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Intro Overview of EM Technical Stuffs

Motivation: What happens when ML estimation is hard?

Sometimes log-likelihood difficult to maximize directly numerically

MLE assumes we have complete dataset (variables all present), from
which we can think about selecting parameters that result in the best
fit of the joint probability of the data

Sometimes we have missing data! Sometimes we have latent
variables! Sometimes we have clustering!

EM algorithm is a procedure for algorithm construction, not a specific
algorithm. Each problem is different, only the structure of the
Expectation and Maximization steps are common

How exactly they are programmed is problem-dependent.

Widely applied in machine learning for density estimation and
clustering
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Intro Overview of EM Technical Stuffs

Roadmap for today

Big picture of EM

What is EM? Why is it called EM? When do we want to use EM?
What are the properties of EM?

How to set up an EM algorithm

E-step: inferring the missing values given the parameters
M-step: optimizing the parameters given the “filled in” data

Lab exercise (Rmd available on course website)
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Intro Overview of EM Technical Stuffs

Big Picture

Setup

Data X observed, set of (possibly made up) latent variables Z , model
parameters θ

Goal of EM is to find a maximization to the likelihood function
p(X | θ) with respect to parameter θ when this expression or its log
cannot be discovered by typical MLE methods

Suppose for each observation xi ∈ X , we get a corresponding value
zi ∈ Z .

{X ,Z} is called the complete dataset and the likelihood of the
complete set is p(X ,Z | θ). However, we don’t know the complete
set, only our observed X . To proceed we need to construct the
posterior p(Z | X , θ).
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Intro Overview of EM Technical Stuffs

Big Picture

Setup

If we have p(Z | X , θ) we can compute the likelihood for the
complete set:

p(X ,Z | θ) = p(Z | X , θ)p(X | θ)

Assume now we also know an estimate θi for θ - this allows us to
compute the posterior p (Z | X , θi )

Log-likelihood: log p(X | θ) = log {
∑

z p(X ,Z = z | θ)} =
log {

∑
z p(X | Z = z , θ) · p(Z = z | θ)}

EM algorithm will maximize log p(X | θ) but since log is strict
monotonous function, it will also maximize p(X | θ)
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Intro Overview of EM Technical Stuffs

Usage of EM in Social Science

Examples

Image segmentation Carson et al. 2002 IEEE

Latent data models Cappe & Moulines 2009 JRSS

Missing data Honaker et al. 2011 JSS

Political attention in text Quinn et al. 2010 AJPS

Mixture models and network data Newman & Leicht 2007 PNAS
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Intro Overview of EM Technical Stuffs

What/How to Optimize?

Goal: Optimize ℓ(θ) when there is missing data/latent variable

Consider an arbitrary distribution q(Z) over the hidden variables.
Then the observed data log-likelihood function can be written as:

ℓ(X|θ) := log

[∑
Z

p(X,Z | θ)

]
= log

[∑
Z

q(Z)
p(X,Z | θ)

q(Z)

]

Notice that log(·) is a concave function. Therefore, by Jensen’s
inequality, log

∑
i aixi ≥

∑
i ai log xi :

ℓ(X|θ) ≥
∑
Z

q(Z) log

[
p(X,Z | θ)

q(Z)

]

Let’s denote this lower bound on the RHS as Q(θ, q) ⇒ The larger
the Q, the larger the ℓ
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Intro Overview of EM Technical Stuffs

Decomposing the Target Function

Goal: Pick the q that yields the tightest lower bound

We can further manipulate Q:

Q(θ, q) =
∑
Z

q(Z) log

[
p(X,Z | θ)

q(Z)

]

=
∑
Z

q(Z) log

[
p(Z|X,θ)p(X|θ)

q(Z)

]
=

∑
Z

q(Z) log

[
p(Z|X,θ)

q(Z)

]
+

∑
Z

q(Z) log p(X|θ)

= −KL(q(Z)||p(Z|X,θ)) + log p(X|θ)

Since KL(·) ≥ 0, and log p(X|θ) does not depend on q, Q can be
maximized by setting q(Z) = p(Z|X,θ)
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Intro Overview of EM Technical Stuffs

E-Step: Update the target function/missing value

Key Insight: Expected complete data log-likelihood is a lower bound!

Q(θ, q) =
∑
Z

q(Z) log

[
p(X,Z | θ)

q(Z)

]
=

∑
Z

q(Z) log p(X,Z | θ)−
∑
Z

q(Z) log q(Z)

= Eq [log p(X,Z | θ)]︸ ︷︷ ︸
expected complete data log-likelihood

+ H(q)︸ ︷︷ ︸
nuisance function w.r.t. θ

Plugging in the condition qt(Z) = p(Z | X,θt), where θt is our
estimate of the parameters at iteration t:

Q(θ, qt) = Eqt [log p(X,Z|θ)] + const.

Ruofan Ma Section 6: EM Algorithm March 2, 2024 9 / 12



Intro Overview of EM Technical Stuffs

E-Step: Update the target function/missing value

Key Insight: Expected complete data log-likelihood is a lower bound!

Q(θ, q) =
∑
Z

q(Z) log

[
p(X,Z | θ)

q(Z)

]

=
∑
Z

q(Z) log p(X,Z | θ)−
∑
Z

q(Z) log q(Z)

= Eq [log p(X,Z | θ)]︸ ︷︷ ︸
expected complete data log-likelihood

+ H(q)︸ ︷︷ ︸
nuisance function w.r.t. θ

Plugging in the condition qt(Z) = p(Z | X,θt), where θt is our
estimate of the parameters at iteration t:

Q(θ, qt) = Eqt [log p(X,Z|θ)] + const.

Ruofan Ma Section 6: EM Algorithm March 2, 2024 9 / 12



Intro Overview of EM Technical Stuffs

E-Step: Update the target function/missing value

Key Insight: Expected complete data log-likelihood is a lower bound!

Q(θ, q) =
∑
Z

q(Z) log

[
p(X,Z | θ)

q(Z)

]
=

∑
Z

q(Z) log p(X,Z | θ)−
∑
Z

q(Z) log q(Z)

= Eq [log p(X,Z | θ)]︸ ︷︷ ︸
expected complete data log-likelihood

+ H(q)︸ ︷︷ ︸
nuisance function w.r.t. θ

Plugging in the condition qt(Z) = p(Z | X,θt), where θt is our
estimate of the parameters at iteration t:

Q(θ, qt) = Eqt [log p(X,Z|θ)] + const.

Ruofan Ma Section 6: EM Algorithm March 2, 2024 9 / 12



Intro Overview of EM Technical Stuffs

E-Step: Update the target function/missing value

Key Insight: Expected complete data log-likelihood is a lower bound!

Q(θ, q) =
∑
Z

q(Z) log

[
p(X,Z | θ)

q(Z)

]
=

∑
Z

q(Z) log p(X,Z | θ)−
∑
Z

q(Z) log q(Z)

= Eq [log p(X,Z | θ)]︸ ︷︷ ︸
expected complete data log-likelihood

+ H(q)︸ ︷︷ ︸
nuisance function w.r.t. θ

Plugging in the condition qt(Z) = p(Z | X,θt), where θt is our
estimate of the parameters at iteration t:

Q(θ, qt) = Eqt [log p(X,Z|θ)] + const.

Ruofan Ma Section 6: EM Algorithm March 2, 2024 9 / 12



Intro Overview of EM Technical Stuffs

E-Step: Update the target function/missing value

Key Insight: Expected complete data log-likelihood is a lower bound!

Q(θ, q) =
∑
Z

q(Z) log

[
p(X,Z | θ)

q(Z)

]
=

∑
Z

q(Z) log p(X,Z | θ)−
∑
Z

q(Z) log q(Z)

= Eq [log p(X,Z | θ)]︸ ︷︷ ︸
expected complete data log-likelihood

+ H(q)︸ ︷︷ ︸
nuisance function w.r.t. θ

Plugging in the condition qt(Z) = p(Z | X,θt), where θt is our
estimate of the parameters at iteration t:

Q(θ, qt) = Eqt [log p(X,Z|θ)] + const.

Ruofan Ma Section 6: EM Algorithm March 2, 2024 9 / 12



Intro Overview of EM Technical Stuffs

E-Step: Update the target function/missing value

Key Insight: Expected complete data log-likelihood is a lower bound!

Q(θ, q) =
∑
Z

q(Z) log

[
p(X,Z | θ)

q(Z)

]
=

∑
Z

q(Z) log p(X,Z | θ)−
∑
Z

q(Z) log q(Z)

= Eq [log p(X,Z | θ)]︸ ︷︷ ︸
expected complete data log-likelihood

+ H(q)︸ ︷︷ ︸
nuisance function w.r.t. θ

Plugging in the condition qt(Z) = p(Z | X,θt), where θt is our
estimate of the parameters at iteration t:

Q(θ, qt) = Eqt [log p(X,Z|θ)] + const.

Ruofan Ma Section 6: EM Algorithm March 2, 2024 9 / 12



Intro Overview of EM Technical Stuffs

M-Step: Update the parameter

In M-step, we obtain an update of the parameter θ by solving the
following optimization problem:

θt+1 = argmax
θ

Q(θ,θt) = argmax
θ

Eq [log p(X,Z | θ)]

We then feed the value of θt+1 to obtain an update for the target
function, thereby iterating between E-step and M-step until a
stopping criterion is met.

The dark magic of EM: There is a theoretical guarantee that the EM
algorithm monotonically increases the log-likelihood of the observed
data.
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stopping criterion is met.

The dark magic of EM: There is a theoretical guarantee that the EM
algorithm monotonically increases the log-likelihood of the observed
data.
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EM monotonically increases the observed data
log-likelihood

Lemma (E-Step produces tight lower bound)

By setting qt(Z) = p(Z|X,θt),KL(q||p) = 0, hence:

Q(θt ,θt) = log p(X | θt) = ℓ(θt)

Theorem (Monotonicity of EM)

ℓ(θt+1) ≥ Q(θt+1,θt) ≥ Q(θt ,θt) = ℓ(θt)

, where the first inequality follows since Q(θt , ·) is a lower bound for
ℓ(θt); the second inequality follows from the M-step:
Q(θt+1,θt) = maxθ Q(θ,θt) ≥ Q(θt ,θt); and the third equality follows
from the above lemma.
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Visualization of EM

Figure: Source: Murphy, p.367
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