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Intro NN Forward-Backward

Motivation

Why do we need neural networks?

A problem that is intractable with raw input data may be solvable with
basis-transformed data (e.g., LDA)
This transformation, often, is guided by domain-specific knowledge.
Neural networks simultaneously solve for our model parameters and the
best basis transformations.

What is the forward-backward propogation?

forward propagation: the algorithm that pushes our inputs through the
hidden layers (weight matrices, activation functions) NN to get the
final outputs
backward-propagation: the algorithm that finds the best-suited weight
matrices that would minimize the errors in the final outputs.
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Intro NN Forward-Backward

Roadmap for today

A schematic review of what NN is doing

Using forward-backward propagation to train NNs

Some coding exercise (Rmd file available on course website)
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Intro NN Forward-Backward

Feed-Forward Network

The feed-forward neural network is a basic setup for a NN
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Intro NN Forward-Backward

More on Hidden Layers

Specifics

Input layer is design matrix X which includes our usual vector of 1s

For binary classification, output layer is a vector of estimated
probabilities ŷ

Hidden layers are intermediate design matrices between inputs and
outputs (Deep learning is just a neural network with multiple hidden
layers)

d features, then d + 1 input nodes

k possible classes, then k − 1 output nodes

h nodes in the hidden layer plus an intercept, where each of these
nodes is a linear combination of the inputs, passed through an
activation function (though note the intercept is always active and
doesn’t depend on nodes in the previous layer)
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Intro NN Forward-Backward

More on the Activation Function

Many possible choices (as seen in lecture). A common choice is the
sigmoid function:

σ(x) =
1

1 + exp(−x)

Notice that this is the inverse of the logit function:

logit(x) = log

(
x

1− x

)
, where x is probability of an event, and logit(x) is its log odds.
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Intro NN Forward-Backward

Setting up a Feed-Forward Network

Steps

1. Generate h different linear combinations of input features

2. Apply a nonlinear activation function, that for each observation, turns
each hidden node ’on’ or ’off’

3. Fit logistic regression model to h transformed predictors (and
intercept, sometimes called bias)

4. Adjust parameters of both input and output to maximize likelihood

5. Repeat until the stopping criterion is met

Note, when h = 1 there is only one linear combination of predictors. What
does this become? Without the nonlinearity in the hidden layer, the neural
network reduces to a GLM.
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Intro NN Forward-Backward

Forward Propagation

1. Compute linear combination of features using weight matrix

z1 = XWin =
[

1 x
]

Win , where Win ∈ R(d+1)×h

2. Apply activation fn to get nodes in hidden layer

h = σ (z1)

Note intercept/bias always activated, so fixed to be vector of ones

H =
[

1 h
]
=

[
1 σ (z1)

]
=

[
1 σ (XWin )

]
3. For output layer, compute linear combination of hidden variables, this time using another

weight matrix Wout ∈ R(h+1)×(k−1)

z2 = HWout =
[

1 h
]
Wout

4. Apply one more function to get the output

ŷ = σ (z2)

5. Put it all together: ŷ = σ (HWout ) = σ
([

1 σ (XWin)
]

Wout
)
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ŷ = σ (z2)

5. Put it all together: ŷ = σ (HWout ) = σ
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([

1 σ (XWin)
]

Wout
)

Ruofan Ma Section 5: Forward-Backward Propagation February 28, 2024 8 / 11



Intro NN Forward-Backward

Backward Propagation

How do we get the weight matrices?

Unlike β̂ linear regression, there is no closed form solution to W

Gradient Descent!

For binary-classifier: train the NN by minimizing cross-entropy loss
(negated log-likelihood).

Objective Function (with sigmoid activation function):

L =
∑
i

(yi log ŷi + (1− yi ) log (1− ŷi ))

Optimize −L = f (W) via gradient descent by iterating the formula:
where Wt+1 = Wt − γ · ∇f (Wt) W and γ is ’learning rate’.
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Intro NN Forward-Backward

Backward Propagation

How do we get the gradient of the objective function?

With respect to the output weights is:

−∂L
∂Wout

=
−∂L
∂ŷ

∂ŷ

∂Wout
=

[
ŷ − y

ŷ(1− ŷ)

] [
H⊤ŷ(1− ŷ)

]
With respect to the input weights is:

−∂L
∂Win

=
−∂L
∂ŷ

∂ŷ

∂H

∂H

∂Win

, where

∂ŷ

∂H
= σ (HWout (1− σ (HWout)))W

⊤
out = ŷ(1− ŷ)W⊤

out

∂H

∂Win
= X⊤ [

1 σ (XWin) (1− σ (XWin))
]
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out

∂H

∂Win
= X⊤ [

1 σ (XWin) (1− σ (XWin))
]

Ruofan Ma Section 5: Forward-Backward Propagation February 28, 2024 10 / 11



Intro NN Forward-Backward

Backward Propagation

How do we get the gradient of the objective function?

With respect to the output weights is:

−∂L
∂Wout

=
−∂L
∂ŷ

∂ŷ

∂Wout
=

[
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ŷ(1− ŷ)
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How do we get the gradient of the objective function?

With respect to the output weights is:

−∂L
∂Wout

=
−∂L
∂ŷ

∂ŷ

∂Wout
=

[
ŷ − y

ŷ(1− ŷ)

] [
H⊤ŷ(1− ŷ)

]
With respect to the input weights is:

−∂L
∂Win

=
−∂L
∂ŷ

∂ŷ

∂H

∂H

∂Win

, where

∂ŷ

∂H
= σ (HWout (1− σ (HWout)))W

⊤
out = ŷ(1− ŷ)W⊤

out

∂H

∂Win
= X⊤ [

1 σ (XWin) (1− σ (XWin))
]
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Putting Everything Together

Training a NN using forward-backward propagation

1. Initialize weights

2. Propagate forward to get output estimates

3. Propagate error backward to update the weights toward a better
solution

4. Iterate forward and back propagation until stopping criterion

Coding exercise available on the course website (Rmd)
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