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Unsupervised Learning

Dimension reduction:

A particular form of unsupervised learning

Take high-dimensional features and create a lower-dimensional
representation

Useful for:

▶ Visualizing high-dimensional data

▶ Preprocessing features for methods that perform poorly in high
dimensions (e.g. kNN)

▶ Discovering latent concepts underlying the data

▶ Combining multiple noisy measurements

Start with principal component analysis (PCA) and then explore
related methods
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Finding a Lower Dimensional Representation

X︸︷︷︸
N×2

=


x11 x12
x21 x22
...

...
xN1 xN2

 Z︸︷︷︸
N×1

=


z11
z21
...

zN1
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Decompose a High Dimensional Matrix

SVD re-expresses a N × K matrix X in the following form:

X = UDV⊤
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Review: Eigenvector Decomposition

For a diagonalizable N × N matrix, A, an eigenvector of A is any vector x
that satisfies

Ax = λx

for some constant λ.

We want to transform the original matrix by Eigenvector x : Ax.

This transforming vector is robust after the transformation: Ax = λx

Eignvalue λ tells us the magnitude.

x and λ are not unique for most of the matrices.

It turns out that a A can be rewritten as VDV⊤

Naijia Liu (Harvard) Dimension Reduction March 6th, 2024 4 / 41



Review: Eigenvector Decomposition

For a diagonalizable N × N matrix, A, an eigenvector of A is any vector x
that satisfies

Ax = λx

for some constant λ.

We want to transform the original matrix by Eigenvector x : Ax.

This transforming vector is robust after the transformation: Ax = λx

Eignvalue λ tells us the magnitude.

x and λ are not unique for most of the matrices.

It turns out that a A can be rewritten as VDV⊤

Naijia Liu (Harvard) Dimension Reduction March 6th, 2024 4 / 41



Review: Eigenvector Decomposition

For a diagonalizable N × N matrix, A, an eigenvector of A is any vector x
that satisfies

Ax = λx

for some constant λ.

We want to transform the original matrix by Eigenvector x : Ax.

This transforming vector is robust after the transformation: Ax = λx

Eignvalue λ tells us the magnitude.

x and λ are not unique for most of the matrices.

It turns out that a A can be rewritten as VDV⊤

Naijia Liu (Harvard) Dimension Reduction March 6th, 2024 4 / 41



Review: Eigenvector Decomposition

For a diagonalizable N × N matrix, A, an eigenvector of A is any vector x
that satisfies

Ax = λx

for some constant λ.

We want to transform the original matrix by Eigenvector x : Ax.

This transforming vector is robust after the transformation: Ax = λx

Eignvalue λ tells us the magnitude.

x and λ are not unique for most of the matrices.

It turns out that a A can be rewritten as VDV⊤

Naijia Liu (Harvard) Dimension Reduction March 6th, 2024 4 / 41



Review: Eigenvector Decomposition

For a diagonalizable N × N matrix, A, an eigenvector of A is any vector x
that satisfies

Ax = λx

for some constant λ.

We want to transform the original matrix by Eigenvector x : Ax.

This transforming vector is robust after the transformation: Ax = λx

Eignvalue λ tells us the magnitude.

x and λ are not unique for most of the matrices.

It turns out that a A can be rewritten as VDV⊤

Naijia Liu (Harvard) Dimension Reduction March 6th, 2024 4 / 41



Review: Eigenvector Decomposition

For a diagonalizable N × N matrix, A, an eigenvector of A is any vector x
that satisfies

Ax = λx

for some constant λ.

We want to transform the original matrix by Eigenvector x : Ax.

This transforming vector is robust after the transformation: Ax = λx

Eignvalue λ tells us the magnitude.

x and λ are not unique for most of the matrices.

It turns out that a A can be rewritten as VDV⊤

Naijia Liu (Harvard) Dimension Reduction March 6th, 2024 4 / 41



Review: Eigenvector Decomposition

For a diagonalizable N × N matrix, A, an eigenvector of A is any vector x
that satisfies

Ax = λx

for some constant λ.

We want to transform the original matrix by Eigenvector x : Ax.

This transforming vector is robust after the transformation: Ax = λx

Eignvalue λ tells us the magnitude.

x and λ are not unique for most of the matrices.

It turns out that a A can be rewritten as VDV⊤

Naijia Liu (Harvard) Dimension Reduction March 6th, 2024 4 / 41



1 Principal Component Analysis (PCA)

2 Image Data
Application on Images

3 Network and Text Data

4 Relationship to Supervised Learning



Principal Component Analysis: SVD Perspective

Take the N × K feature matrix, X

Now standardize the columns to create X̃, where
X̃∗,k = (Xk −mean(Xk))/s.d.(Xk)

We can take the singular value decomposition of X̃ = UDVT
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PCA: SVD Perspective

How should we interpret U, D, and V?

After SVD of X̃, each row of U (a N × K matrix) descibes an
observation’s score, or position in a transformed space

Note that the ordering of the transformed dimensions is arbitrary; we
can still recover X̃ no matter how they are shuffled
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PCA: SVD Perspective

Variance:

▶ The “total” variance is
∑

k Var(X̃∗,k)

▶ The sum of diagonal elements in D will be 1/N the total variance

▶ By convention, the dimensions of the transformed space are ordered
according to the variance of X̃ that they “explain”, corresponding to
diagonal elements of D

Columns of V are also called the “loadings” of X̃ and describe how
the transformed space can be mapped back to the feature space

Dimension reduction is achieved by truncating to the first M
components (recall how they’re ordered)
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PCA: Geometric Perspective

X︸︷︷︸
N×2

=


x11 x12
x21 x22
...

...
xN1 xN2

 Z︸︷︷︸
N×1
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z11
z21
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zN1
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PCA: Geometric Perspective
The best 2-dimensional representation is the plane that is closest to the
original N observations

X︸︷︷︸
N×3

=


x11 x12 x13
x21 x22 x23
...

...
xN1 xN2 xN3

 Z︸︷︷︸
N×2

=


z11 z12
z21 z22
...

zN1 zN2
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Linear Dimension Reduction

Methods for deriving a simplified representation of features from a
large set of variables

Goal is for these simplified features to somehow still capture most of
the variation in the raw data

Z∗,1, . . . ,Z∗,M represent M ≤ K linear combinations of the original K
predictors (X∗,1, . . . ,X∗,K )

Zm =
K∑

k=1

vkmXk , where

K∑
k=1

v2km = 1
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Linear Dimension Reduction

Z∗,1, . . . ,Z∗,M represent M ≤ K linear combinations of the original K
predictors (X∗,1, . . . ,X∗,K )

Zm =
K∑

k=1

vkmXk , where

K∑
k=1

v2km = 1

▶ Loading vector for m-th reduced dimension is vm (a unit vector, so that
vTmvm = 1)

▶
∑p

j=1 v
2
jm = 1: ensures that Zm doesn’t get arbitrarily large (consistent

with vm being a direction in space, or a unit vector)

▶ zim = vTmxi: scalar projection of data point xi on to the mth principal
component direction

▶ zim tells us how far to go along vm to get as close to xi as possible
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Interpretation of Principal Components

We showed that finding the closest line (or plane, in higher
dimensions) is equivalent to maximizing the variance of the projected
data.

Proportion of variance explained (PVE)

Variance explained by mth PC

Total variance
=

∑N
i=1

(∑K
k=1 vkmxij

)2

∑K
k=1

∑N
i=1 x

2
ik

Can also be used to get the cumulative PVE of the first k PC

The cumulative PVE of all K PC will be 1
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Why do we care?

PCA will recover the eigenvector (characteristic vector) with the
largest eigenvalue (characteristic value)

This helps us to identify underlying structures in highly collinear data

We can use it to analyze high-dimensional data like voting records

Or to reduce dimension for visualization
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PCA on Senate Rollcall Votes

R Code

> rollcall <- read.dta(’sen112kh.dta’)

> X <- rollcall[,grep(’^V’, colnames(rollcall))]

> rollcall.pca <- svd(scale(X))

> rollcall <- read.dta(’sen112kh.dta’)

> rollcall[1:5, 1:12] cong id state dist lstate party eh1 eh2 name V1 V2 V3 1

112 99911 99 0 USA 100 NA NA OBAMA 9 9 9 2 112 49700 41 0 ALABAMA 200 0 1

SESSIONS 1 1 6 3 112 94659 41 0 ALABAMA 200 0 1 SHELBY 1 1 1 4 112 40300 81 0

ALASKA 200 0 1 MURKOWSKI 1 1 1 5 112 40900 81 0 ALASKA 100 0 1 BEGICH 1 1 1

> X <- rollcall[,grep(’^V’, colnames(rollcall))]

> X <- as.matrix(X)

> rollcall.pca <- svd(scale(X))

> z1 <- rollcall.pca$u[,1]

> z2 <- rollcall.pca$u[,2]
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PCA on Senate Rollcall Votes
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PCA on Senate Rollcall Votes
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Probabilistic PCA

An observation draws its score in the 1D latent space from standard
normal (left)

This score is mapped to the 2D observed space and noise is added
(center)

This implies that overall observed data follows the green distribution
(right)
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1 Principal Component Analysis (PCA)

2 Image Data
Application on Images

3 Network and Text Data

4 Relationship to Supervised Learning



Image Matrix
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Image Matrix

Convert image array to matrix of pixel intensities (average RGB channels)
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Image Matrix

Convert image array to matrix of pixel intensities (average RGB channels)
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Image Matrix

Reconstructed matrix using only first SVD dimension scores and loadings.
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Image Matrix

Reconstruction with successively larger number of dimensions
(1, 2, 4, 8, 16, 32, 64, 128)
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Image Data

Alternatively, grayscale images can be treated as a simple vector of
pixel intensities (discards all spatial relationships between adjacent
pixels).

Then these can be treated as a standard data matrix (each row
becomes an observation)

Essentially discards spatial information

Classifiers are not invariant to shifting, rotation, resizing of object
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Eigenfaces: First 9 Dimensions
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1 Principal Component Analysis (PCA)

2 Image Data
Application on Images

3 Network and Text Data

4 Relationship to Supervised Learning



Does Exposure to the Refugee Crisis Make Natives More
Hostile?

Causal evidence regarding the impact of the refugee crisis on natives’
attitudes, policy preferences, and political engagement. (Hangartner
et al, 2018, APSR)

Leveraging a targeted survey of 2,070 island residents.

Results show mere exposure suffices in generating lasting increases in
hostility.
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Use PCA to Reduce Outcome Dimensionality

Use a set of questions to measure opinion towards Native opinion.

Built a summary scale that combines the different measures by
extracting the first component of a PCA.
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Figure: Black color shows the PCA first component for each set of questions
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Fingerprints of Fraud

How does a non-democratic regime rely on fraud? (Cantu, 2019,
APSR)

Documenting the alteration of vote tallies during the 1988
presidential election in Mexico.

Authors find evidence of blatant alterations in about a third of the
tallies in the country, using image data.

Naijia Liu (Harvard) Dimension Reduction March 6th, 2024 27 / 41



Vote Data
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Feature Extraction from Images

Transform each picture into a numerical array of size 227 (height) ×
227 (width) × 3 (RGB color channels)

Enter first convolutional layer and extract high level visual features.

Enter second convolutional layer using the output of the previous step.

Enter third convolutional layer ....

Actually we can combine PCA with CNN. (Grag et al, 2019, IEEE).
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Model Input
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1 Principal Component Analysis (PCA)

2 Image Data
Application on Images

3 Network and Text Data

4 Relationship to Supervised Learning



Network Data

Model relationships among political actors, rather than each unit’s
behavior in isolation

▶ Links between organizations and political groups
▶ Actions taken by two actors jointly
▶ Actions by one actor toward another

Taking dependency seriously

▶ Most models that we have learned so far assume i.i.d.
▶ Can we assume that trade flows between countries i and j is i.i.d.

compared to trade flows between i and k?

Examples:

▶ Social ties
▶ National alliances
▶ Overlapping membership in international institutions
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Google PageRank

Pages with a greater number of incoming edges are more important

Incoming edges analogous to votes of support

A page with incoming edge from another node with a large number of
incoming edges: more important

An “important” senator’s Twitter account is followed by another
politician whose account has many followers

An iterative algorithm

PageRanki =
1− d

N
+ d ×

N∑
j=1

Aji × PageRankj
outdegreej

where d is a constant (e.g., 0.85) and N is the number of nodes

Arises from extension of message-passing model in which users start
uniformly distributed, but stop browsing at each step with some
probability
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Twitter Networks among Politicians
R Code

## defining colors

> col <- rep("red", n); col[senator$party == "D"] <- "blue"; col[senator$party == "I"] <- "black"

## PageRank

> senator$pagerank <- page.rank(twitter.adj)$vector

> senator[order(senator$pagerank, decreasing=T),][1:5,]

screen_name name party state indegree outdegree pagerank

68 SenPatRoberts Pat Roberts R KS 63 68 0.02100866

7 JohnBoozman John Boozman R AR 55 80 0.01738608

8 SenJohnBarrasso John Barrasso R WY 60 87 0.01712930

88 RonWyden Ron Wyden D OR 58 0 0.01679434

60 SenJeffMerkley Jeff Merkley D OR 54 68 0.01611258

> plot(twitter.adj, vertex.size = senator$pagerank * 1000,

+ vertex.color = col, vertex.label = NA,

+ edge.arrow.size = 0.1, edge.width = 0.5)
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Latent Space Network Models

Peter D. Hoff, Adrian E. Raftery, & Mark S. Handcock. 2002.
“Latent Space Approaches to Social Network Analysis.” JASA Vol.
97, No. 460.

Ties arise stochastically as a function of the distance between two
observations. With unweighted ties:

pij = logit−1(αi + βj + X⊤
ij γ + δ||zi − zj ||)

Aij ∼ Bern(pij)

where Xij is a vector of dyadic characteristics

Generalizes to all exponential-family distributions

Naijia Liu (Harvard) Dimension Reduction March 6th, 2024 34 / 41



Latent Space Network Models

Peter D. Hoff, Adrian E. Raftery, & Mark S. Handcock. 2002.
“Latent Space Approaches to Social Network Analysis.” JASA Vol.
97, No. 460.

Ties arise stochastically as a function of the distance between two
observations. With unweighted ties:

pij = logit−1(αi + βj + X⊤
ij γ + δ||zi − zj ||)

Aij ∼ Bern(pij)

where Xij is a vector of dyadic characteristics

Generalizes to all exponential-family distributions

Naijia Liu (Harvard) Dimension Reduction March 6th, 2024 34 / 41



Latent Space Network Models

Peter D. Hoff, Adrian E. Raftery, & Mark S. Handcock. 2002.
“Latent Space Approaches to Social Network Analysis.” JASA Vol.
97, No. 460.

Ties arise stochastically as a function of the distance between two
observations. With unweighted ties:

pij = logit−1(αi + βj + X⊤
ij γ + δ||zi − zj ||)

Aij ∼ Bern(pij)

where Xij is a vector of dyadic characteristics

Generalizes to all exponential-family distributions

Naijia Liu (Harvard) Dimension Reduction March 6th, 2024 34 / 41



Latent Space Network Models
Pablo Barberá. 2015. “Birds of the Same Feather Tweet Together:
Bayesian Ideal Point Estimation Using Twitter Data.” Political
Analysis, 2015, 23 (1), 76-91.

pij = logit−1(αi + βj + γ||zi − zj ||)
Aij ∼ Bern(pij)

(simultaneously scale binary bipartite network of politician and
populace Twitter accounts)

In Song Kim and Dmitriy Kunisky. “Mapping Political Communities:
A Statistical Analysis of Lobbying Networks in Legislative Politics.”
Working paper.

µij = exp(αi + βj + γ||zi − zj ||)
Aij ∼ Poisson(µij)

(simultaneously scale count-valued bipartite network of interest group
lobbying on a politician’s sponsored bills)
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1D Model: Kim & Kunisky, PA, 2021
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2D Model: Kim & Kunisky
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Latent Space Text Models

Very similar to latent space network models

Jonathan B. Slapin and Sven-Oliver Proksch. 2008. “A Scaling
Model for Estimating Time-Series Party Positions from Texts.” AJPS
Vol. 52, No. 3.

µitj = exp(αit + ψj + βjωit)

yitj ∼ Poisson(µitj)

where

▶ yitj is the count of word j in party i ’s manifesto in election (or year) t
▶ αit is a party-year fixed effect
▶ ψj is a word fixed effect
▶ βj is a word-specific coefficient capturing the importance of word j in

discriminating between party positions
▶ ωit is the estimate of party i ’s position in election t
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Partial Least Squares

What if we didn’t want to recover latent dimensions that optimally
summarized X (N × K )...

... but rather dimensions summarizing X in a way that explains Y?

Consider the following procedure (with standardized X):

▶ Examine each feature Xj and compute ˆCov(Xj ,Y)

▶ Construct i ’s score on the first latent dimension as weighted sum of its
covariates, Zi1 =

∑
j Xij

ˆCov(Xj ,Y)

▶ Then, residualize X (take out portion that can be explained by first

dimension: X̃1
j = Xj − Zi1 ·

ˆCov(Xj ,Z1)

V̂ar(Z1)

▶ Construct i ’s score on the second dimension as weighted sum of its
residualized covariates, Zi2 =

∑
j Xij

ˆCov(X̃1
j ,Y)

▶ Repeat for dimensions 3, . . ., M
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Partial Least Squares

Then compute partial least square coefficients by regressing Y on
Z = [Z1, . . . ,ZM ]

If M = K , then you can reconstruct each OLS coefficient from
weighted combination of (Z⊤Z)−1Z⊤Y

Rather than than maximizing projected variance, this maximizes
covariance between projection and outcome

Naijia Liu (Harvard) Dimension Reduction March 6th, 2024 40 / 41



Ridge Revisited

In general, ridge regression tends to penalize the low variance
principal components (i.e., the component with lower variance)

Recall that after centering, X = UDVT and X⊤X = ˆCovX = VD2V⊤

Xβ̂ridge = X(XTX+ λI)−1XTy

= UDVT (VD2VT + λI)−1VDUTy

= UDVT (VD2VT + λVVT )−1VDUTy

= UDVT{V(D2 + λI)VT}−1VDUTy

= UD(D2 + λI)−1DUTy

=
K∑

k=1

uk
d2
k

d2
k + λ︸ ︷︷ ︸
≤1

uTk y

Dimensions explaining less variance in data get more shrinkage
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