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Why ML with Unstructured Data?
• Support causal inference

— Causal heterogeneity with high-dimensional covariates
— Effect of high-dimensional treatments
— Raw data sources as proxy for causal nodes

* E.g., learning outcome representations from raw data
• Support prediction

— Prediction itself sometimes important
* Gov’t instability, bail decisions, policy targeting

— Prediction can support descriptive research
* Summarizing massive data corpora

• Improve welfare
— Policy action ; learn optimal actions in complex data envs.

• Describe social science data better
— Social world ; incredibly complex
— Our data = static, researcher-created (e.g., surveys)
— ML ; Gen. useful representations of complex data
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ML with Unstructured Data
• Some data have indefinite dimensionality

— Not only: “More variables than data points”
— But:“# of variables highly dependent on data rep.”

• EXAMPLE: Text as indefinite dimensional object
— Document as bag of words:

w ∈ NnWords
0

— Document as array of word embeddings:
w ∈ RnWords per Doc×DEmbed

— Document as array of character embeddings:
w ∈ RnChars per Word×nWords per Doc×DEmbed

— Other examples: Image, video, audio, network, time series,
etc.

• Large-scale neural models & indefinite data
— Neural nets: Universal approx. theorems for continuous fxns
— Transformers: Approximate Turning Complete systems

* With unstructured data: We need higher levels of generic
compute required to learn data representations along w/
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Integration of Software & Hardware
• With unstructured data: We need higher levels of generic

compute required to learn data representations along w/
outcome associations
— MODEL SIZE SCALING: More parameters ; Better

performance?
— DATA SCALING: More data ; Better performance?
— COMPUTE SCALING: More training time ; Better

performance?
• Computational considerations ; Thus essential to

achieve state-of-art results
— Leveraging (Multi-)GPUs/TPUs
— Mixed precision training
— Accurate quantized training
— Model fine-tuning

• Part II of course will touch on some of these concepts
with social science data
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Example Application
Image-based Treatment Effect Heterogeneity

• Question: How can we use medical/satellite images to
learn about the kinds of people who respond differently to
an intervention?

• Data pipeline:
— Processed satellite image data from Landsat
— Individual-level data from an experiment in Uganda
— Approximate individual geo-locations

• Modeling pipeline:
— Approximate Bayesian inference
— Bayesian Convolutional Neural Network/Vision Transformer
— Clustering model for treatment effect distributions
— Discussion of regularization, interpretability

• Challenges: Data leakage (test information in training set?),
missingness in geo-location matches, comparing results via
image, via tabular covariates
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Top. High probability cluster 1 images.
Bottom. High probability cluster 2 images.
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