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Generalized Additive Models (GAM)

Linear regression assumes strong functional form:
E [Yi |Xi ] = β0 + β1Xi1 + · · ·+ βKXiK

Consider instead E [Yi |Xi ] = β0 + f1(Xi1) + · · ·+ fK (XiK ), where fk(·)
is any smoothing function (e.g. LOESS, cubic smoothing splines)

For example, it can be linear regression: f (Xi1) = β1Xi1

Relationships between IV and DV follow some smooth patterns (linear
or non-linear).

We can estimate these smooth relationships simultaneously and then
predict E (Y |X ) by simply adding them up.
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Example

E (Y |X ) = a+ b · x2 + c · x + · · ·+ exp(x) + ϵ
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Generalized Additive Models (GAM)

Estimate by iteratively “backfitting”: fit f1(·) with regular (bivariate)
smoothing procedure, fit f2(·) on residuals, ... until convergence

Can use a combination of linear and flexible terms (e.g. to estimate
constant treatment effect while controlling flexibly for other variables)

Also works for generalized linear models:
E [Yi ] = g−1 (β0 + 27(Xi1) + · · ·+ fK (XiK )), where g(·) is an
exponential link function
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GAM is a Flexible Model

Lots of freedom for researchers in selecting the smoothing functions.

We can penalize the objective function.
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Tree-Based Methods

Classification and Regression Trees (CART) recursively partition the input
space

f (x) = E[y|X ] =
M∑

m=1

ȳm1{x ∈ Rm}
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Regression Trees
Partition data into subsets by observed covariates

Prediction using the average within each subset

Very interpretable! (with simple average: no modeling!)

▶ “average of value with these characteristics”
▶ Titanic example from Varian (2014, JEP): rich children survived
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Greedy Algorithm

Recursive partition for good in-sample MSE in prediction

Finding the optimal partitioning is NP-complete (i.e., computation
time grows too quickly as the size of the problem grows)

Greedy algorithm (not thinking ahead, missing high-level interaction):
locally optimal choice at each stage (not necessarily leads to a global
optimum)
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CART Algorithm

At each stage, axis parallel splits is done by:

min
j ,s

min
c1

∑
xi∈R1(j ,s)

(yi − c1)
2 +min

c2

∑
xi∈R2(j ,s)

(yi − c2)
2


where R1(j , s) = {X |Xj ≤ s} and R2(j , s) = {X |Xj ≥ s}, and cm is
the mean of yi |i ∈ Rm(j , s).

CART is very popular and easy to implement (rpart package in R)

However, the greedy algorithm often leads to poor prediction. It also
has a problem of over-fitting (pruning is needed), and thus highly
variable.
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Model Selection

What variables should we include in a given model?

Ridge and Lasso regressions: the knowledge of λ value.

GAM depends on the selection of smoothing function.

CART requires pruning to achieve optimal performance.

· · ·
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Goals

Model assessment: Estimate generalization error

▶ How good will this model be when I use it out-of-sample?

▶ Is it better/worse than random choice?

▶ Is it better/worse than human coders? (inter-coder reliability)

▶ Than a previous approach?

Model selection: Compare candidate models to determine best

▶ Examples: number of spline knots, polynomial terms, number of terms
to drop/retain in step-down variable selection, strength of
regularization in LASSO/ridge, number of latent dimensions or clusters
in unsupervised models

Model aggregation: Combining candidate models into something
better
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Training Error vs. Test Error
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Training Error vs. Test Error
Beyond a certain point, we need to worry about over-fitting

Bias-variance tradeoff!

Adjusting training error (BIC tends to penalize complex models more
heavily)

▶ Akaike Information Criterion = − 2
N · loglik+ 2 · d

N

▶ Bayesian Information Criterion = −2 · loglik︸ ︷︷ ︸
Deviance: squared loss

+(logN) · d
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Training Error vs. Test Error

We don’t have a luxury of having a large data as a test set

Estimating error variance σ̂ to calculate loglik is problematic with
high-dimensional setting (n < p)

Cross-validation: Holding out a subset of the training observations
from the training process
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Kullback-Leibler Divergence

Suppose the true probability distribution is f (x)

We are approximating this with g(x)

One measure of the quality of approximation is KL divergence from f
to g ,

KL(f ||g) =
∫ ∞

−∞
f (x) log

(
f (x)

g(x)

)
What is the KL divergence if g(x) = f (x)?

KL(f ||g) =
∫ ∞

−∞
f (x) log(1) = 0

When is this positive? All possible distributions g(x) ̸= f (x).
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KL divergence is always positive
ln inequality:

log a ≤ a− 1,∀a > 0

Proof:

−KL(f ||g) = −
∫ ∞

−∞
f (x) log

(
f (x)

g(x)

)
=

∫ ∞

−∞
f (x) log

(
g(x)

f (x)

)
≤
∫ ∞

−∞
f (x)

(
g(x)

f (x)
− 1

)
=

∫ ∞

−∞
(g(x)− f (x))

= 1− 1

= 0
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KL divergence is not a proper distance measure

Kullback-Leibler divergence is not a distance metric!

Distances must be nonnegative, symmetric, and satisfy triangle
inequality: distance from A to C must be less than (A to B) + (B to
C)

Naijia Liu Supervised Learning February 2024 16 / 49



Kullback-Leibler Divergence

Kullback-Leibler divergence is not a distance metric!

▶ KL is asymmetric: KL(f ||g) and KL(g ||f ) not necessarily the same.

Bonus Q: what kind of f , g can make them the same?

▶ KL does not satisfy triangle inequality

Useful for comparing images (represented as distribution of pixel
values in multivariate color space)

Or documents, if they are represented as distributions of word
coordinates in a continuous embedding space

“The limited but real influence of elite rhetoric in the 2009–2010
health care debate” , Hopkins, 2018, Political behavior
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Optimality of OOS Likelihood-Based Selection

True data distribution is f (x)

You have many candidate models (data distributions): f̂1(·), f̂2(·), . . .
(e.g. OLS with all possible βs) How do we normally choose “best”?

Some models achieve MLE for training data (minimized KL
divergence to the empirical distribution!) but probably doesn’t explain
true DGP well

One way to choose the best model from among your candidates is the
one that produces the closest approximation to the true DGP

That is, the best model minimizes∫
f (x) log

(
f (x)

f̂k(x)

)
dx

What happens when one of your candidate models is the true model?

The problem: we don’t know the true population distribution
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That is, the best model minimizes∫
f (x) log

(
f (x)

f̂k(x)

)
dx

What happens when one of your candidate models is the true model?

The problem: we don’t know the true population distribution
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Optimality of Likelihood-Based CV

Imagine an “oracle” that knows the true model and can pick the
candidate that is closest. Can we devise a procedure that
asymptotically gives the same answer?

KL(f ||f̂ ) =
∫

log

(
f (x)

f̂k(x)

)
f (x)dx

=

∫
log (f (x)) f (x)dx −

∫
log
(
f̂k(x)

)
f (x)dx

= C −
∫

log
(
f̂k(x)

)
f (x)dx

Interpretation: KL divergence is directly related to the expected log
likelihood (under the candidate model) of a randomly drawn
observation from the true DGP
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Optimality of Likelihood-Based CV

Likelihood based cross validation can give us a model, such that it
maximizes the log-likelihood under the true DGP.

We have many random draws from true DGP: validation set!

As sample size goes to infinity, size of validation set generally also
goes to infinity (not true for leave-one-out CV)
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1 Regression with Continuous Outcome
Generalized Additive Models (GAM)
CART
Motivation of Model Selection

2 Model Selection and Combination
Model Selection
Benign Overfitting
Model Aggregation
Evaluation Metrics, Cross-Validation



Benign Overfitting

A new statistical phenomenon: good prediction with zero training
error (such as a deep learning method) .

When a perfect fit to training data in linear regression is compatible
with accurate prediction.

Over-parameterization is essential for benign overfitting in some
setting: more features than sample size.

“Benign overfitting in linear regression”, Bartlett et al, PNAS, 2020.

Most of situations we don’t have benign overfitting - unless you can
justify the choice.

AI models such as Chat GPT relies on massive over-fitting that are
benign.
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Model Averaging

Simplest possible model aggregation:

▶ Train K models (logit, SVM, LASSO, tree, etc.)

▶ Predict out-of-sample observations with each one

▶ Use some aggregation rule (e.g. mean, majority vote) to combine
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Model Averaging

Bayesian model averaging:

Define K possible models: f1(y |X = x), . . . , fK (y |X = x)

Place a prior over all models (e.g. uniform π = [1/K , . . . , 1/K ]⊤)

Assumed DGP: first randomly choose a model, then generate all data
points from that model

Z ∼ Cat(π)

Yi ∼ fZ (y |Xi = xi )

taking X as given
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Model Averaging

Bayesian model averaging:

Posterior belief P(Z = k |Y,X) depends on πk and how well fk()
explains observed Y

Out-of-sample prediction:

▶ Generate predictions from each model

▶ Weight each model by posterior belief that it was the chosen one

▶ Take weighted average of predictions
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Bootstrap Aggregation (Bagging)

A particular kind of model averaging

Bootstrap data B times and average results

Reduces variance if bootstrap models aren’t highly correlated

▶ If models are highly correlated then little gain

▶ V (X/2 + Y /2) = V (X )/4 + V (Y )/4 + 2Cov(X ,Y )/4

▶ Can help a lot with extremely unstable models (LASSO, trees)

▶ Won’t help much when the component models are stable (and can
actually hurt)

However, bagging procedure normally results in highly correlated
predictors
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Bootstrap Aggregation (Bagging)

Random forests are a variant of bagged trees

Reduce correlation of component models by also randomly choosing
subset of features (in addition to bootstrap subsetting/reweighting of
data)

Improves variance reduction of bagging by reducing the correlation
between models

Easy to implement (randomForest package in R) and often very
good off-the-shelf performance
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Bootstrapping: More Perspectives

Each bootstrap draw is a sample split

Observation i is in validation set with probability
(1− 1/N)N ≈ 1− 1/e ≈ 0.632

So bootstrap draws each come with a free validation set!

Each bootstrap draw is a reweighting of the original data

For each draw, wi ∈ {0, 1/N, · · · , 1})
Weights must sum to 1

In other words, weights are a distribution over the N − 1 simplex
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Bootstrapping: More Perspectives

Bayesian bootstrap:

The Dirichlet distribution is also a distribution over the N − 1 simplex

w = [w1, · · · ,wN ]

w ∼ Dirichlet([1, . . . , 1]⊤)

E [w] = [1/N, . . . , 1/N]⊤

Procedure: Sample w, then do the original analysis. Repeat.
Naijia Liu Supervised Learning February 2024 28 / 49



Super Learner

Suppose that training is complete and each algorithm has generated a
trained model

Then each model outputs a prediction function

Can think of each prediction function as a basis function (similar to
splines)

These bases can be combined to form an even better approximation
to the true conditional expectation function
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Super Learner

Super Learner algorithm:

▶ Fit candidate models to training data

▶ Generate predictions for validation set

▶ Regress true validation labels on candidate model predictions

Y = β1model 1 + β2model 2 + β3model 3 + · · ·
▶ Use resulting weights

Super Learner inherits the asymptotic optimality properties of
likelihood-based CV

(if desired, impose positivity of weights, weights
sum to 1, etc.)

Why? What happens if the true model is among the candidates?

Asymptotically at least as accurate as the best possible input
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Boosting

Adaptive boosting (AdaBoost) is another meta-algorithm

All observations are used for training (no validation set)

Start by weighting all observations equally, w1 = [w1, . . . ,wN ]
⊤

Set model index m = 1. While model has not converged:

▶ Fit weighted model to dataset (according to wm)
▶ Re-predict training data
▶ Calculate weighted error (according to wm)
▶ Change w by upweighting misclassified observations
▶ Increment m (increase by 1) and repeat

Now go back and pool the models:

▶ Weight model m according to its (weighted) error rate,

αm = f
(
wm⊤(Y − ˆY)⊤

)
▶ For out-of-sample data, generate final predictions as Ŷ =

∑
m αmŶm
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Boosting

Again, the sequential models m = 1, . . . ,M create basis functions

We greedily approximate the true conditional expectation with these
bases

Make the best approximation possible using m = 1

Then fine-tune it with m = 2, . . .

Models evolve in an adaptive way to remove bias

Later models focus on examples that were misclassified in earlier
rounds (hard to classify, e.g. near best decision boundary)
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Generalized Additive Models (GAM)
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Motivation of Model Selection

2 Model Selection and Combination
Model Selection
Benign Overfitting
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Evaluation Metrics, Cross-Validation



Cross-Validation
Creating out-of-sample, in sample.

1 Randomly divide the labeled data into two parts:

▶ Training set (T )
▶ Validation (or hold-out) set (V)

2 Fit your model on the training set

3 Use the fitted model to predict the responses for the observations in
the validation set

4 Since you know the “ground truth,” you can calculate the
generalization performance from training set to validation set, e.g.

▶ MSE (Mean Squared Errors): (yi − ŷi )
2

▶ Misclassification rate (in case of discrete variables)

5 Then, fit model on all labeled data (training and validation)

6 Presumably you have a good proxy for generalization performance
from “in-sample” (all labeled data) data to “out-of-sample” (test
data, new observations to predict, or true DGP)
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Cross-Validation

Validation set can also be used to compare multiple candidate models

▶ Fit K models on training set

▶ Select the one that performs best on validation set

▶ Fit that model on all labeled data and use it out-of-sample

▶ Will validation performance be a good estimate of out-of-sample
performance?

▶ Analogous to multiple testing: one model might perform better by
chance, then regress to the mean in OOS

This simple framework doesn’t make efficient use of the data

▶ Validation set doesn’t contribute to estimating model at all

▶ Training outcomes don’t contribute directly to estimating performance

▶ Solution: K-fold cross-validation
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Cross-Validation
Caveat: Validation performance may be worse than test performance

▶ Remember that goal is to understand how good your model is

conditional on all labeled data

▶ Cross-validation tells you how good your model is conditional of

some labeled data your training set is less than N

▶ With fewer observations, you fit the true data distribution worse

▶ True out-of-sample performance is somewhere between your validation
performance and in-sample (possibly overfit) performance

▶ Under some assumptions these two measures (e.g. MSE, error rate)
can be interpolated

Tradeoff between training and validation size:

▶ With larger training set, the training model quality is closer to quality
of the eventual model fit on all observations

▶ On the other hand, your estimate of validation performance becomes
noisier
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Cross-Validation

A word of warning: the training algorithm should never see
validation-set outcomes

(directly or indirectly)

Each run of the training algorithm should run entirely independently
from start to finish

An invalid procedure: First do variable selection to find features that
are individually highly predictive of the outcome, using both training
and test set, then train (validate) on training (validation) set alone

In the above example, cross-validated performance will be an
extremely poor measure of generalization (test) performance

However, joint preprocessing of [X⊤
train,X

⊤
test]

⊤ together isn’t subject
to this issue

▶ Standardizing features
▶ Dimension reduction
▶ Discarding rare tokens/words in a document-term matrix

Why? These steps doesn’t involve access to Ytest
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and test set, then train (validate) on training (validation) set alone

In the above example, cross-validated performance will be an
extremely poor measure of generalization (test) performance

However, joint preprocessing of [X⊤
train,X

⊤
test]

⊤ together isn’t subject
to this issue

▶ Standardizing features
▶ Dimension reduction

▶ Discarding rare tokens/words in a document-term matrix
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K-fold Cross-Validation
Randomly divide the set of observations into K groups (folds)

Start with folds 1 to (K − 1) as training set and fold K as validation
(held-out fold), VK , alternate through held-out folds

CV estimate of MSE =
1

K

K∑
k=1

∑
i∈Vk

(yi − ŷi )
2

Three-fold cross-validation example:

In practice, K=5 or 10 is often used and works well

K = N (leave one out): low bias in generalization error

Computationally expensive
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Evaluation Metrics for Classification

Infinite number of “scoring rules” to evaluate probabilistic predictions

“Proper” scoring rules are those that incentivize honest reporting of
believed probabilities

▶ Logarithmic (essentially a likelihood-based approach):
∑N

i=1 log()
▶ Quadratic/Brier score for probabilistic predictions,∑N

i=1

∑K
k=1

(
P̂(Yi = k|Xi )− 1(Yi = k)

)2
▶ Many others

Equivalently, maximizing with a proper scoring rule encourages
well-calibrated predictions

Improper scoring rules:

▶ Accuracy (e.g. with imbalanced classes, can often be maximized by
always predicting dominant class)

▶ Any objective functions that assigns higher loss to misclassification
(e.g. is more willing to overpredict cancer than miss it)
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Evaluation Metrics for Classification

Loss for observation with yi = +1 (vs −1). x-axis is y · f (x).
This is also related to Hinge Loss.
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Evaluation Metrics for Classification

Confusion matrix: contingency table of true and predicted classes (in
validation or test set)

Actually −1 Actually +1

Predicted −1 A B
Predicted +1 C D

True positive rate: Among observations that are actually positive,
proportion predicted to be positive, TPR = D/(B + D)

True negative rate: TNR = A/(A+ C )
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Evaluation Metrics for Classification

Confusion matrix: contingency table of true and predicted classes
(in validation or test set)

Actually −1 Actually +1

Predicted −1 A B
Predicted +1 C D

False positive rate: Among observations that are actually negative,
proportion predicted to be positive, FPR = C/(A+ C ) = 1− TNR

False negative rate: FNR = B/(B + D) = 1− TPR

Precision: Among observations that are predicted to be positive,
proportion that are actually positive: D/(C + D)

Accuracy: (A+ D)/(A+ B + C + D)
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Evaluation Metrics for Classification
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F1 score: An ad-hoc objective rewarding both TPR and precision

Harmonic mean: F1 =
(
TPR−1+Precision−1

2

)−1

Greatest gain can be made by improving whichever performance
measure is currently worst
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Evaluation Metrics for Classification
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linear predictor (sepal length only)
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Receiver operating characteristic curve: any threshold for the
predictor value, θ, leads to a FPR(θ) and TPR(θ)

We can try different threshold values.

ROC will be better if we use more variables.

Naijia Liu Supervised Learning February 2024 43 / 49



Evaluation Metrics for Classification

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7

Sepal.Length

S
ep

al
.W

id
th Species

●

●

setosa

versicolor

● ● ● ●●● ●● ●●● ●● ●● ● ● ●● ●● ● ●● ●●●●● ●●● ●● ●●● ● ●● ● ● ●●● ●● ●● ●

● ●● ●● ●● ●● ● ●●●● ●● ●●● ●●●● ●●●● ● ● ● ●●●● ●●● ● ● ●●● ● ●●●●● ●●

setosa

versicolor

−5 0 5

linear predictor (sepal length only)

S
pe

ci
es

Species

●

●

setosa

versicolor

Receiver operating characteristic curve: any threshold for the
predictor value, θ, leads to a FPR(θ) and TPR(θ)

We can try different threshold values.

ROC will be better if we use more variables.

Naijia Liu Supervised Learning February 2024 43 / 49



Evaluation Metrics for Classification

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7

Sepal.Length

S
ep

al
.W

id
th Species

●

●

setosa

versicolor

● ● ● ●●● ●● ●●● ●● ●● ● ● ●● ●● ● ●● ●●●●● ●●● ●● ●●● ● ●● ● ● ●●● ●● ●● ●

● ●● ●● ●● ●● ● ●●●● ●● ●●● ●●●● ●●●● ● ● ● ●●●● ●●● ● ● ●●● ● ●●●●● ●●

setosa

versicolor

−5 0 5

linear predictor (sepal length only)

S
pe

ci
es

Species

●

●

setosa

versicolor

Receiver operating characteristic curve: any threshold for the
predictor value, θ, leads to a FPR(θ) and TPR(θ)

We can try different threshold values.

ROC will be better if we use more variables.

Naijia Liu Supervised Learning February 2024 43 / 49



Evaluation Metrics for Classification

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7

Sepal.Length

S
ep

al
.W

id
th Species

●

●

setosa

versicolor

● ● ● ●●● ●● ●●● ●● ●● ● ● ●● ●● ● ●● ●●●●● ●●● ●● ●●● ● ●● ● ● ●●● ●● ●● ●

● ●● ●● ●● ●● ● ●●●● ●● ●●● ●●●● ●●●● ● ● ● ●●●● ●●● ● ● ●●● ● ●●●●● ●●

setosa

versicolor

−5 0 5

linear predictor (sepal length only)

S
pe

ci
es

Species

●

●

setosa

versicolor

Receiver operating characteristic curve: any threshold for the
predictor value, θ, leads to a FPR(θ) and TPR(θ)

We can try different threshold values.

ROC will be better if we use more variables.
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Evaluation Metrics for Classification

The area under the curve is often used as a measure of classifier
quality AUC =

∫∞
−∞ TPR(θ)

(
d
dθFPR(θ)

)
dθ

Define F (·) as the CDF of the predicted scores: F (θ) = P(Ŷi ≤ θ)

Now note that FPR(θ) = P(Ŷi > θ|Yi = −1) = 1− F (θ|Yi = −1)

Similarly TPR(θ) = P(Ŷi > θ|Yi = +1) = 1− F (θ|Yi = +1)
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Similarly TPR(θ) = P(Ŷi > θ|Yi = +1) = 1− F (θ|Yi = +1)

Naijia Liu Supervised Learning February 2024 44 / 49



Evaluation Metrics for Classification

The area under the curve is often used as a measure of classifier
quality AUC =

∫∞
−∞ TPR(θ)

(
d
dθFPR(θ)

)
dθ

Define F (·) as the CDF of the predicted scores: F (θ) = P(Ŷi ≤ θ)
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Evaluation Metrics for Classification

Note that:
d

dθ
FPR(θ) = −f (θ|Yi = −1)

AUC =

∫ ∞

−∞
P(Ŷi > θ|Yi = +1) · (−f (θ|Yi = −1))dθ

=

∫ −∞

∞
P(Ŷi > θ|Yi = +1) · f (θ|Yi = −1)dθ

= E [Z > Z ′]

Where Z (Z ′) is randomly drawn predictions from positive (negative) class
and reversing sign is because increasing θ decreases FPR
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Evaluation Metrics for Classification

“Hard” (discretized) confusion matrix with K classes:

▶ Encode each unit’s outcome as a “one-hot” vector

▶ if K = 3, then Yi = 2 → Yi = [0, 1, 0]⊤

▶ Collect these in N × K matrix, Y = [Y1, · · · ,YN ]
⊤

▶ Similarly, encode each hard prediction as one-hot Ŷi

▶ Collect these predictions in Ŷ

▶ Then the hard confusion matrix is simply Ŷ⊤Y
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▶ Collect these predictions in Ŷ
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Evaluation Metrics for Classification

Generalizes to “soft” confusion matrix with probabilistic predictions

Represent each prediction with the stochastic vector
Ŷi = [P̂(Yi = 1|Xi ), · · · , P̂(Yi = K |Xi )]

⊤

Collect predictions in a N × K row-stochastic matrix, Ŷ

Then soft confusion matrix is Ŷ
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Inference for Cross-Validated Evaluation

First, determine the evaluation measure of interest (e.g. MSE)

For each held-out fold, calculate the measure

Each fold, you obtain an estimate of generalization MSE (somewhat
conservatively biased due to training on N(K − 1)/K observations
instead of N)

Averaging across folds, you obtain an aggregated estimate of
generalization MSE
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Inference for Cross-Validated Evaluation

Uncertainty not straightforward: All your foldwise MSE estimates are
correlated!

Based on overlapping training sets

In general, options are unsatisfactory:

▶ Try to estimate and correct for the correlations

▶ Alternatively, make conservative estimate of variance

▶ For more, see Nadeau, Claude and Yoshua Bengio. 2003. “Inference
for the Generalization Error.” Machine Learning, 53(3).
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