ,

∂f (x)

∂xp

)⊤

The gradient vector points in the direction of steepest ascent in f (x).
This is useful for optimization.

If f has multiple outputs, we have the Jacobian

The Hessian matrix is like the Jacobian but with second-order
derivatives

Ruofan Ma Section 1: Math Reviews/Previews January 31, 2024 9 / 16



Calculus: Differentiation

Things that should sound familiar to you: product rule, quotient rule,
chain rule, increasing/decreasing, concave/convex . . .

Derivative as “rate-of-change”:

f ′(x) ≡ df (x)

dx
≡ ∂f (x)

∂x
= lim

∆x→0

f (x +∆x)− f (x)

∆x

If x = (x1, . . . , xp)
⊤ is multi-dimensional, we have the gradient:

∇f (x) =
df (x)

dx
=

(
∂f (x)

∂x1
, . . . ,

∂f (x)

∂xp

)⊤

The gradient vector points in the direction of steepest ascent in f (x).
This is useful for optimization.

If f has multiple outputs, we have the Jacobian

The Hessian matrix is like the Jacobian but with second-order
derivatives

Ruofan Ma Section 1: Math Reviews/Previews January 31, 2024 9 / 16



Calculus: Differentiation

Things that should sound familiar to you: product rule, quotient rule,
chain rule, increasing/decreasing, concave/convex . . .

Derivative as “rate-of-change”:

f ′(x) ≡ df (x)

dx
≡ ∂f (x)

∂x
= lim

∆x→0

f (x +∆x)− f (x)

∆x

If x = (x1, . . . , xp)
⊤ is multi-dimensional, we have the gradient:

∇f (x) =
df (x)

dx
=

(
∂f (x)

∂x1
, . . . ,

∂f (x)

∂xp

)⊤

The gradient vector points in the direction of steepest ascent in f (x).
This is useful for optimization.

If f has multiple outputs, we have the Jacobian

The Hessian matrix is like the Jacobian but with second-order
derivatives

Ruofan Ma Section 1: Math Reviews/Previews January 31, 2024 9 / 16



Calculus: Differentiation

Things that should sound familiar to you: product rule, quotient rule,
chain rule, increasing/decreasing, concave/convex . . .

Derivative as “rate-of-change”:

f ′(x) ≡ df (x)

dx
≡ ∂f (x)

∂x
= lim

∆x→0

f (x +∆x)− f (x)

∆x

If x = (x1, . . . , xp)
⊤ is multi-dimensional, we have the gradient:

∇f (x) =
df (x)

dx
=

(
∂f (x)

∂x1
, . . . ,

∂f (x)

∂xp

)⊤

The gradient vector points in the direction of steepest ascent in f (x).
This is useful for optimization.

If f has multiple outputs, we have the Jacobian

The Hessian matrix is like the Jacobian but with second-order
derivatives

Ruofan Ma Section 1: Math Reviews/Previews January 31, 2024 9 / 16



Calculus: Differentiation

Things that should sound familiar to you: product rule, quotient rule,
chain rule, increasing/decreasing, concave/convex . . .

Derivative as “rate-of-change”:

f ′(x) ≡ df (x)

dx
≡ ∂f (x)

∂x
= lim

∆x→0

f (x +∆x)− f (x)

∆x

If x = (x1, . . . , xp)
⊤ is multi-dimensional, we have the gradient:

∇f (x) =
df (x)

dx
=

(
∂f (x)

∂x1
, . . . ,

∂f (x)

∂xp

)⊤

The gradient vector points in the direction of steepest ascent in f (x).
This is useful for optimization.

If f has multiple outputs, we have the Jacobian

The Hessian matrix is like the Jacobian but with second-order
derivatives

Ruofan Ma Section 1: Math Reviews/Previews January 31, 2024 9 / 16



Calculus: Multivariate Calculus

Univariate normal: N
(
x ;µ, σ2

)
= 1√

2πσ
exp

(
− 1

2σ2 (x − µ)2
)

Properties of Gaussians:
If X ,Y are independent normals then X +Y ∼ N

(
µX + µY , σ

2
X + σ2

Y

)
Any PDF proportional to exp

(
ax2 + bx + c

)
must be a Gaussian PDF.

Multivariate normal:
N (x;µ,Σ) = 1

det(2πΣ)1/2
exp

(
−1

2(x− µ)TΣ−1(x− µ)
)

Matrix differentiation: Generally analogous to univariate
differentiation. But pay attention to the dimensions! For example:

dx⊤a

dx
=

da⊤x

dx
= a ,

da⊤Xb

dX
= ab⊤

da⊤X⊤b

dX
= ba⊤ ,

da⊤Xa

dX
=

da⊤X⊤a

dX
= aa⊤
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Calculus: Optimization in high-dimension

Local Extrema: Recall that the local extrema of a single-variable
function can be found by setting its derivative to 0. The same is true
in multivariate case, using the condition df(x)

dx = 0. However, this
equation is often intractable. We can also search for local minima
numerically using gradient-based methods.

Gradient Descent (finding minima): We start with an initial guess at
a useful value for x: x0. Then at each step i we update our guess by
going against the direction of the gradient vector:

xi+1 = xi − η∇f (xi )

where η > 0 is the step size. We stop updating xi when the value of
the gradient is close to 0
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Visualization of gradient descent
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Calculus: Optimization in high-dimension

Lagrange Multipliers: This technique is used to optimize a function
f (x) given some constraint g(x) = 0. First, construct what is called
the Lagrangian function L(x, λ) :

L(x, λ) = f (x) + λg(x)

Then, set the derivative of L with respect to both x and λ equal to 0:

∇Lx = ∇f (x) + λ∇g(x) = 0,
∂L

∂λ
= g(x) = 0

If x is d-dimensional, this will give you a system of d + 1 equations.
In this way, you can solve analytically for x to find the optimal value
of f (x) subject to the constraint g(x). As with unconstrained
optimization, this too becomes intractable as the dimension increases
and gradient descent is used to make progress.
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∂λ
= g(x) = 0

If x is d-dimensional, this will give you a system of d + 1 equations.
In this way, you can solve analytically for x to find the optimal value
of f (x) subject to the constraint g(x). As with unconstrained
optimization, this too becomes intractable as the dimension increases
and gradient descent is used to make progress.
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Statistics: Probability and Inference

Things that should sound familiar to you:

PDF/PMF, CDF/CMF, conditional/marginal/joint
Expectations, Variance, Covariance
LOTP, LOTE/Adam’s Law, Eve’s Law, Bayes’ Theorem
LLN, CLT
Likelihood function, MLE, prior/posterior

Useful facts:

Triangle Inequality: |Cov(X ,Y )| ≤
√
Var(X ) Var(Y )

Cauchy-Schwarz Inequality: |E (XY )| ≤
√
E (X 2)E (Y 2)

Markov Inequality: for any a > 0, P(|Y | ≥ a) ≤ E |Y |
a

Chebyshev Inequality : For any Y with finite variance and ϵ > 0,
P(|Y − µ| ≥ ϵ) ≤ σ2/ϵ2

Jensen’s Inequality: Eg(Y ) ≥ g(EY ) for g convex
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Statistics: Markov Chain

A sequence of random variables X1,X2, . . . is said to be a Markov
chain if it satisfies the Markov property:

Xn+1 |X1, . . . ,Xn ∼ Xn+1|Xn

i.e., knowing the value of Xn tells you the same amount of
information about Xn+1 as knowing all of X1, . . . ,Xn. If the Xi ’s are
a discrete distribution the Markov property can be written as:

P (Xn+1 = jn+1 | Xn = jn, . . . ,X1 = j1) = P (Xn+1 = jn+1 | Xn = jn)

Application: latent Dirichlet allocation, Viterbi algorithm, EM
algorithm, missing data, etc.
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Statistics: Computational Thinking

Solutions to all practical problems need and (for the most part)
only need to be “computable”

Overflow and Underflow

Never multiply many probabilities or density values literally
Operate at the logarithmic scale if you can: For example, when
computing the summation of many small (or huge) numbers, it is
better to do them properly via logarithm.

Example: softmax function. softmax(x)i =
exp(xi )∑k
j=1 exp(xj )

Approximation

Taylor expansion: f (x + ϵ) = f (x) + f ′(x)ϵ+ · · ·+ f (k)(x)
k! ϵk + . . .

⇒ f (x+ ϵ) = f (x) + [∇f (x)]⊤ϵ+
1

2
ϵTH(x)ϵ+ o

(
∥ϵ∥2

)

Ruofan Ma Section 1: Math Reviews/Previews January 31, 2024 16 / 16



Statistics: Computational Thinking

Solutions to all practical problems need and (for the most part)
only need to be “computable”

Overflow and Underflow

Never multiply many probabilities or density values literally
Operate at the logarithmic scale if you can: For example, when
computing the summation of many small (or huge) numbers, it is
better to do them properly via logarithm.

Example: softmax function. softmax(x)i =
exp(xi )∑k
j=1 exp(xj )

Approximation

Taylor expansion: f (x + ϵ) = f (x) + f ′(x)ϵ+ · · ·+ f (k)(x)
k! ϵk + . . .

⇒ f (x+ ϵ) = f (x) + [∇f (x)]⊤ϵ+
1

2
ϵTH(x)ϵ+ o

(
∥ϵ∥2

)

Ruofan Ma Section 1: Math Reviews/Previews January 31, 2024 16 / 16



Statistics: Computational Thinking

Solutions to all practical problems need and (for the most part)
only need to be “computable”

Overflow and Underflow

Never multiply many probabilities or density values literally

Operate at the logarithmic scale if you can: For example, when
computing the summation of many small (or huge) numbers, it is
better to do them properly via logarithm.

Example: softmax function. softmax(x)i =
exp(xi )∑k
j=1 exp(xj )

Approximation

Taylor expansion: f (x + ϵ) = f (x) + f ′(x)ϵ+ · · ·+ f (k)(x)
k! ϵk + . . .

⇒ f (x+ ϵ) = f (x) + [∇f (x)]⊤ϵ+
1

2
ϵTH(x)ϵ+ o

(
∥ϵ∥2

)

Ruofan Ma Section 1: Math Reviews/Previews January 31, 2024 16 / 16



Statistics: Computational Thinking

Solutions to all practical problems need and (for the most part)
only need to be “computable”

Overflow and Underflow

Never multiply many probabilities or density values literally
Operate at the logarithmic scale if you can: For example, when
computing the summation of many small (or huge) numbers, it is
better to do them properly via logarithm.

Example: softmax function. softmax(x)i =
exp(xi )∑k
j=1 exp(xj )

Approximation

Taylor expansion: f (x + ϵ) = f (x) + f ′(x)ϵ+ · · ·+ f (k)(x)
k! ϵk + . . .

⇒ f (x+ ϵ) = f (x) + [∇f (x)]⊤ϵ+
1

2
ϵTH(x)ϵ+ o

(
∥ϵ∥2

)

Ruofan Ma Section 1: Math Reviews/Previews January 31, 2024 16 / 16



Statistics: Computational Thinking

Solutions to all practical problems need and (for the most part)
only need to be “computable”

Overflow and Underflow

Never multiply many probabilities or density values literally
Operate at the logarithmic scale if you can: For example, when
computing the summation of many small (or huge) numbers, it is
better to do them properly via logarithm.

Example: softmax function. softmax(x)i =
exp(xi )∑k
j=1 exp(xj )

Approximation

Taylor expansion: f (x + ϵ) = f (x) + f ′(x)ϵ+ · · ·+ f (k)(x)
k! ϵk + . . .

⇒ f (x+ ϵ) = f (x) + [∇f (x)]⊤ϵ+
1

2
ϵTH(x)ϵ+ o

(
∥ϵ∥2

)

Ruofan Ma Section 1: Math Reviews/Previews January 31, 2024 16 / 16



Statistics: Computational Thinking

Solutions to all practical problems need and (for the most part)
only need to be “computable”

Overflow and Underflow

Never multiply many probabilities or density values literally
Operate at the logarithmic scale if you can: For example, when
computing the summation of many small (or huge) numbers, it is
better to do them properly via logarithm.

Example: softmax function. softmax(x)i =
exp(xi )∑k
j=1 exp(xj )

Approximation

Taylor expansion: f (x + ϵ) = f (x) + f ′(x)ϵ+ · · ·+ f (k)(x)
k! ϵk + . . .

⇒ f (x+ ϵ) = f (x) + [∇f (x)]⊤ϵ+
1

2
ϵTH(x)ϵ+ o

(
∥ϵ∥2

)

Ruofan Ma Section 1: Math Reviews/Previews January 31, 2024 16 / 16



Statistics: Computational Thinking

Solutions to all practical problems need and (for the most part)
only need to be “computable”

Overflow and Underflow

Never multiply many probabilities or density values literally
Operate at the logarithmic scale if you can: For example, when
computing the summation of many small (or huge) numbers, it is
better to do them properly via logarithm.

Example: softmax function. softmax(x)i =
exp(xi )∑k
j=1 exp(xj )

Approximation

Taylor expansion: f (x + ϵ) = f (x) + f ′(x)ϵ+ · · ·+ f (k)(x)
k! ϵk + . . .

⇒ f (x+ ϵ) = f (x) + [∇f (x)]⊤ϵ+
1

2
ϵTH(x)ϵ+ o

(
∥ϵ∥2

)

Ruofan Ma Section 1: Math Reviews/Previews January 31, 2024 16 / 16



Statistics: Computational Thinking

Solutions to all practical problems need and (for the most part)
only need to be “computable”

Overflow and Underflow

Never multiply many probabilities or density values literally
Operate at the logarithmic scale if you can: For example, when
computing the summation of many small (or huge) numbers, it is
better to do them properly via logarithm.

Example: softmax function. softmax(x)i =
exp(xi )∑k
j=1 exp(xj )

Approximation

Taylor expansion: f (x + ϵ) = f (x) + f ′(x)ϵ+ · · ·+ f (k)(x)
k! ϵk + . . .

⇒ f (x+ ϵ) = f (x) + [∇f (x)]⊤ϵ+
1

2
ϵTH(x)ϵ+ o

(
∥ϵ∥2

)

Ruofan Ma Section 1: Math Reviews/Previews January 31, 2024 16 / 16


